Research article

Global dynamics for a Filippov system with media effects


  • Received: 14 November 2021 Revised: 16 December 2021 Accepted: 26 December 2021 Published: 13 January 2022
  • In the process of spreading infectious diseases, the media accelerates the dissemination of information, and people have a deeper understanding of the disease, which will significantly change their behavior and reduce the disease transmission; it is very beneficial for people to prevent and control diseases effectively. We propose a Filippov epidemic model with nonlinear incidence to describe media's influence in the epidemic transmission process. Our proposed model extends existing models by introducing a threshold strategy to describe the effects of media coverage once the number of infected individuals exceeds a threshold. Meanwhile, we perform the stability of the equilibriua, boundary equilibrium bifurcation, and global dynamics. The system shows complex dynamical behaviors and eventually stabilizes at the equilibrium points of the subsystem or pseudo equilibrium. In addition, numerical simulation results show that choosing appropriate thresholds and control intensity can stop infectious disease outbreaks, and media coverage can reduce the burden of disease outbreaks and shorten the duration of disease eruptions.

    Citation: Cunjuan Dong, Changcheng Xiang, Wenjin Qin, Yi Yang. Global dynamics for a Filippov system with media effects[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 2835-2852. doi: 10.3934/mbe.2022130

    Related Papers:

    [1] Huriye Kadakal . Hermite-Hadamard type inequalities for subadditive functions. AIMS Mathematics, 2020, 5(2): 930-939. doi: 10.3934/math.2020064
    [2] Serap Özcan . Integral inequalities of Hermite-Hadamard type for exponentially subadditive functions. AIMS Mathematics, 2020, 5(4): 3002-3009. doi: 10.3934/math.2020194
    [3] Hao Fu, Yu Peng, Tingsong Du . Some inequalities for multiplicative tempered fractional integrals involving the λ-incomplete gamma functions. AIMS Mathematics, 2021, 6(7): 7456-7478. doi: 10.3934/math.2021436
    [4] Areej A. Almoneef, Abd-Allah Hyder, Fatih Hezenci, Hüseyin Budak . Simpson-type inequalities by means of tempered fractional integrals. AIMS Mathematics, 2023, 8(12): 29411-29423. doi: 10.3934/math.20231505
    [5] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [6] Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989
    [7] Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589
    [8] Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306
    [9] Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043
    [10] Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089
  • In the process of spreading infectious diseases, the media accelerates the dissemination of information, and people have a deeper understanding of the disease, which will significantly change their behavior and reduce the disease transmission; it is very beneficial for people to prevent and control diseases effectively. We propose a Filippov epidemic model with nonlinear incidence to describe media's influence in the epidemic transmission process. Our proposed model extends existing models by introducing a threshold strategy to describe the effects of media coverage once the number of infected individuals exceeds a threshold. Meanwhile, we perform the stability of the equilibriua, boundary equilibrium bifurcation, and global dynamics. The system shows complex dynamical behaviors and eventually stabilizes at the equilibrium points of the subsystem or pseudo equilibrium. In addition, numerical simulation results show that choosing appropriate thresholds and control intensity can stop infectious disease outbreaks, and media coverage can reduce the burden of disease outbreaks and shorten the duration of disease eruptions.



    The primary contribution to the concept of subadditive functions is due to the work of Hille and Phillips [1]. An extract from Rosenbaum's study on subadditive functions with several variables is also given [2]. The concepts of additivity, subadditivity, and superadditivity are used in many branches of mathematics as well as in mathematical inequalities, see [3,4,5,6,7,8].

    Definition 1.1. [9] F:IR[0,) is said to be subadditive function on I, if

    F(Θ1+Θ2)F(Θ1)+F(Θ2) (1.1)

    holds for all Θ1,Θ2I and Θ1+Θ2I. If the equality is achieved, then F is said to be additive, otherwise superadditive.

    Since many optimization issues require maximizing or minimizing a convex function while taking certain restrictions into account, convex functions are crucial in optimization. Additionally, they have appealing characteristics like a singular global minimum and nearly universal differentiability. Numerous fields, including optimization, game theory, economics, and computer science, use convexity theory. It offers strong tools for understanding and resolving optimization issues, and it has sparked the creation of several algorithms for quickly calculating answers to these issues.

    Definition 1.2. [10] F:IRR is said to be convex, if

    F(δΘ1+(1δ)Θ2)δF(Θ1)+(1δ)F(Θ2) (1.2)

    holds for all Θ1,Θ2I with δ[0,1].

    The given Hermite-Hadamard inequality (H-H) has a strong connection with convex functions.

    Theorem 1.1. [11,12] If F:IRR is convex on I, then

    F(Θ1+Θ22)1Θ2Θ1Θ2Θ1F(δ)dδF(Θ1)+F(Θ2)2 (1.3)

    holds for all Θ1,Θ2I and Θ1<Θ2.

    There are numerous well-known inequalities that may be obtained using the convexity feature, see [13,14,15,16,17,18].

    Let us denote by L[Θ1,Θ2] the set of all Lebesgue integrable functions on [Θ1,Θ2] and by I the interior set of I. The following H-H type for continuous subadditive functions were recently established by Sarikaya and Ali [19].

    Theorem 1.2. If F:IR[0,) is a continuous subadditive function with Θ1,Θ2I and 0<Θ1<Θ2, then

    12F(Θ1+Θ2)1Θ2Θ1Θ2Θ1F(δ)dδ1Θ1Θ10F(δ)dδ+1Θ2Θ20F(δ)dδ. (1.4)

    The fractional calculus focuses on integrals and derivatives of fractional orders. It extends the usual ideas of differentiation and integration to orders that are not integers. The order of differentiation or integration in fractional calculus can be any real number, including non-integer numbers. For instance, taking the square root of a derivative or integral corresponds to a half-order derivative or integral. Numerous disciplines, including physics, engineering, economics, and signal processing, use fractional calculus.

