There is a certain correlation between Chinese traditional culture and Chinese enterprises' performance of environmental responsibility, but there is little literature on the relationship between them from an empirical perspective. This paper combs and evaluates the relevant literature from three aspects: the evaluation of the economic and social effects of Chinese traditional culture, the influencing factors of corporate environmental responsibility, and the measurement of culture. Based on the literature review, this paper puts forward the following research enlightenment, that is, future empirical research should be carried out from the perspective of the intensity, effect, and heterogeneity of the impact of Chinese traditional culture on enterprises' fulfillment of environmental responsibility, as well as the moderating factors of the relationship between them.
Citation: Shan Huang, Khor Teik Huat, Zifei Zhou. The studies on Chinese traditional culture and corporate environmental responsibility: literature review and its implications[J]. National Accounting Review, 2022, 4(1): 1-15. doi: 10.3934/NAR.2022001
[1] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[2] | Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115 |
[3] | Wenbing Sun, Rui Xu . Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals. AIMS Mathematics, 2021, 6(10): 10679-10695. doi: 10.3934/math.2021620 |
[4] | Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized n-fractional polynomial s-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163 |
[5] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[6] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[7] | Muhammad Bilal Khan, Omar Mutab Alsalami, Savin Treanțǎ, Tareq Saeed, Kamsing Nonlaopon . New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities. AIMS Mathematics, 2022, 7(8): 15497-15519. doi: 10.3934/math.2022849 |
[8] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[9] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[10] | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275 |
There is a certain correlation between Chinese traditional culture and Chinese enterprises' performance of environmental responsibility, but there is little literature on the relationship between them from an empirical perspective. This paper combs and evaluates the relevant literature from three aspects: the evaluation of the economic and social effects of Chinese traditional culture, the influencing factors of corporate environmental responsibility, and the measurement of culture. Based on the literature review, this paper puts forward the following research enlightenment, that is, future empirical research should be carried out from the perspective of the intensity, effect, and heterogeneity of the impact of Chinese traditional culture on enterprises' fulfillment of environmental responsibility, as well as the moderating factors of the relationship between them.
In convex functions theory, Hermite-Hadamard inequality is very important which was discovered by C. Hermite and J. Hadamard independently (see, also [1], and [2,p.137])
F(π1+π22)≤1π2−π1π2∫π1F(ϰ)dϰ≤F(π1)+F(π2)2, | (1.1) |
whereF is a convex function. In the case of concave mappings, the above inequality is satisfied in reverse order.
Over the last twenty years, numerous studies have focused on obtaining trapezoid and midpoint type inequalities which give bounds for the right-hand side and left-hand side of the inequality (1.1), respectively. For example, the authors first obtained trapezoid and midpoint type inequalities for convex functions in [3] and in [4], respectively. In [5], Sarikaya et al. obtained the inequalities (1.1) for Riemann-Liouville fractional integrals and the authors also proved some corresponding trapezoid type inequalities for fractional integrals. Iqbal et al. presented some fractional midpoint type inequalities for convex functions in [6]. Sarikaya and Ertuğral [7] introduced the notions of generalized fractional integrals and proved some Hermite-Hadamard type inequalities for convex functions. In [8], Budak et al. used the generalized fractional integrals to prove Hermite-Hadamard type inequalities for twice differentiable convex functions. After that, the authors used generalized fractional integrals and proved the different variants of integral inequalities in [9,10,11,12,13,14].
On the other hand, İşcan [15] defined the following class of functions called harmonically convex functions:
If the mapping F:I⊂R∖{0}→R satisfies the inequality
F(1σϰ+1−σy)≤σF(ϰ)+(1−σ)F(y), |
for all ϰ,y∈I and σ∈[0,1], then F is called harmonically convex function. In the case of harmonically concave mappings, the above inequality is satisfied in reverse order.
It is worth noting that the harmonic feature has been important in a variety of disciplines in pure and applied sciences. The authors explore the significance of the harmonic mean in Asian stock company [16]. Harmonic methods are used in electric circuit theory, which is interesting. The overall resistance of a set of parallel resistors is just half of the entire resistors' harmonic mean. If r1 and r2 are the resistances of two parallel resistors, the total resistance may be calculated using the following formula:
rσ=r1r2r1+r2=12H(r1,r2), |
which is the half of the harmonic mean.
The harmonic mean, according to Noor [17], is also important in the creation of parallel algorithms for solving nonlinear problems. Several researchers have proposed iterative approaches for solving linear and nonlinear systems of equations using harmonic means and harmonically convex functions.
Several research articles have recently been published on various generalizations of integral inequalities using various approaches. For example, İşcan established some new Hermite-Hadamard type inequalities for harmonically convex functions and trapezoid type inequalities for this class of functions in [15]. In [18], İ şcan and Wu established Hermite-Hadamard type inequalities for harmonically convex functions via Riemann-Liouville fractional integrals. They also proved some fractional trapezoid type inequalities for mapping whose derivatives in absolute value are harmonically convex. İşcan proved Ostrowski type integral inequalities for harmonically s-convex functions in [19] and in [20], Chen gave an extension of fractional Hermite-Hadamard type inequalities for harmonically convex functions. Kunt et al. [21] and Set et al. [22] used the Riemann-Liouville fractional integrals and proved Hermite-Hadamard type inequalities for harmonically convex functions. In [23], Șanlı proved several fractional midpoint type inequalities utilizing differentiable convex functions. The authors used the generalized fractional integrals and proved Hermite-Hadamard type inequalities for harmonically convex functions in [24,25]. Mohsen et al. [26] used the h- harmonically convexity to prove some new Ostrowski type inequalities and in [27], Akhtar et al. proved a new variant of Ostrowski inequalities for harmonically convex functions. In the literature there are several papers on the inequalities for harmonically convex functions. For some recent developments in integral inequalities and harmonically convexity, one can consult [28,29,30].
Inspired by the ongoing studies, we use the generalized fractional integrals to develop some new Ostrowski type inequalities for differentiable harmonically convex functions. We also show that the newly developed inequalities are extensions of some previously known inequalities.
The following is the structure of this paper: Section 2 provides a brief overview of the fractional calculus as well as other related studies in this field. In Section 3, we establish Ostrowski type inequalities for differentiable functions. The relationship between the findings reported here and similar findings in the literature are also taken into account. We discuss the special cases of newly established inequalities in Section 4 and obtain several new Ostrowski type inequalities. We give some applications to special means of real numbers in Section 5. Section 6 concludes with some recommendations for future research.
In this section, we recall some basic concepts of fractional integrals and related integral inequalities.
Definition 2.1. [7] The left and right-sided generalized fractional integrals given as follows:
π1+IφF(ϰ)=ϰ∫π1φ(ϰ−σ)ϰ−σF(σ)dσ, ϰ>π1, | (2.1) |
π2−IφF(ϰ)=π2∫ϰφ(σ−ϰ)σ−ϰF(σ)dσ, ϰ<π2, | (2.2) |
where the function φ:[0,∞)→[0,∞) satisfies ∫10φ(σ)σdσ<∞. For the details about the genrarlized fractional integrals, one can consult [7].
The most important feature of the generalized fractional integrals is that they generalize some types of fractional integrals such as Riemann-Liouville fractional integral, k-Riemann-Liouville fractional integral, Katugampola fractional integrals, conformable fractional integral, Hadamard fractional integrals, etc. Few important special cases of the integral operators (2.1) and (2.2) are mentioned below.
i) Taking φ(σ)=σ, the operators (2.1) and (2.2) reduces to the classical Riemann integrals as follows:
Iπ+1F(ϰ)=∫ϰπ1F(σ)dσ,ϰ>π1, |
Iπ−2F(ϰ)=∫π2ϰF(σ)dσ, ϰ<π2. |
ii) Taking φ(σ)=σαΓ(α), the operators (2.1) and (2.2) reduces to the well-known Riemann–Liouville fractional integrals as follows:
Jαπ+1F(ϰ)=1Γ(α)∫ϰπ1(ϰ−σ)α−1F(σ)dσ, ϰ>π1, |
Jαπ−2F(ϰ)=1Γ(α)∫π2ϰ(σ−ϰ)α−1F(σ)dσ, ϰ<π2. |
iii) Taking φ(σ)=σαkkΓk(α), the operators (2.1) and (2.2) reduces to the well-known k–Riemann–Liouville fractional integrals as follows:
Jα,kπ1+F(ϰ)=1kΓk(α)∫ϰπ1(ϰ−σ)αk−1F(σ)dσ, ϰ>π1, |
Jα,kπ2−F(ϰ)=1kΓk(α)∫π2ϰ(σ−ϰ)αk−1F(σ)dσ, ϰ<π2, |
where
Γk(α)=∫∞0σα−1e−σkkdσ, R(α)>0 |
and
Γk(α)=kαk−1Γ(αk), R(α)>0;k>0. |
Recently, Zhao et al. used the generalized fractional integrals and proved the following Hermite-Hadamard type inequalities.
Theorem 2.2. [25] For any harmonically convex mapping, the following inequalityholds:
F(2π1π2π1+π2)≤12Φ(1){Jα1π1−(F∘g)(1π2)+Jα1π2+(F∘g)(1π1)}≤F(π1)+F(π2)2, | (2.3) |
where g(ϰ)=1ϰ and Φ(σ)=∫σ0φ(π2−π1π1π2s)sds<+∞.
Remark 2.3. It is obvious that if we set φ(σ)=σ in inequality (2.3), then we obtain the following inequality of Hermite-Hadamard type inequality (see, [15]):
F(2π1π2π1+π2)≤π1π2π2−π1∫π2π1F(ϰ)dϰ≤F(π1)+F(π2)2. |
Remark 2.4. It is obvious that if we set φ(σ)=σαΓ(α) in inequality (2.3), then we obtain the following inequality of Hermite-Hadamard type inequality for Riemann-Liouville fractional integrals (see, [18]):
F(2π1π2π1+π2)≤Γ(α+1)2(π1π2π2−π1)α{Jα1π1−(F∘g)(1π2)+Jα1π2+(F∘g)(1π1)}≤F(π1)+F(π2)2. |
Remark 2.5. It is obvious that if we set φ(σ)=σαkkΓk(α) in inequality (2.3), then we obtain the following inequality of Hermite-Hadamard type inequality for k-Riemann Liouville fractional integrals (see, [25]):
F(2π1π2π1+π2)≤kΓk(α+k)2(π1π2π2−π1)αk{Jα,k1π1−(F∘g)(1π2)+Jα,k1π2+(F∘g)(1π1)}≤F(π1)+F(π2)2. |
In this section, we prove some new Ostrowski type inequalities for differentiable harmonically convex functions via the generalized fractional integrals. For brevity, we give the following special functions:
(1) The Beta function:
β(ϰ,y)=Γ(ϰ)Γ(y)Γ(ϰ+y)=∫10σϰ−1(1−σ)y−1dσ, ϰ,y>0. |
(2) The hypergeometric function:
2F1(π1,π2;c;z)=1β(π2,c−π2)∫10σπ2−1(1−σ)c−π2−1(1−zσ)−αdσ, c>π2>0, |z|<1. |
Lemma 3.1. Let F:I=[π1,π2]⊆(0,+∞)→R be a differentiable function on I∘ such that F′∈L([π1,π2]). Then, the following generalized fractional integrals identity holds for all ϰ∈(π1,π2):
π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−ϰπ2(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)], | (3.1) |
where the mappings Δ and Λ are defined as:
Δ(σ)=∫σ0φ(ϰ−π1π1ϰs)sds<+∞, |
and
Λ(σ)=∫σ0φ(π2−ϰπ2ϰs)sds<+∞. |
Proof. Consider
π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−ϰπ2(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=I1−I2. | (3.2) |
From fundamentals of integrations, we have
I1=π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ=∫10Δ(σ)dF(π1ϰσπ1+(1−σ)ϰ)dσ=Δ(1)F(ϰ)−∫10φ((ϰ−π1)π1ϰσ)σF(π1ϰσπ1+(1−σ)ϰ)dσ=Δ(1)F(ϰ)−1ϰ+Iφ(F∘g)(1π1). |
Similarly, we have
I2=ϰπ2(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=−Λ(1)F(ϰ)+1ϰ−Iφ(F∘g)(1π2). |
Thus, we obtain the required identity (3.1) by using the calculated values of I1 and I2 in (3.2).