    Definition 1.3. [20,21] Let FL[Θ1,Θ2], where 0Θ1<Θ2. For α>0 and λ0, the tempered fractional integral operators Iα,λΘ+1F and Iα,λΘ2F are defined as

    Iα,λΘ+1F(x):=1Γ(α)xΘ1(xδ)α1eλ(xδ)F(δ)dδ(x>Θ1), (1.5)

    and

    Iα,λΘ2F(x):=1Γ(α)Θ2x(δx)α1eλ(δx)F(δ)dδ(x<Θ2), (1.6)

    respectively.

    Definition 1.4. Let x,λ0 and α>0, then λ-incomplete gamma function is given by

    γλ(α,x):=x0δα1eλδdδ.

    If λ=1, then

    γ(α,x):=x0δα1eδdδ.

    The following portions of this work are inspired by the aforementioned findings: We found some H-H inequalities for subadditive functions and their product using tempered fractional integrals in Section 2. We propose various fractional inequalities for subadditive functions relevant to tempered fractional integral operators with the help of a new lemma in Section 3. In Section 4, we provide a few numerical examples and graphs with numerical estimations to support our findings. In Section 5, some conclusions and new ideas for future research are discussed.

    Let us take Q:=[0,), where Q:=(0,). Throughout this paper, we will use the above notations for our simplicity.

    Theorem 2.1. Let F:QQ be a continuous subadditive function with Θ1,Θ2Q and Θ1<Θ2. Then for λ0 and α>0, we have

    12F(Θ1+Θ2)Γ(α)2γλ(α,Θ2Θ1)[Iα,λΘ+1F(Θ2)+Iα,λΘ2F(Θ1)](Θ2Θ1)α2γλ(α,Θ2Θ1)×{1Θα1Θ10δα1eλ(Θ2Θ1Θ1)δF(δ)dδ+1Θα1Θ10(Θ1δ)α1eλ(Θ2Θ1Θ1)(Θ1δ)F(δ)dδ+1Θα2Θ20δα1eλ(Θ2Θ1Θ2)δF(δ)dδ+1Θα2Θ20(Θ2δ)α1eλ(Θ2Θ1Θ2)(Θ2δ)F(δ)dδ}. (2.1)

    Proof. Using the hypothesis of subadditive function F on Q, we have

    F(Θ1+Θ2)=F(δΘ1+(1δ)Θ2+δΘ2+(1δ)Θ1)F(δΘ1+(1δ)Θ2)+F((1δ)Θ1+δΘ2). (2.2)

    Upon multiplication of (2.2) by δα1eλ(Θ2Θ1)δ, and then integrating with respect to δ over [0,1], we get

    γλ(α,Θ2Θ1)(Θ2Θ1)αF(Θ1+Θ2)10δα1eλ(Θ2Θ1)δF(δΘ1+(1δ)Θ2)dδ+10δα1eλ(Θ2Θ1)δF((1δ)Θ1+δΘ2)dδ=1(Θ2Θ1)α[Θ2Θ1(Θ2δ)α1eλ(Θ2δ)F(δ)dδ+Θ2Θ1(δΘ1)α1eλ(δΘ1)F(δ)dδ]=Γ(α)(Θ2Θ1)α[Iα,λΘ+1F(Θ2)+Iα,λΘ2F(Θ1)].

    Hence,

    12F(Θ1+Θ2)Γ(α)2γλ(α,Θ2Θ1)[Iα,λΘ+1F(Θ2)+Iα,λΘ2F(Θ1)].

    This concludes the first side (left) of (2.1). Next, for the other side (right) of (2.1), since F is subadditive on Q, one has

    F(δΘ1+(1δ)Θ2)F(δΘ1)+F((1δ)Θ2) (2.3)

    and

    F((1δ)Θ1+δΘ2)F((1δ)Θ1)+F(δΘ2). (2.4)

    By adding (2.3) and (2.4), we get

    F(δΘ1+(1δ)Θ2)+F((1δ)Θ1+δΘ2)F(δΘ1)+F(δΘ2)+F((1δ)Θ1)+F((1δ)Θ2). (2.5)

    Multiplying both sides of (2.5) by δα1eλ(Θ2Θ1)δ, and following the same procedure as above, we complete the proof.

    Remark 2.1. Choosing λ=0 and α=1 in Theorem 2.1, we obtain Theorem 1.2.

    Theorem 2.2. Let Φ,Ψ:QQ be two continuous subadditive functions with Θ1,Θ2Q and Θ1<Θ2. Then for λ0 and α>0, we have