Remark 3.2. If we set φ(σ)=σ in Lemma 3.1, then we obtain the following equality:
π1π2π2−π1{(ϰ−π1)2∫10σ(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−(π2−ϰ)2∫10σ(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ}=F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du. |
This is proved by İşcan in [19,Lemma 2.1].
Remark 3.3. In Lemma 3.1, if we set φ(σ)=σαΓ(α), then we have the following equality for Riemann-Liouville fractional integrals:
(ϰ−π1)α+1(π1ϰ)α−1∫10σα(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−(π2−ϰ)α+1(ϰπ2)α−1∫10σα(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)−Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]. |
This is proved by İşcan in [31].
Corollary 3.4. In Lemma 3.1, if we set φ(σ)=σαkkΓ(α), then we have thefollowing new equality for k-Riemann-Liouville fractional integrals:
(ϰ−π1)α+kk(π1ϰ)α−kk∫10σαk(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−(π2−ϰ)α+kk(ϰπ2)α−kk∫10σαk(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)−Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]. |
Theorem 3.5. We assume that the conditions of Lemma 3.1 are valid. If |F′|q is harmonicallyconvex on [π1,π2] for some q≥1, then the followinginequality holds for the generalized fractional integrals:
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤π1ϰ(ϰ−π1)Θ1−1q1(Θ2|F′(ϰ)|q+Θ3|F′(π1)|q)1q+π2ϰ(π2−ϰ)Θ1−1q4(Θ5|F′(ϰ)|q+Θ6|F′(π2)|q)1q, |
where
Θ1=∫10Δ(σ)(σπ1+(1−σ)ϰ)2dσ,Θ2=∫10σΔ(σ)(σπ1+(1−σ)ϰ)2dσ,Θ3=∫10(1−σ)Δ(σ)(σπ1+(1−σ)ϰ)2dσ,Θ4=∫10Λ(σ)(σπ2+(1−σ)ϰ)2dσ,Θ5=∫10σΛ(σ)(σπ2+(1−σ)ϰ)2dσ, |
and
Θ6=∫10(1−σ)Λ(σ)(σπ2+(1−σ)ϰ)2dσ. |
Proof. Taking absolute in Lemma 3.1 and then applying the well known power mean inequality, we have
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2|F′(π1ϰσπ1+(1−σ)ϰ)|dσ+π2ϰ(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2|F′(π2ϰσπ2+(1−σ)ϰ)|dσ≤π1ϰ(ϰ−π1)(∫10Δ(σ)(σπ1+(1−σ)ϰ)2dσ)1−1q×(∫10Δ(σ)(σπ1+(1−σ)ϰ)2|F′(π1ϰσπ1+(1−σ)ϰ)|qdσ)1q+π2ϰ(π2−ϰ)(∫10Λ(σ)(σπ2+(1−σ)ϰ)2dσ)1−1q×(∫10Λ(σ)(σπ2+(1−σ)ϰ)2|F′(π2ϰσπ2+(1−σ)ϰ)|qdσ)1q. |
Now from harmonically convexity of |F′|q, we have
(∫10Δ(σ)(σπ1+(1−σ)ϰ)2dσ)1−1q(∫10Δ(σ)(σπ1+(1−σ)ϰ)2|F′(π1ϰσπ1+(1−σ)ϰ)|qdσ)1q≤Θ1−1q1(|F′(ϰ)|q∫10σΔ(σ)(σπ1+(1−σ)ϰ)2dσ+|F′(π1)|q∫10(1−σ)Δ(σ)(σπ1+(1−σ)ϰ)2dσ)1q=Θ1−1q1(Θ2|F′(ϰ)|q+Θ3|F′(π1)|q)1q. |
and
(∫10Λ(σ)(σπ2+(1−σ)ϰ)2dσ)1−1q(∫10Λ(σ)(σπ2+(1−σ)ϰ)2|F′(π2ϰσπ2+(1−σ)ϰ)|qdσ)1q≤Θ1−1q4(|F′(ϰ)|q∫10σΛ(σ)(σπ2+(1−σ)ϰ)2dσ+|F′(π2)|q∫10(1−σ)Λ(σ)(σπ2+(1−σ)ϰ)2dσ)1q=Θ1−1q4(Θ5|F′(ϰ)|q+Θ6|F′(π2)|q)1q. |
Thus, the proof is completed.
Remark 3.6. In Theorem 3.5, if we assume φ(σ)=σ, then we have the following Ostrowski type inequalities:
|F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du|≤π1π2π2−π1{χ1−1q1(π1,ϰ)(ϰ−π1)2(χ2(π1,ϰ,1,1)|F′(ϰ)|q+χ3(π1,ϰ,1,1)|F′(π1)|q)1q+χ1−1q1(π2,ϰ)(π2−ϰ)2(χ4(π2,ϰ,1,1)|F′(ϰ)|q+χ5(π2,ϰ,1,1)|F′(π2)|q)1q}, |
where
χ1(υ,ϰ)=1ϰ−ν[1υ−lnϰ−lnυϰ−υ],χ2(π1,ϰ,υ,μ)=β(μ+2,1)ϰ2υ2F1(2υ,μ+2;μ+3;1−π1ϰ),χ3(π1,ϰ,υ,μ)=β(μ+1,1)ϰ2υ2F1(2υ,μ+1;μ+3;1−π1ϰ),χ4(π2,ϰ,υ,μ)=β(1,μ+2)π2υ22F1(2υ,1;μ+3;1−ϰπ2),χ5(π2,ϰ,υ,μ)=β(2,μ+1)π2υ22F1(2υ,2;μ+3;1−ϰπ2). |
This is proved by İşcan in [19,Theorem 2.4 for s=1].