    12Φ(Θ1+Θ2)Ψ(Θ1+Θ2)Γ(α)2γλ(α,Θ2Θ1)[Iα,λΘ+1Φ(Θ2)Ψ(Θ2)+Iα,λΘ2Φ(Θ1)Ψ(Θ1)]+(Θ2Θ1)α2γλ(α,Θ2Θ1)×{10[δα1+(1δ)α1]eλ(Θ2Θ1)δ[Φ(δΘ1)Ψ(δΘ2)+Φ(δΘ2)Ψ(δΘ1)]dδ+1Θα1Θ10δα1eλ(Θ2Θ1Θ1)δ[Φ(δ)Ψ(Θ1δ)+Φ(Θ1δ)Ψ(δ)]dδ+1Θα2Θ20δα1eλ(Θ2Θ1Θ2)δ[Φ(δ)Ψ(Θ2δ)+Φ(Θ2δ)Ψ(δ)]dδ} (2.6)

    and

    Γ(α)2γλ(α,Θ2Θ1)[Iα,λΘ+1Φ(Θ2)Ψ(Θ2)+Iα,λΘ2Φ(Θ1)Ψ(Θ1)](Θ2Θ1)α2γλ(α,Θ2Θ1)×{10[δα1eλ(Θ2Θ1)δ+(1δ)α1eλ(Θ2Θ1)(1δ)][Φ(δΘ1)Ψ((1δ)Θ2)+Φ(δΘ2)Ψ((1δ)Θ1)]dδ+1Θα1Θ10[δα1eλ(Θ2Θ1Θ1)δ+(Θ1δ)α1eλ(Θ2Θ1Θ1)(Θ1δ)]Φ(δ)Ψ(δ)dδ+1Θα2Θ20[δα1eλ(Θ2Θ1Θ2)δ+(Θ2δ)α1eλ(Θ2Θ1Θ2)(Θ2δ)]Φ(δ)Ψ(δ)dδ}. (2.7)

    Proof. Using (2.2) and the hypothesis of subadditive functions Φ, and Ψ on Q, one has

    Φ(Θ1+Θ2)Φ(δΘ1+(1δ)Θ2)+Φ(δΘ2+(1δ)Θ1) (2.8)

    and

    Ψ(Θ1+Θ2)Ψ(δΘ1+(1δ)Θ2)+Ψ(δΘ2+(1δ)Θ1). (2.9)

    Multiplying (2.8) and (2.9), we get

    Φ(Θ1+Θ2)Ψ(Θ1+Θ2)[Φ(δΘ1+(1δ)Θ2)+Φ(δΘ2+(1δ)Θ1)][Ψ(δΘ1+(1δ)Θ2)+Ψ(δΘ2+(1δ)Θ1)]=Φ(δΘ1+(1δ)Θ2)Ψ(δΘ1+(1δ)Θ2)+Φ(δΘ1+(1δ)Θ2)Ψ(δΘ2+(1δ)Θ1)+Φ(δΘ2+(1δ)Θ1)Ψ(δΘ1+(1δ)Θ2)+Φ(δΘ2+(1δ)Θ1)Ψ(δΘ2+(1δ)Θ1)Φ(δΘ1+(1δ)Θ2)Ψ(δΘ1+(1δ)Θ2)+Φ(δΘ2+(1δ)Θ1)Ψ(δΘ2+(1δ)Θ1)+[Φ(δΘ1)+Φ((1δ)Θ2)][Ψ(δΘ2)+Ψ((1δ)Θ1)]+[Φ(δΘ2)+Φ((1δ)Θ1)][Ψ(δΘ1)+Ψ((1δ)Θ2)]=Φ(δΘ1+(1δ)Θ2)Ψ(δΘ1+(1δ)Θ2)+Φ(δΘ2+(1δ)Θ1)Ψ(δΘ2+(1δ)Θ1)+Φ(δΘ1)Ψ(δΘ2)+Φ(δΘ1)Ψ((1δ)Θ1)+Φ((1δ)Θ2)Ψ(δΘ2)+Φ((1δ)Θ2)Ψ((1δ)Θ1)+Φ(δΘ2)Ψ(δΘ1)+Φ(δΘ2)Ψ((1δ)Θ2)+Φ((1δ)Θ1)Ψ(δΘ1)+Φ((1δ)Θ1)Ψ((1δ)Θ2). (2.10)

    Multiplying both sides of (2.10) by δα1eλ(Θ2Θ1)δ and integrating with respect to δ over [0,1], we obtain (2.6).

    By subadditivity of Φ and Ψ on Q, we have

    Φ(δΘ1+(1δ)Θ2)Φ(δΘ1)+Φ((1δ)Θ2) (2.11)

    and

    Ψ(δΘ1+(1δ)Θ2)Ψ(δΘ1)+Ψ((1δ)Θ2). (2.12)

    Multiplying inequalities (2.11) and (2.12), we get

    Φ(δΘ1+(1δ)Θ2)Ψ(δΘ1+(1δ)Θ2)Φ(δΘ1)Ψ(δΘ1)+Φ(δΘ1)Ψ((1δ)Θ2)+Φ((1δ)Θ2)Ψ(δΘ1)+Φ((1δ)Θ2)Ψ((1δ)Θ2). (2.13)

    Similarly,

    Φ((1δ)Θ1+δΘ2)Ψ((1δ)Θ1+δΘ2)Φ((1δ)Θ1)Ψ((1δ)Θ1)+Φ((1δ)Θ1)Ψ(δΘ2)+Φ(δΘ2)Ψ((1δ)Θ1)+Φ(δΘ2)Ψ(δΘ2). (2.14)

    Adding (2.13) and (2.14), we obtain

    Φ(δΘ1+(1δ)Θ2)Ψ(δΘ1+(1δ)Θ2)+Φ((1δ)Θ1+δΘ2)Ψ((1δ)Θ1+δΘ2)Φ(δΘ1)Ψ(δΘ1)+Φ(δΘ1)Ψ((1δ)Θ2)+Φ((1δ)Θ2)Ψ(δΘ1)+Φ((1δ)Θ2)Ψ((1δ)Θ2)+Φ((1δ)Θ1)Ψ((1δ)Θ1)+Φ((1δ)Θ1)Ψ(δΘ2)+Φ(δΘ2)Ψ((1δ)Θ1)+Φ(δΘ2)Ψ(δΘ2). (2.15)

    Multiplying both sides of (2.15) by δα1eλ(Θ2Θ1)δ, and following the same procedure as above, we have (2.7).