Corollary 3.7. In Theorem 3.5, if we set |F′(ϰ)|≤M, ϰ∈[π1,π2], then we obtain the following Ostrowski typeinequality for generalized fractional integrals:
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤M{π1ϰ(ϰ−π1)Θ1−1q1(Θ2+Θ3)1q+π2ϰ(π2−ϰ)Θ1−1q4(Θ5+Θ6)1q}. |
Remark 3.8. In Theorem 3.5, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequality for Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]|≤(ϰ−π1)α+1(π1ϰ)α−1Ω1−1q1(π1,ϰ,α)(Ω3(π1,ϰ,α)|F′(ϰ)|q+Ω4(π1,ϰ,α)|F′(π1)|q)1q+(π2−ϰ)α+1(π2ϰ)α−1Ω1−1q2(π2,ϰ,α)(Ω5(π2,ϰ,α)|F′(ϰ)|q+Ω6(π2,ϰ,α)|F′(π2)|q)1q, |
where
Ω1(π1,ϰ,α)=ϰ−22F1(2,α+1;α+2;1−π1ϰ),Ω2(π2,ϰ,α)=π−222F1(2,1;α+2;1−ϰπ2)Ω3(π1,ϰ,α)=β(α+2,1)ϰ22F1(2,α+2;α+3;1−π1ϰ),Ω4(π1,ϰ,α)=Ω1(π1,ϰ,α)−Ω3(π1,ϰ,α),Ω5(π2,ϰ,α)=β(1,α+2)π222F1(2,1;α+3;1−ϰπ2),Ω6(π2,ϰ,α)=Ω2(π2,ϰ,α)−Ω5(π2,ϰ,α). |
This is proved by İşcan in [31].
Corollary 3.9. In Theorem 3.5, if we set φ(σ)=σαkkΓk(α), then we obtain the followingnew Ostrowski type inequality for k-Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]|≤(ϰ−π1)α+kk(π1ϰ)α−kkΩ1−1q1(π1,ϰ,αk)(Ω3(π1,ϰ,αk)|F′(ϰ)|q+Ω4(π1,ϰ,αk)|F′(π1)|q)1q+(π2−ϰ)α+kk(π2ϰ)α−kkΩ1−1q2(π2,ϰ,αk)(Ω5(π2,ϰ,αk)|F′(ϰ)|q+Ω6(π2,ϰ,αk)|F′(π2)|q)1q, |
where
Ω1(π1,ϰ,αk)=ϰ−22F1(2,αk+1;αk+2;1−π1ϰ),Ω2(π2,ϰ,αk)=π−222F1(2,1;αk+2;1−ϰπ2)Ω3(π1,ϰ,αk)=β(αk+2,1)ϰ22F1(2,αk+2;αk+3;1−π1ϰ),Ω4(π1,ϰ,αk)=Ω1(π1,ϰ,αk)−Ω3(π1,ϰ,αk),Ω5(π2,ϰ,αk)=β(1,αk+2)π222F1(2,1;αk+3;1−ϰπ2),Ω6(π2,ϰ,αk)=Ω2(π2,ϰ,αk)−Ω5(π2,ϰ,αk). |
Theorem 3.10. We assume that the conditions of Lemma 3.1 are valid. If |F′|q is harmonicallyconvex on [π1,π2] for some q>1, then the followinginequality holds for the generalized fractional integrals:
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤π1ϰ(ϰ−π1)Θ1p7(|F′(ϰ)|q+|F′(π1)|q2)1q+π2ϰ(π2−ϰ)Θ1p8(|F′(ϰ)|q+|F′(π2)|q2)1q, |
where 1p+1q=1 and
Θ7=∫10(Δ(σ)(σπ1+(1−σ)ϰ)2)pdσ,Θ8=∫10(Λ(σ)(σπ2+(1−σ)ϰ)2)pdσ. |
Proof. From Lemma 3.1 and applying well-known Hölder's inequality, we have
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2|F′(π1ϰσπ1+(1−σ)ϰ)|dσ+π2ϰ(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2|F′(π2ϰσπ2+(1−σ)ϰ)|dσ≤π1ϰ(ϰ−π1)(∫10(Δ(σ)(σπ1+(1−σ)ϰ)2)pdσ)1p(∫10|F′(π1ϰσπ1+(1−σ)ϰ)|qdσ)1q+π2ϰ(π2−ϰ)(∫10(Λ(σ)(σπ2+(1−σ)ϰ)2)pdσ)1p(∫10|F′(π2ϰσπ2+(1−σ)ϰ)|qdσ)1q. |
Now from harmonically convexity of |F′|q, we have
(∫10(Δ(σ)(σπ1+(1−σ)ϰ)2)pdσ)1p(∫10|F′(π1ϰσπ1+(1−σ)ϰ)|qdσ)1q≤Θ1p7(|F′(ϰ)|q∫10σdσ+|F′(π1)|q∫10(1−σ)dσ)1q=Θ1p7(|F′(ϰ)|q+|F′(π1)|q2)1q. |
and
(∫10(Λ(σ)(σπ2+(1−σ)ϰ)2)pdσ)1p(∫10|F′(π2ϰσπ2+(1−σ)ϰ)|qdσ)1q≤Θ1p8(|F′(ϰ)|q∫10σdσ+|F′(π2)|q∫10(1−σ)dσ)1q=Θ1p8(|F′(ϰ)|q+|F′(π2)|q2)1q. |
Thus, the proof is completed.
Remark 3.11. In Theorem 3.10, if we set φ(σ)=σ, then we obtain the following Ostrowski type inequality:
|F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du|≤π1π2π2−π1{(χ∗2(π1,ϰ,υ,μ))1p(ϰ−π1)2(|F′(ϰ)|q+|F′(π1)|q2)1q+(χ∗4(π2,ϰ,υ,μ))1p(π2−ϰ)2(|F′(ϰ)|q+|F′(π2)|q2)1q}, |
where
χ∗2(π1,ϰ,υ,μ)=β(μ+1,1)ϰ2υ2F1(2υ,μ+1;μ+2;1−π1ϰ),χ∗4(π2,ϰ,υ,μ)=β(1,μ+1)π2υ22F1(2υ,1;μ+2;1−ϰπ2). |
This is proved by İşcan in [19,Theorem 2.6 for s=1].