    Remark 2.2. Choosing λ=0 and α=1 in Theorem 2.2, we obtain ([19], Theorem 4).

    Theorem 2.3. Let F:QQ be a continuous subadditive function with Θ1,Θ2Q and Θ1<Θ2. Then for λ0 and α>0, we have

    12F(Θ1+Θ2)2α1Γ(α)γλ(α,Θ2Θ1)[Iα,2λ(Θ1+Θ22)+F(Θ2)+Iα,2λ(Θ1+Θ22)F(Θ1)]2α1(Θ2Θ1)αγλ(α,Θ2Θ1)×{1Θα1Θ120δα1e2λ(Θ2Θ1Θ1)δF(δ)dδ+1Θα1Θ1Θ12(Θ1δ)α1e2λ(Θ2Θ1Θ1)(Θ1δ)F(δ)dδ+1Θα2Θ220δα1e2λ(Θ2Θ1Θ2)δF(δ)dδ+1Θα2Θ2Θ22(Θ2δ)α1e2λ(Θ2Θ1Θ2)(Θ2δ)F(δ)dδ}. (2.16)

    Proof. From subadditivity of F, we have

    F(Θ1+Θ2)F(2δ2Θ1+δ2Θ2)+F(δ2Θ1+2δ2Θ2). (2.17)

    Multiplying both sides of (2.17) by δα1eλ(Θ2Θ1)δ, and then integrating over [0,1], we get

    γλ(α,Θ2Θ1)(Θ2Θ1)αF(Θ1+Θ2)10δα1eλ(Θ2Θ1)δF(δ2Θ1+2δ2Θ2)dδ+10δα1eλ(Θ2Θ1)δF(2δ2Θ1+δ2Θ2)dδ=(2Θ2Θ1)αΓ(α)[Iα,2λ(Θ1+Θ22)+F(Θ2)+Iα,2λ(Θ1+Θ22)F(Θ1)].

    Hence,

    12F(Θ1+Θ2)2α1Γ(α)γλ(α,Θ2Θ1)[Iα,2λ(Θ1+Θ22)+F(Θ2)+Iα,2λ(Θ1+Θ22)F(Θ1)],

    which proves the left part of (2.16). Consequently, to prove the right part, we have

    F(δ2Θ1+2δ2Θ2)F(δ2Θ1)+F(2δ2Θ2) (2.18)

    and

    F(2δ2Θ1+δ2Θ2)F(2δ2Θ1)+F(δ2Θ2). (2.19)

    By adding (2.18) and (2.19), we obtain

    F(2δ2Θ1+δ2Θ2)+F(δ2Θ1+2δ2Θ2)F(δ2Θ1)+F(δ2Θ2)+F(2δ2Θ1)+F(2δ2Θ2). (2.20)

    Multiplying both sides of (2.20) by δα1eλ(Θ2Θ1)δ, and following the same procedures as done in earlier theorems, we have the right part.

    Lemma 3.1. Assume that F:QQ is a differentiable continuous function for Θ1,Θ2Q and Θ1<Θ2. Then for λ0 and α>0, we have

    F(Θ1)+F(Θ2)22α1Γ(α)γλ(α,Θ2Θ1)[Iα,2λΘ+1F(Θ1+Θ22)+Iα,2λΘ2F(Θ1+Θ22)]=(Θ2Θ1)α+14γλ(α,Θ2Θ1)×10γλ(Θ2Θ1)(α,δ)[F(Θ1+1+δ2(Θ2Θ1))F(Θ1+1δ2(Θ2Θ1))]dδ. (3.1)

    Proof. Let us denote, respectively,

    I1:=10γλ(Θ2Θ1)(α,δ)F(Θ1+1+δ2(Θ2Θ1))dδ

    and

    I2:=10γλ(Θ2Θ1)(α,δ)F(Θ1+1δ2(Θ2Θ1))dδ.

    Then, we have

    10γλ(Θ2Θ1)(α,δ)[F(Θ1+1+δ2(Θ2Θ1))F(Θ1+1δ2(Θ2Θ1))]dδ=I1I2. (3.2)

    Using integration by parts, we get

    I1=2Θ2Θ1γλ(Θ2Θ1)(α,δ)F(Θ1+1+δ2(Θ2Θ1))|102Θ2Θ110δα1eλ(Θ2Θ1)δF(Θ1+1+δ2(Θ2Θ1))dδ=2Θ2Θ1γλ(Θ2Θ1)(α,1)F(Θ2)(2Θ2Θ1)α+1×Θ2Θ1+Θ22(δΘ1+Θ22)α1e2λ(δΘ1+Θ22)F(δ)dδ=2Θ2Θ1γλ(Θ2Θ1)(α,1)F(Θ2)(2Θ2Θ1)α+1Γ(α)Iα,2λΘ2F(Θ1+Θ22).

    Similarly,

    I2=2Θ2Θ1γλ(Θ2Θ1)(α,1)F(Θ1)+(2Θ2Θ1)α+1Γ(α)Iα,2λΘ+1F(Θ1+Θ22).

    From Definition 1.4, we get

    γλ(Θ2Θ1)(α,1)=γλ(α,Θ2Θ1)(Θ2Θ1)α.

    Multiplying both sides of (3.2) by the factor (Θ2Θ1)α+14γλ(α,Θ2Θ1) and using above relation, we have the desired result (3.1).