Corollary 3.12. In Theorem 3.5, if we set |F′(ϰ)|≤M, ϰ∈[π1,π2], then we obtain the following Ostrowski typeinequality for generalized fractional integrals:
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤M{π1ϰ(ϰ−π1)Θ1p7+π2ϰ(π2−ϰ)Θ1p8}. |
Remark 3.13. In Theorem 3.10, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequalities for Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]|≤(ϰ−π1)α+1(π1ϰ)α−1Ω1p7(π1,ϰ,α,p)(|F′(ϰ)|q+|F′(π1)|q2)1q+(π2−ϰ)α+1(π2ϰ)α−1Ω1p7(π2,ϰ,α,p)(|F′(ϰ)|q+|F′(π2)|q2)1q, |
where
Ω7(υ,ϰ,α,p)=ϰ−2αp+12F1(2p,αp+1;αp+2;1−υϰ). |
This is proved by İşcan in [31].
Corollary 3.14. In Theorem 3.5, if we set φ(σ)=σαkkΓk(α), then we obtain the followingnew Ostrowski type inequality for k-Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]|≤(ϰ−π1)α+kk(π1ϰ)α−kkΩ1p7(π1,ϰ,αk,p)(|F′(ϰ)|q+|F′(π1)|q2)1q+(π2−ϰ)α+kk(π2ϰ)α−kkΩ1p7(π2,ϰ,αk,p)(|F′(ϰ)|q+|F′(π2)|q2)1q, |
where
Ω7(υ,ϰ,αk,p)=kϰ−2αp+k2F1(2p,αp+kk;αp+2kk;1−υϰ). |
In this section, we discuss more special cases of the results proved in the last section.
Remark 4.1. In Corollary 3.7, if we set φ(σ)=σ, then we obtain the following Ostrowski type inequality:
|F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du|≤Mπ1π2π2−π1{χ1−1q1(π1,ϰ)(ϰ−π1)2(χ2(π1,ϰ,1,1)+χ3(π1,ϰ,1,1))1q+χ1−1q1(π2,ϰ)(π2−ϰ)2(χ4(π2,ϰ,1,1)+χ5(π2,ϰ,1,1))1q}. | (4.1) |
This is proved by İşcan in [19,Corollary 2.3 for s=1].
Remark 4.2. In Corollary 3.7, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequality for Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]|≤M[(ϰ−π1)α+1(π1ϰ)α−1Ω1−1q1(π1,ϰ,α)(Ω3(π1,ϰ,α)+Ω4(π1,ϰ,α))1q+(π2−ϰ)α+1(π2ϰ)α−1Ω1−1q2(π2,ϰ,α)(Ω5(π2,ϰ,α)+Ω6(π2,ϰ,α))1q]. |
This is proved by İşcan in [31].
Remark 4.3. In Corollary 3.7, if we set φ(σ)=σαkkΓk(α), then we obtain the following new Ostrowski type inequality for k-Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]|≤M[(ϰ−π1)α+kk(π1ϰ)α−kkΩ1−1q1(π1,ϰ,αk)(Ω3(π1,ϰ,αk)+Ω4(π1,ϰ,αk))1q+(π2−ϰ)α+kk(π2ϰ)α−kkΩ1−1q2(π2,ϰ,αk)(Ω5(π2,ϰ,αk)+Ω6(π2,ϰ,αk))1q]. |
Remark 4.4. In Corollary 3.12, if we set φ(σ)=σ, then we obtain the following Ostrowski type inequality:
|F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du|≤Mπ1π2π2−π1{(χ∗2(π1,ϰ,υ,μ))1p(ϰ−π1)2+(χ∗4(π2,ϰ,υ,μ))1p(π2−ϰ)2}. | (4.2) |
This is proved by İşcan in [19,Corollary 2.5 for s=1].
Remark 4.5. In Corollary 3.12, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequality for Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]|≤M[(ϰ−π1)α+1(π1ϰ)α−1Ω1p7(π1,ϰ,α,p)+(π2−ϰ)α+1(π2ϰ)α−1Ω1p7(π2,ϰ,α,p)]. |
This is proved by İşcan in [31].
Remark 4.6. In Corollary 3.12, if we set φ(σ)=σαkkΓk(α), then we obtain the following new Ostrowski type inequality for k-Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]|≤M[(ϰ−π1)α+kk(π1ϰ)α−kkΩ1p7(π1,ϰ,αk,p)+(π2−ϰ)α+kk(π2ϰ)α−kkΩ1p7(π2,ϰ,αk,p)]. |
Remark 4.7. If we set q=1 in Theorem 3.5 and Corollaries 3.7–3.14, then we obtain some new Ostrowski type inequlities for the harmonically convexity of |F′|. Moreover, for different choices of φ in the generalized fractional integrals, one can obtain several Ostrowski type inequalities via Katugampola fractional integrals, conformable fractional integral, Hadamard fractional integrals, etc.
For arbitrary positive numbers π1,π2(π1≠π2), we consider the means as follows:
(1) The arithmatic mean
A=A(π1,π2)=π1+π22. |
(2) The geometric mean
G=G(π1,π2)=√π1π2. |
(3) The harmonic means
H=H(π1,π2)=2π1π2π1+π2. |
(4) The logarithmic mean
L=L(π1,π2)=π2−π1lnπ2−lnπ1. |
(5) The generalize logarithmic mean
Lp=Lp(π1,π2)=[π2−π1(π2−π1)(p+1)]1p,p∈R∖{−1,0}. |
(6) The identric mean
I=I(π1,π2)={1e(π2π1)1π2−π1, if π1≠π2,π1, if π1=π2,π1,π2>0. |
These means are often employed in numerical approximations and other fields. However, the following straightforward relationship has been stated in the literature.
H≤G≤L≤I≤A. |
Proposition 5.1. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|A(π1,π2)−G2(π1,π2)L(π1,π2)|≤MG2(π1,π2)(π2−π1)4×{χ1−1q1(π1,A(π1,π2))(χ2(π1,A(π1,π2),1,1)+χ3(π1,A(π1,π2),1,1))1q+χ1−1q1(π2,A(π1,π2))(χ4(π2,A(π1,π2),1,1)+χ5(π2,A(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=π1+π22 for mapping F:(0,∞)→R, F(ϰ)=ϰ leads to this conclusion.
Proposition 5.2. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|H(π1,π2)−G2(π1,π2)L(π1,π2)|≤MG2(π1,π2)π2−π1×{χ1−1q1(π1,H(π1,π2))(G2(π1,π2)−π212A(π1,π2))2(χ2(π1,H(π1,π2),1,1)+χ3(π1,H(π1,π2),1,1))1q+χ1−1q1(π2,H(π1,π2))(π22−G2(π1,π2)2A(π1,π2))2(χ4(π2,H(π1,π2),1,1)+χ5(π2,H(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=2π1π2π1+π2 for mapping F:(0,∞)→R, F(ϰ)=ϰ leads to this conclusion.
Proposition 5.3. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|Ap+2(π1,π2)−G2(π1,π2)Lpp(π1,π2)|≤MG2(π1,π2)(π2−π1)4×{χ1−1q1(π1,A(π1,π2))(χ2(π1,A(π1,π2),1,1)+χ3(π1,A(π1,π2),1,1))1q+χ1−1q1(π2,A(π1,π2))(χ4(π2,A(π1,π2),1,1)+χ5(π2,A(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=π1+π22 for mapping F:(0,∞)→R, F(ϰ)=ϰp+2,p∈(−1,∞){0} leads to this conclusion.
Proposition 5.4. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|Hp+2(π1,π2)−G2(π1,π2)Lpp(π1,π2)|≤MG2(π1,π2)π2−π1×{χ1−1q1(π1,H(π1,π2))(G2(π1,π2)−π212A(π1,π2))2(χ2(π1,H(π1,π2),1,1)+χ3(π1,H(π1,π2),1,1))1q+χ1−1q1(π2,H(π1,π2))(π22−G2(π1,π2)2A(π1,π2))2(χ4(π2,H(π1,π2),1,1)+χ5(π2,H(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=2π1π2π1+π2 for mapping F:(0,∞)→R, F(ϰ)=ϰp+2, p∈(−1,∞){0} leads to this conclusion.
Proposition 5.5. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|A2(π1,π2)ln(A(π1,π2))−G2(π1,π2)ln(I(π1,π2))|≤MG2(π1,π2)(π2−π1)4×{χ1−1q1(π1,A(π1,π2))(χ2(π1,A(π1,π2),1,1)+χ3(π1,A(π1,π2),1,1))1q+χ1−1q1(π2,A(π1,π2))(χ4(π2,A(π1,π2),1,1)+χ5(π2,A(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=π1+π22 for mapping F:(0,∞)→R, F(ϰ)=ϰ2lnϰ, leads to this conclusion.
Proposition 5.6. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|H2(π1,π2)ln(H(π1,π2))−G2(π1,π2)ln(I(π1,π2))|≤MG2(π1,π2)π2−π1×{χ1−1q1(π1,H(π1,π2))(G2(π1,π2)−π212A(π1,π2))2(χ2(π1,H(π1,π2),1,1)+χ3(π1,H(π1,π2),1,1))1q+χ1−1q1(π2,H(π1,π2))(π22−G2(π1,π2)2A(π1,π2))2(χ4(π2,H(π1,π2),1,1)+χ5(π2,H(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=2π1π2π1+π2 for mapping F:(0,∞)→R, F(ϰ)=ϰ2lnϰ leads to this conclusion.
In this paper, we have proved several new Ostrowski type inequalities for differentiable harmonically convex functions via the generalized fractional integrals. Moreover, we have proved that the established inequalities are the extensions of some existing inequalities in the literature. It is an interesting and new problem that the upcoming researchers can offer similar inequalities for different type of harmonically and co-ordinated harmonically convexity.
This research was funded by King Mongkut's University of Technology North Bangkok. Contract No. KMUTNB-63-KNOW-22.
The authors declare no conflict of interest.
[1] | Babcock HM (2017) Corporate Environmental Social Responsibility: Corporate "Greenwashing" or a Corporate Culture Game Changer? Fordham Environ Law Rev 21:1–78. |
[2] | Bi Q, Gu L, Zhang J (2015) Traditional culture, environmental system and environmental information disclosure. Account Res, 12–19. |
[3] |
Cai G, Xie J (2020) Confucian cultural tradition and contemporary enterprise innovation. J Shandong Univ, 38–48. https://doi.org/10.19836/j.cnki.37-1100/c.2020.06.005 doi: 10.19836/j.cnki.37-1100/c.2020.06.005
![]() |
[4] |
Cameron KS, Quinn RE, Booksx I (2006) Diagnosing and changing organizational culture: based on the competing values framework. Pers Psychol 59: 755–757. https://doi.org/10.1111/j.1744-6570.2006.00052_5.x doi: 10.1111/j.1744-6570.2006.00052_5.x
![]() |
[5] |
Chen G, Qiu D (2021) Confucian culture and entrepreneurship: An epidemiological study. J Financ Econ 47: 95–109. https://doi.org/10.16538/j.cnki.jfe.20201015.203 doi: 10.16538/j.cnki.jfe.20201015.203
![]() |
[6] | Chen Y (2017) Confucian culture, social trust and inclusive finance. Financ Tr Econ 38: 5–20. |
[7] | Denison DR (2000) Organizational culture: can it be a key lever for driving organizational change? The international handbook of organizational culture and climate 18: 347–372 |
[8] | Ding M (2018) Traditional culture, environmental regulation and carbon information disclosure. Master's Thesis of Southwest University. |
[9] |
Du C, Zhan Y (2019) Confucianism and household risky assets allocation: An empirical study based on CGSS. Jilin Univ J Soc Sci Edit 59: 97–108. https://doi.org/10.15939/j.jujsse.2019.06.jj2 doi: 10.15939/j.jujsse.2019.06.jj2
![]() |
[10] |
Du X, Jian W, Zeng Q, et al. (2013) Corporate environmental responsibility in polluting industries: Does religion matter? J Bus Ethics 124: 485–507. https://doi.org/10.1007/s10551-013-1888-7 doi: 10.1007/s10551-013-1888-7
![]() |
[11] | Feng C, Chen S, Bai C (2019) The Historical Roots of Long-Term Human Capital Accumulation: Institutional Differences, the Communication of Confucian Culture and the Building of State Capacity. Econ Res J 54: 146–163. |
[12] | Fu C, Hong Y (2018) Corporate governance, Product market competition and intellectual capital disclosure: An empirical study based on China's high-tech industry. China Soft Sci, 123–134. |
[13] | Gan W (2021) The impact of the Confucian culture on the corporate social responsibility: An empirical evaluation based on the 10th survey data of China's private enterprises. Jinan J 43: 115–132. |
[14] |