    Theorem 3.1. Suppose that F:QQ is a differentiable continuous function with Θ1,Θ2Q and Θ1<Θ2. If |F|q for p>1 and 1p+1q=1 is a subadditive function, then for λ0 and α>0, we have

    |F(Θ1)+F(Θ2)22α1Γ(α)γλ(α,Θ2Θ1)[Iα,2λΘ+1F(Θ1+Θ22)+Iα,2λΘ2F(Θ1+Θ22)]|212qq(Θ2Θ1)α+1γλ(α,Θ2Θ1)C1p(γ,p)×{[1Θ1Θ120|F(δ)|qdδ+1Θ2Θ2Θ22|F(δ)|qdδ]1q+[1Θ1Θ1Θ12|F(δ)|qdδ+1Θ2Θ220|F(δ)|qdδ]1q}, (3.3)

    where

    C(γ,p):=10[γλ(Θ2Θ1)(α,δ)]pdδ.

    Proof. Under the assumption of Lemma 3.1, subadditivity of |F|q on Q and Hölder's inequality, we have

    |F(Θ1)+F(Θ2)22α1Γ(α)γλ(α,Θ2Θ1)[Iα,2λΘ+1F(Θ1+Θ22)+Iα,2λΘ2F(Θ1+Θ22)]|(Θ2Θ1)α+14γλ(α,Θ2Θ1)10|γλ(Θ2Θ1)(α,δ)|[|F(Θ1+1+δ2(Θ2Θ1))|+|F(Θ1+1δ2(Θ2Θ1))|]dδ(Θ2Θ1)α+14γλ(α,Θ2Θ1)(10[γλ(Θ2Θ1)(α,δ)]pdδ)1p×{(10|F(Θ1+1+δ2(Θ2Θ1))|qdδ)1q+(10|F(Θ1+1δ2(Θ2Θ1))|qdδ)1q}(Θ2Θ1)α+14γλ(α,Θ2Θ1)C1p(γ,p)×{[10(|F((1+δ2)Θ2)|q+|F((1δ2)Θ1)|q)dδ]1q+[10(|F((1δ2)Θ2)|q+|F((1+δ2)Θ1)|q)dδ]1q}=212qq(Θ2Θ1)α+1γλ(α,Θ2Θ1)C1p(γ,p)×{[1Θ1Θ120|F(δ)|qdδ+1Θ2Θ2Θ22|F(δ)|qdδ]1q+[1Θ1Θ1Θ12|F(δ)|qdδ+1Θ2Θ220|F(δ)|qdδ]1q}.

    The proof of Theorem 3.1 is completed.

    Corollary 3.1. Choosing |F|K in Theorem 3.1, we get

    |F(Θ1)+F(Θ2)22α1Γ(α)γλ(α,Θ2Θ1)[Iα,2λΘ+1F(Θ1+Θ22)+Iα,2λΘ2F(Θ1+Θ22)]|21qqK(Θ2Θ1)α+1γλ(α,Θ2Θ1)C1p(γ,p). (3.4)

    Theorem 3.2. Assume that F:QQ is a differentiable continuous function with Θ1,Θ2Q and Θ1<Θ2. If |F|q for q1 is a subadditive function, then for λ0 and α>0, we have

    |F(Θ1)+F(Θ2)22α1Γ(α)γλ(α,Θ2Θ1)[Iα,2λΘ+1F(Θ1+Θ22)+Iα,2λΘ2F(Θ1+Θ22)]|212qq(Θ2Θ1)α+1γλ(α,Θ2Θ1)C11q(γ)×{[1Θ1Θ120γλ(Θ2Θ1)(α,12δΘ1)|F(δ)|qdδ+1Θ2Θ2Θ22γλ(Θ2Θ1)(α,2δΘ21)|F(δ)|qdδ]1q+[1Θ1Θ1Θ12γλ(Θ2Θ1)(α,2δΘ11)|F(δ)|qdδ+1Θ2Θ220γλ(Θ2Θ1)(α,12δΘ2)|F(δ)|qdδ]1q}, (3.5)

    where

    C(γ):=10γλ(Θ2Θ1)(α,δ)dδ=γλ(α,Θ2Θ1)(Θ2Θ1)αγλ(α+1,Θ2Θ1)(Θ2Θ1)α+1.

    Proof. Under the assumption of Lemma 3.1, subadditivity of |F|q on Q and power-mean inequality, we have

    |F(Θ1)+F(Θ2)22α1Γ(α)γλ(α,Θ2Θ1)[Iα,2λΘ+1F(Θ1+Θ22)+Iα,2λΘ2F(Θ1+Θ22)]|(Θ2Θ1)α+14γλ(α,Θ2Θ1)10|γλ(Θ2Θ1)(α,δ)|[|F(Θ1+1+δ2(Θ2Θ1))|+|F(Θ1+1δ2(Θ2Θ1))|]dδ(Θ2Θ1)α+14γλ(α,Θ2Θ1)(10γλ(Θ2Θ1)(α,δ)dδ)11q×{(10γλ(Θ2Θ1)(α,δ)|F(Θ1+1+δ2(Θ2Θ1))|qdδ)1q+(10γλ(Θ2Θ1)(α,δ)|F(Θ1+1δ2(Θ2Θ1))|qdδ)1q}(Θ2Θ1)α+14γλ(α,Θ2Θ1)C11q(γ)×{[10γλ(Θ2Θ1)(α,δ)(|F((1+δ2)Θ2)|q+|F((1δ2)Θ1)|q)dδ]1q+[10γλ(Θ2Θ1)(α,δ)(|F((1δ2)Θ2)|q+|F((1+δ2)Θ1)|q)dδ]1q}=212qq(Θ2Θ1)α+1γλ(α,Θ2Θ1)C11q(γ)×{[1Θ1Θ120γλ(Θ2Θ1)(α,12δΘ1)|F(δ)|qdδ+1Θ2Θ2Θ22γλ(Θ2Θ1)(α,2δΘ21)|F(δ)|qdδ]1q+[1Θ1Θ1Θ12γλ(Θ2Θ1)(α,2δΘ11)|F(δ)|qdδ+1Θ2Θ220γλ(Θ2Θ1)(α,12δΘ2)|F(δ)|qdδ]1q}.