Glennie M, Lodhia S (2013) The influence of internal organizational factors on corporate-community partnership agendas: An Australian case study. Meditari Account Res 21: 52–67. https://doi.org/10.1108/MEDAR-07-2012-0022 doi: 10.1108/MEDAR-07-2012-0022
![]() |
[15] | Gu Z (2015) Confucian tradition and corporate performance. Res Inst Econ, 69–113. |
[16] |
Guo M, Kuai Y, Liu X (2020) Stock market response to environmental policies: Evidence from heavily polluting firms in China. Econ Model 86: 306–316. https://doi.org/10.1016/j.econmod.2019.09.028 doi: 10.1016/j.econmod.2019.09.028
![]() |
[17] |
Hatmanu M, Sandu C, Jaba E (2019) A comparative study on drivers for corporate environmental responsibility, eu15 vs. eu-nms13. Sustainability 11: 6397. https://doi.org/10.3390/su11226397 doi: 10.3390/su11226397
![]() |
[18] |
Hitt MA, Hoskisson RE, Kim H (1997) International diversification: Effects on innovation and firm performance in product-diversified firms. Acad Manage J 40: 767–798. https://doi.org/10.5465/256948 doi: 10.5465/256948
![]() |
[19] |
Hofstede G (1980) Motivation, leadership, and organization: do American theories apply abroad? Organ Dyn 9: 42–63. https://doi.org/10.1016/0090-2616(80)90013-3 doi: 10.1016/0090-2616(80)90013-3
![]() |
[20] |
Hofstede G, Hofstede GJ, Minkov M (2010) Cultures and organizations, software of the mind. intercultural cooperation and its importance for survival. South Med J 13: S219–S222. https://doi.org/10.1016/S1076-6332(98)80110-4 doi: 10.1016/S1076-6332(98)80110-4
![]() |
[21] |
Huang G, Li N (2019) Confucian culture, marketization degree and corporate social responsibility. Financ Account Monthly, 95–102. https://doi.org/10.19641/j.cnki.42-1290/f.2019.20.013 doi: 10.19641/j.cnki.42-1290/f.2019.20.013
![]() |
[22] | Jia J, Guo Q, Ning J (2011) Traditional cultural beliefs, social security and economic growth. J World Econ 34: 3–18. |
[23] |
Jin S, Si Y, He W (2021) The influence of executive compensation incentive on social responsibility based on the enterprise heterogeneity. Sci Technol Econ 34: 91–95. https://doi.org/10.14059/j.cnki.cn32-1276n.2021.05.018 doi: 10.14059/j.cnki.cn32-1276n.2021.05.018
![]() |
[24] | Jin T, Lin HY (2018) Cultural capital and economic growth: The Chinese experience. Econ Perspect, 69–85. |
[25] |
Jung H, Song S, Song CK (2021) Carbon emission regulation, green boards, and corporate environmental responsibility. Sustainability 13: 4463. https://doi.org/10.3390/SU13084463 doi: 10.3390/SU13084463
![]() |
[26] | Li P, Liu L, Liu W (2012) The study of enterprise cultural change based on OCAI scale. Econ Manage 26: 41–43. |
[27] | Li Z, Wang Y, Tan Y, et al. (2020) Does corporate financialization affect corporate environmental responsibility? an empirical study of China. Sustainability 12: 3696. |
[28] |
Liu G, Guo L (2019) Empirical study on the relationship between environmental regulation, environmental responsibility and green innovation—Taking green image as the moderating variable. Sci Manage Res 37: 2–6. https://doi.org/10.19445/j.cnki.15-1103/g3.2019.04.001 doi: 10.19445/j.cnki.15-1103/g3.2019.04.001
![]() |
[29] |
Long W, Li S, Ding R (2018) Environmental policies and SMEs' environmental performance: Administrative control or economic incentive. Nankai Econ Stud, 20–39. https://doi.org/10.14116/j.nkes.2018.03.002 doi: 10.14116/j.nkes.2018.03.002
![]() |
[30] |
Marquis C, Qian C (2014) Corporate social responsibility reporting in China: Symbol or substance? Organ Sci 25: 127–148. https://doi.org/10.1287/orsc.2013.0837 doi: 10.1287/orsc.2013.0837
![]() |
[31] |
McGee J (1998) Commentary on 'corporate strategies and environmental regulations: An organizing frame work' by AM Rugman and A. Verbeke. Strategic Manage J 19: 377–387. https://doi.org/10.1002/(SICI)1097-0266(199804)19:4<377::AID-SMJ988>3.0.CO;2-S doi: 10.1002/(SICI)1097-0266(199804)19:4<377::AID-SMJ988>3.0.CO;2-S
![]() |
[32] | Prakash A, Potoski M (2006) Racing to the bottom? Trade, environmental governance, and ISO 14001. Am J Polit Sci 50: 350–364. |
[33] |
Qin Y, Harrison J, Chen L (2019) A framework for the practice of corporate environmental responsibility in China. J Clean Prod 235: 426–452. https://doi.org/10.1016/j.jclepro.2019.06.245 doi: 10.1016/j.jclepro.2019.06.245
![]() |
[34] |
Ruan L, Wang L, Liu Y (2016) Study on the effect of external environmental factors on small enterprises' corporate social responsibility. Soft Sci 30: 69–73. https://doi.org/10.13956/j.ss.1001-8409.2016.05.15 doi: 10.13956/j.ss.1001-8409.2016.05.15
![]() |
[35] |
Shen H, Gu N (2016) Traditional culture, family size and social service spending of residents. Financ Tr Res 27: 1–10. https://doi.org/10.19337/j.cnki.34-1093/f.2016.06.001 doi: 10.19337/j.cnki.34-1093/f.2016.06.001
![]() |
[36] | Tian J, Zhang G, Jiang W (2008) A study on the validity and reliability of Denison OCQ and its application. Sci Sci Manage S T, 151–155. |
[37] |
Tian XB (2017) Comparison of modernization development modes of "Five Little Dragons". Huxiang Forum 30: 84–90. https://doi.org/10.16479/j.cnki.cn43-1160/d.2017.05.014 doi: 10.16479/j.cnki.cn43-1160/d.2017.05.014