    The proof of Theorem 3.2 is completed.

    Corollary 3.2. Taking q=1 in Theorem 3.2, we have

    |F(Θ1)+F(Θ2)22α1Γ(α)γλ(α,Θ2Θ1)[Iα,2λΘ+1F(Θ1+Θ22)+Iα,2λΘ2F(Θ1+Θ22)]|(Θ2Θ1)α+12γλ(α,Θ2Θ1)×{1Θ1Θ120γλ(Θ2Θ1)(α,12δΘ1)|F(δ)|dδ+1Θ2Θ220γλ(Θ2Θ1)(α,12δΘ2)|F(δ)|dδ+1Θ1Θ1Θ12γλ(Θ2Θ1)(α,2δΘ11)|F(δ)|dδ+1Θ2Θ2Θ22γλ(Θ2Θ1)(α,2δΘ21)|F(δ)|dδ}. (3.6)

    Corollary 3.3. Choosing |F|K in Theorem 3.2, we get

    |F(Θ1)+F(Θ2)22α1Γ(α)γλ(α,Θ2Θ1)[Iα,2λΘ+1F(Θ1+Θ22)+Iα,2λΘ2F(Θ1+Θ22)]|212qqK(Θ2Θ1)α+1γλ(α,Θ2Θ1)C11q(γ)×{[1Θ1Θ120γλ(Θ2Θ1)(α,12δΘ1)dδ+1Θ2Θ2Θ22γλ(Θ2Θ1)(α,2δΘ21)dδ]1q+[1Θ1Θ1Θ12γλ(Θ2Θ1)(α,2δΘ11)dδ+1Θ2Θ220γλ(Θ2Θ1)(α,12δΘ2)dδ]1q}. (3.7)

    Remark 3.1. For suitable choices of α and λ in Theorems 3.1 and 3.2, one will able to get interesting integral inequalities.

    It is shown that the functions F(δ)=eδ and δ for all δ>0 are subadditive. It can be observed that these graphs illustrate and confirm the correctness of our obtained inequalities.

    Example 4.1. If we take subadditive function F(δ)=δ in Theorem 2.1 for all δ>0, 0<α<1 and λ=1, then we observe the following numerical verification (see Table 1).

    Table 1.  Estimations of inequalities in Theorem 2.1 for F(δ)=δ,Θ1=1 and Θ2=2.
    α Left side Middle side Right side
    0.10 0.866025 1.20951 1.31914
    0.20 0.866025 1.21150 1.39740
    0.30 0.866025 1.21314 1.45415
    0.40 0.866025 1.21450 1.49635
    0.50 0.866025 1.21562 1.52827
    0.60 0.866025 1.21653 1.55268
    0.70 0.866025 1.21728 1.57148
    0.80 0.866025 1.21788 1.58599
    0.90 0.866025 1.21837 1.59717

     | Show Table
    DownLoad: CSV

    Example 4.2. If we take subadditive function F(δ)=eδ in Theorems 2.1 and 2.3 for all δ>0, 0<α<1 and λ=1, then we observe the following numerical verifications (see Tables 2 and 3) and corresponding graphs (see Figures 1 and 2).

    Table 2.  Estimations of inequalities in Theorem 2.1 for F(δ)=eδ,Θ1=1 and Θ2=2.
    α Left side Middle side Right side
    0.10 0.0248935 0.247754 1.21353
    0.20 0.0248935 0.244558 1.18203
    0.30 0.0248935 0.241912 1.15601
    0.40 0.0248935 0.239727 1.13457
    0.50 0.0248935 0.237928 1.11694
    0.60 0.0248935 0.236451 1.1025
    0.70 0.0248935 0.235245 1.09073
    0.80 0.0248935 0.234267 1.08119
    0.90 0.0248935 0.233479 1.07353

     | Show Table
    DownLoad: CSV
    Table 3.  Estimations of inequalities in Theorem 2.3 for F(δ)=eδ,Θ1=1 and Θ2=2.
    α Left side Middle side Right side
    0.10 0.0248935 0.248907 1.22482
    0.20 0.0248935 0.246526 1.20127
    0.30 0.0248935 0.244423 1.18051
    0.40 0.0248935 0.242560 1.16217
    0.50 0.0248935 0.240906 1.14592
    0.60 0.0248935 0.239435 1.13149
    0.70 0.0248935 0.238122 1.11863
    0.80 0.0248935 0.236947 1.10716
    0.90 0.0248935 0.235894 1.09689

     | Show Table
    DownLoad: CSV
    Figure 1.  Graphical representation of Theorem 2.1 with F(δ)=eδ, Θ1=1, Θ2=2, 0<α<1.
    Figure 2.  Graphical representation of Theorem 2.3 for F(δ)=eδ,δ>0 and 0<α<1.

    Example 4.3. Taking Φ(δ)=Ψ(δ)=eδ in Theorem 2.2 for all δ>0, 0<α<1 and λ=1, then we observe the following numerical verifications (see Tables 4 and 5) and corresponding graphs (see Figures 3 and 4).

    Table 4.  Estimations of the first inequality of Theorem 2.2 for Φ(δ)=Ψ(δ)=eδ, Θ1=1 and Θ2=2.
    α Left side Right side
    0.10 0.00123937 5.73786
    0.20 0.00123937 5.1814
    0.30 0.00123937 4.7129
    0.40 0.00123937 4.31749
    0.50 0.00123937 3.98298
    0.60 0.00123937 3.69935
    0.70 0.00123937 3.45838
    0.80 0.00123937 3.25324
    0.90 0.00123937 3.07834

     | Show Table
    DownLoad: CSV
    Table 5.  Estimations of the second inequality of Theorem 2.2 for Φ(δ)=Ψ(δ)=eδ, Θ1=1 and Θ2=2.
    α Left side Right side
    0.10 0.0730897 1.48926
    0.20 0.0700023 1.41475
    0.30 0.0674546 1.35365
    0.40 0.0653563 1.30362
    0.50 0.0636327 1.26275
    0.60 0.0622219 1.22945
    0.70 0.0610724 1.20245
    0.80 0.0601415 1.18068
    0.90 0.0593939 1.16326

     | Show Table
    DownLoad: CSV
    Figure 3.  Graphs of first inequality of Theorem 2.2 for Φ(δ)=Ψ(δ)=eδ,δ>0 and 0<α<1.
    Figure 4.  Graphs of second inequality of Theorem 2.2 for Φ(δ)=Ψ(δ)=eδ,δ>0 and 0<α<1.

    Several new fractional H-H types for subadditive functions and their products are developed in this paper. As an ancillary finding, we also obtain inequalities for subadditive functions using tempered fractional integrals and a new identity. To confirm the veracity of our findings, we give several examples of subadditive functions, their graphical representations, and numerical calculations. For those interested in this topic and working on it, our findings utilizing the tempered fractional integral operators provide a number of new opportunities and make it possible for them to create additional approximations for many other varieties of operators.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Researchers Supporting Project number (RSP2024R153), King Saud University, Riyadh, Saudi Arabia.

    The authors declare that they have no competing interests.