![]() |
[38] |
Tsendsuren C, Yadav PL, Kim S, et al. (2021) The effects of managerial competency and local religiosity on corporate environmental responsibility. Sustainability 13: 5857. https://doi.org/10.3390/SU13115857 doi: 10.3390/SU13115857
![]() |
[39] |
Wang L (2019) Having a restricted view of the essence of ecological thought of Chinese traditional culture and its value of rule by law. Shandong Soc Sci, 169–174. https://doi.org/10.14112/j.cnki.37-1053/c.2019.05.029 doi: 10.14112/j.cnki.37-1053/c.2019.05.029
![]() |
[40] |
Wang M, Liao G, Li Y (2021) The relationship between environmental regulation, pollution and corporate environmental responsibility. Int J Environ Res Public Health 18: 8018. https://doi.org/10.3390/ijerph18158018 doi: 10.3390/ijerph18158018
![]() |
[41] |
Wang W (2021) Confucian culture and enterprise innovation. Rev Ind Econ, 61–78. https://doi.org/10.19313/j.cnki.cn10-1223/f.2021.05.004 doi: 10.19313/j.cnki.cn10-1223/f.2021.05.004
![]() |
[42] |
Wang X, Yin H, Wu Y (2017) Cultural norms effect, the Confucian culture and home ownership rate. Modern Financ Econ 37: 66–75. https://doi.org/10.19559/j.cnki.12-1387.2017.04.006 doi: 10.19559/j.cnki.12-1387.2017.04.006
![]() |
[43] |
Weber M (1965) The Religion of China. Confucianism and Taoism. J Asian Stud 24: 509–509. https://doi.org/10.2307/2050365 doi: 10.2307/2050365
![]() |
[44] |
Wu Q, Jiang K (2018) The new era appealing of enterprises fulfilling their social responsibilities. Stud In Ethics, 124–129. https://doi.org/10.15995/j.cnki.llxyj.2018.05.023 doi: 10.15995/j.cnki.llxyj.2018.05.023
![]() |
[45] |
Xie M, Wang T, Cui R (2017) Does China's cultural output promote outward foreign direct investment?—An empirical test based on the development of Confucius institute. China Econ Q 16: 1399–1420. https://doi.org/10.13821/j.cnki.ceq.2017.03.07 doi: 10.13821/j.cnki.ceq.2017.03.07
![]() |
[46] | Xu W, Xu J (2018) The influence of cultural differences on the export of industrial robots under the initiative of One Belt and One Road—Based on the empirical research of 23 countries along the route. J Jingdezhen Univ 33: 130–135. |
[47] | Xu X, Li W (2019) Confucian tradition and corporate innovation: The power of culture. J Financ Res, 112–130. |
[48] |
Xu X, Long Z, Li W (2020) Confucian culture and corporate philanthropy. Foreign Econ Manage 42: 124–136. https://doi.org/10.16538/j.cnki.fem.20190703.003 doi: 10.16538/j.cnki.fem.20190703.003
![]() |
[49] |
Ye D, Li X (2019) Confucian and tunneling of listed companies. J Financ Dev Res, 3–12. https://doi.org/10.19647/j.cnki.37-1462/f.2019.05.001 doi: 10.19647/j.cnki.37-1462/f.2019.05.001
![]() |
[50] | Ye D, Pan S, Huang C (2018) Confucian culture and savings—An empirical analysis based on Chinese provincial panel data. South China Financ, 24–32. |
[51] |
Ye Y (2018) Confucian culture and corporate overinvestment behaviour. Res Financ Econ Issues, 115–123. https://doi.org/10.19654/j.cnki.cjwtyj.2018.02.014 doi: 10.19654/j.cnki.cjwtyj.2018.02.014
![]() |
[52] |
Yin J, Wang S, Zhang L (2019) Heterogeneous response of corporate environmental strategy under institutional isomorphism. J Beijing Inst Technol 21: 47–55. https://doi.org/10.15918/j.jbitss1009-3370.2019.1985 doi: 10.15918/j.jbitss1009-3370.2019.1985
![]() |
[53] |
Zeng Y, Tang W, Zhang H (2021) Demographic changes, foreign investment and housing prices: Analysis from the global perspective. Int Econ Tr Res 37: 34–49. https://doi.org/10.13687/j.cnki.gjjmts.2021.04.003 doi: 10.13687/j.cnki.gjjmts.2021.04.003
![]() |
[54] | Zhang J, Guo X (2020) Does Confucian culture impede Chinese economic growth: An empirical research based on the perspective of gender imbalance. J Chongqing Technol Bus Univ 37: 13–23. |
[55] | Zhang T (2021) Impact of regional culture on information disclosure of corporate social responsibility: Evidence from China's listed companies. J Beijing Technol Bus Univ. 34: 31–39. |
[56] | Zhao W (2012) Cultural factors in informal institutions and economic growth—An empirical study based on Hofstede's model of national cultural differences. Econ Res Guide, 4–7. |
[57] |
Zhao X, Li H, Sun C (2015) The regional cultural map in China: Is it "the Great Unification" or "the Diversification"? Manage World, 101–119. https://doi.org/10.19744/j.cnki.11-1235/f.2015.02.010 doi: 10.19744/j.cnki.11-1235/f.2015.02.010
![]() |
[58] |
Zou P (2020) Does Confucianism promote disclosure of corporate social responsibility? Bus Manage J 42: 76–93. https://doi.org/10.19616/j.cnki.bmj.2020.12.005 doi: 10.19616/j.cnki.bmj.2020.12.005
![]() |
1. | Muhammad Amer Latif, Mappings related to Hermite-Hadamard type inequalities for harmonically convex functions, 2022, 1016-2526, 665, 10.52280/pujm.2022.541101 | |
2. | YONGFANG QI, GUOPING LI, FRACTIONAL OSTROWSKI TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION WITH APPLICATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23501281 | |
3. | Muhammad Tariq, Sotiris K. Ntouyas, Bashir Ahmad, Ostrowski-Type Fractional Integral Inequalities: A Survey, 2023, 3, 2673-9321, 660, 10.3390/foundations3040040 |