    [1] K. I. Bos, V. J. Schuenemann, G. B. Golding, A draft genome of yersinia pestis from victims of the black death, Nature, 478 (2011), 506–510. https://doi.org/10.1038/nature10549 doi: 10.1038/nature10549
    [2] Z. B. Zhang, The outbreak pattern of SARS cases in China as revealed by a mathematical model, Ecol. Model., 204 (2007), 420–426. https://doi.org/10.1016/j.ecolmodel.2007.01.020 doi: 10.1016/j.ecolmodel.2007.01.020
    [3] L. Hailong, R. X. Yu, L. Shuang, Analysis of the efficiency of the preventing and isolating treatments of SARS based on mathematical model, Int. J. Biomath., 19 (2004), 72–76. https://doi.org/10.2116/analsci.20.717 doi: 10.2116/analsci.20.717
    [4] X. S. Zhang, E. Vynnycky, A. Charlett, Transmission dynamics and control measures of COVID-19 outbreak in China: a modelling study, Sci. Rep., 11 (2021), 1–12. https://doi.org/10.1038/s41598-021-81985-z doi: 10.1038/s41598-021-81985-z
    [5] J. W. Deng, S. Y. Tang, H. Y. Shu, Joint impacts of media, vaccination and treatment on an epidemic Filippov model with application to COVID-19, J. Theor. Biol., 523 (2021), 110698. https://doi.org/10.1016/j.jtbi.2021.110698 doi: 10.1016/j.jtbi.2021.110698
    [6] S. He, S. Y. Tang, L. B. Rong, A discrete stochastic model of the COVID-19 outbreak: forecast and control, Math. Biosci. Eng., 17 (2020), 2792–2804. https://doi.org/10.3934/mbe.2020153 doi: 10.3934/mbe.2020153
    [7] A. Ibeas, M. D. L. Sen, S. A. Quesada, Robust sliding control of SEIR epidemic models, Math. Biosci. Eng., 2014 (2014), 11. https://doi.org/10.1155/2014/104764 doi: 10.1155/2014/104764
    [8] M. Sharifi, H. Moradi, Nonlinear robust adaptive sliding mode control of influenza epidemic in the presence of uncertainty, J. Process. Contr., 56 (2017), 48–57. https://doi.org/10.1016/j.jprocont.2017.05.010 doi: 10.1016/j.jprocont.2017.05.010
    [9] A. Wang, Y. Xiao, Sliding bifurcation and global dynamics of a filippov epidemic model with vaccination, Int. J. Bifurcat. Chaos, 23 (2013), 1350144. https://doi.org/10.1142/S0218127413501447 doi: 10.1142/S0218127413501447
    [10] J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith, C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health, 11 (2011), 1–16. https://doi.org/10.1186/1471-2458-11-S1-S5 doi: 10.1186/1471-2458-11-S1-S5
    [11] J. M. Tchuenche, C. T. Bauch, Dynamics of an infectious disease where media coverage influences transmission, Int. Schol. Res. Not., 2012 (2012), 1–10. https://doi.org/10.5402/2012/581274 doi: 10.5402/2012/581274
    [12] J. G. Cui, Y. H. Sun, H. P. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equations, 20 (2008), 31–53. https://doi.org/10.1007/s10884-007-9075-0 doi: 10.1007/s10884-007-9075-0
    [13] Y. Liu, J. A. Cui, The impact of media coverage on the dynamics of infectious disease, Int. J. Biomath., 1 (2008), 65–74. https://doi.org/10.1142/S1793524508000023 doi: 10.1142/S1793524508000023
    [14] Y. N. Xiao, X. X. Xu, S. Y. Tang, Sliding mode control of outbreaks of emerging infectious diseases, B. Math. Biol., 74 (2012), 2403–2422. https://doi.org/10.1007/s11538-012-9758-5 doi: 10.1007/s11538-012-9758-5
    [15] Y. N. Xiao, S. Y. Tang, J. H. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep., 5 (2015), 1–9. https://doi.org/10.1038/srep07838 doi: 10.1038/srep07838
    [16] Y. H. Zhang, Y. N. Xiao, Global dynamics for a filippov epidemic system with imperfect vaccination, Nonlinear Anal. Hybri., 38 (2020), 100932. https://doi.org/10.1016/j.nahs.2020.100932 doi: 10.1016/j.nahs.2020.100932
    [17] Y. H. Zhang, P. F. Song, Dynamics of the piecewise smooth epidemic model with nonlinear incidence, Chaos Soliton. Fract., 146 (2020), 110903. https://doi.org/10.1016/j.chaos.2021.110903 doi: 10.1016/j.chaos.2021.110903
    [18] Y. Yang, X. F. Liao, Filippov hindmarsh-rose neuronal model with threshold policy control, IEEE T. Neur. Net. Lear., 30 (2019), 306–311. https://doi.org/10.1109/TNNLS.2018.2836386 doi: 10.1109/TNNLS.2018.2836386
    [19] T. Carvalho, L. F. Gonçalves, Combing the hairy ball using a vector field without equilibria, J. Dyn. Control Syst., 26 (2020), 233–242. https://doi.org/10.1007/s10883-019-09446-5 doi: 10.1007/s10883-019-09446-5
    [20] D. C. Vicentin, P. F. A. Mancera, T. Carvalho, Mathematical model of an antiretroviral therapy to HIV via Filippov theory, Appl. Math. Comput., 387 (2020), 125179. https://doi.10.1016/j.amc.2020.125179
    [21] M. D. Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk, Bifurcations in nonsmooth dynamical systems, Siam. Rev., 50 (2008), 629–701. https://doi.10.1137/050625060
    [22] M. Guardia, T. M. Seara, M. A. Teixeira, Generic bifurcations of low codimension of planar filippov systems, J. Differ. Equations, 250 (2011), 1967–2023. https://doi.10.1016/j.jde.2010.11.016
    [23] W. Qin, S. Tang, The selection pressures induced non-smooth infectious disease model and bifurcation analysis, Chaos Solition. Fract., 69 (2014), 160–171. https://doi.10.1016/j.chaos.2014.09.014
    [24] A. Wang, Y. Xiao, R. A. Cheke, Global dynamics of a piece-wise epidemic model with switching vaccination strategy, Discrete. Cont. Dyn.-B., 19 (2014), 2915–2940. https://doi.10.3934/dcdsb.2014.19.2915
    [25] S. Tang, Y. Xiao, N. Wang, H. Wu, Piecewise HIV virus dynamic model with CD4(+) T cell count-guided therapy: I, J. Theor. Biol., 308 (2012), 123–134. https://doi.org/10.1016/j.jtbi.2012.05.022 doi: 10.1016/j.jtbi.2012.05.022
    [26] P. V. D. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [27] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [28] A. F. Filippov, Differential equations with discontinuous righthand sides, J. Math. Anal. Appl., 154 (1991), 377–390. https://doi.org/10.1016/0022-247X(91)90044-Z doi: 10.1016/0022-247X(91)90044-Z
    [29] V. Utkin, J. Guldner, J. X. Shi, Sliding mode control in electro-mechanical systems, 2nd edition, CRC Press, Boca Raton, 2009. https://doi.org/10.1201/9781420065619
    [30] Y. A. Kuznetsov, S. Rinaldi, A. Gragnani, Non-smooth ecological systems with a switching threshold depending on the pest density and its rate of change, Nonlinear Anal. Hybri., 42 (2021), 101094. https://doi.org/10.1016/j.nahs.2021.101094 doi: 10.1016/j.nahs.2021.101094
    [31] Y. A. Kuznetsov, S. Rinaldi, A. Gragnani, One-parameter bifurcations in planar filippov systems, Int. J. Bifurcat. Chaos, 13 (2003), 2157–2188. https://doi.org/10.1142/S0218127403007874 doi: 10.1142/S0218127403007874
    [32] A. A. Arafa, S. A. A. Hamdallah, S. Tang, Dynamics analysis of a filippov pest control model with time delay, Commun. Nonlinear Sci., 101 (2021), 105865. https://doi.org/10.1016/j.cnsns.2021.105865 doi: 10.1016/j.cnsns.2021.105865
  • This article has been cited by:

    1. Ammara Nosheen, Khuram Ali Khan, Mudassir Hussain Bukhari, Michael Kikomba Kahungu, A. F. Aljohani, Kavikumar Jacob, On Riemann-Liouville integrals and Caputo Fractional derivatives via strongly modified (p, h)-convex functions, 2024, 19, 1932-6203, e0311386, 10.1371/journal.pone.0311386
    2. Ali N. A. Koam, Ammara Nosheen, Khuram Ali Khan, Mudassir Hussain Bukhari, Ali Ahmad, Maryam Salem Alatawi, On Riemann–Liouville Integral via Strongly Modified (h,m)-Convex Functions, 2024, 8, 2504-3110, 680, 10.3390/fractalfract8120680
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3409) PDF downloads(190) Cited by(3)

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog