Idiopathic Parkinson's Disease (iPD) is a common motor neurodegenerative disorder. It affects more frequently the elderly population, causing a significant emotional burden both for the patient and caregivers, due to the disease-related onset of motor and cognitive disabilities. iPD's clinical hallmark is the onset of cardinal motor symptoms such as bradykinesia, rest tremor, rigidity, and postural instability. However, these symptoms appear when the neurodegenerative process is already in an advanced stage. Furthermore, the greatest challenge is to distinguish iPD from other similar neurodegenerative disorders, "atypical parkinsonisms", such as Multisystem Atrophy, Progressive Supranuclear Palsy and Cortical Basal Degeneration, since they share many phenotypic manifestations, especially in the early stages. The diagnosis of these neurodegenerative motor disorders is essentially clinical. Consequently, the diagnostic accuracy mainly depends on the professional knowledge and experience of the physician. Recent advances in artificial intelligence have made it possible to analyze the large amount of clinical and instrumental information in the medical field. The application machine learning algorithms to the analysis of neuroimaging data appear to be a promising tool for identifying microstructural alterations related to the pathological process in order to explain the onset of symptoms and the spread of the neurodegenerative process. In this context, the search for quantitative biomarkers capable of identifying parkinsonian patients in the prodromal phases of the disease, of correctly distinguishing them from atypical parkinsonisms and of predicting clinical evolution and response to therapy represent the main goal of most current clinical research studies. Our aim was to review the recent literature and describe the current knowledge about the contribution given by machine learning applications to research and clinical management of parkinsonian syndromes.
Citation: Annalisa Vitale, Rossella Villa, Lorenzo Ugga, Valeria Romeo, Arnaldo Stanzione, Renato Cuocolo. Artificial intelligence applied to neuroimaging data in Parkinsonian syndromes: Actuality and expectations[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1753-1773. doi: 10.3934/mbe.2021091
[1] | Jiafan Zhang . On the distribution of primitive roots and Lehmer numbers. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350 |
[2] | Yang Gao, Qingzhong Ji . On the inverse stability of zn+c. Electronic Research Archive, 2025, 33(3): 1414-1428. doi: 10.3934/era.2025066 |
[3] | J. Bravo-Olivares, E. Fernández-Cara, E. Notte-Cuello, M.A. Rojas-Medar . Regularity criteria for 3D MHD flows in terms of spectral components. Electronic Research Archive, 2022, 30(9): 3238-3248. doi: 10.3934/era.2022164 |
[4] | Zhefeng Xu, Xiaoying Liu, Luyao Chen . Hybrid mean value involving some two-term exponential sums and fourth Gauss sums. Electronic Research Archive, 2025, 33(3): 1510-1522. doi: 10.3934/era.2025071 |
[5] |
Jorge Garcia Villeda .
A computable formula for the class number of the imaginary quadratic field |
[6] | Li Wang, Yuanyuan Meng . Generalized polynomial exponential sums and their fourth power mean. Electronic Research Archive, 2023, 31(7): 4313-4323. doi: 10.3934/era.2023220 |
[7] | Qingjie Chai, Hanyu Wei . The binomial sums for four types of polynomials involving floor and ceiling functions. Electronic Research Archive, 2025, 33(3): 1384-1397. doi: 10.3934/era.2025064 |
[8] | Hai-Liang Wu, Li-Yuan Wang . Permutations involving squares in finite fields. Electronic Research Archive, 2022, 30(6): 2109-2120. doi: 10.3934/era.2022106 |
[9] | Li Rui, Nilanjan Bag . Fourth power mean values of one kind special Kloosterman's sum. Electronic Research Archive, 2023, 31(10): 6445-6453. doi: 10.3934/era.2023326 |
[10] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
Idiopathic Parkinson's Disease (iPD) is a common motor neurodegenerative disorder. It affects more frequently the elderly population, causing a significant emotional burden both for the patient and caregivers, due to the disease-related onset of motor and cognitive disabilities. iPD's clinical hallmark is the onset of cardinal motor symptoms such as bradykinesia, rest tremor, rigidity, and postural instability. However, these symptoms appear when the neurodegenerative process is already in an advanced stage. Furthermore, the greatest challenge is to distinguish iPD from other similar neurodegenerative disorders, "atypical parkinsonisms", such as Multisystem Atrophy, Progressive Supranuclear Palsy and Cortical Basal Degeneration, since they share many phenotypic manifestations, especially in the early stages. The diagnosis of these neurodegenerative motor disorders is essentially clinical. Consequently, the diagnostic accuracy mainly depends on the professional knowledge and experience of the physician. Recent advances in artificial intelligence have made it possible to analyze the large amount of clinical and instrumental information in the medical field. The application machine learning algorithms to the analysis of neuroimaging data appear to be a promising tool for identifying microstructural alterations related to the pathological process in order to explain the onset of symptoms and the spread of the neurodegenerative process. In this context, the search for quantitative biomarkers capable of identifying parkinsonian patients in the prodromal phases of the disease, of correctly distinguishing them from atypical parkinsonisms and of predicting clinical evolution and response to therapy represent the main goal of most current clinical research studies. Our aim was to review the recent literature and describe the current knowledge about the contribution given by machine learning applications to research and clinical management of parkinsonian syndromes.
Let Fq be the finite field of q elements with characteristic p, where q=pr, p is a prime number. Let F∗q=Fq∖{0} and Z+ denote the set of positive integers. Let s∈Z+ and b∈Fq. Let f(x1,…,xs) be a diagonal polynomial over Fq of the following form
f(x1,…,xs)=a1xm11+a2xm22+⋯+asxmss, |
where ai∈F∗q, mi∈Z+, i=1,…,s. Denote by Nq(f=b) the number of Fq-rational points on the affine hypersurface f=b, namely,
Nq(f=b)=#{(x1,…,xs)∈As(Fq)∣f(x1,…,xs)=b}. |
In 1949, Hua and Vandiver [1] and Weil [2] independently obtained the formula of Nq(f=b) in terms of character sum as follows
Nq(f=b)=qs−1+∑ψ1(a−11)⋯ψs(a−ss)J0q(ψ1,…,ψs), | (1.1) |
where the sum is taken over all s multiplicative characters of Fq that satisfy ψmii=ε, ψi≠ε, i=1,…,s and ψ1⋯ψs=ε. Here ε is the trivial multiplicative character of Fq, and J0q(ψ1,…,ψs) is the Jacobi sum over Fq defined by
J0q(ψ1,…,ψs)=∑c1+⋯+cs=0,ci∈Fqψ1(c1)⋯ψs(cs). |
Though the explicit formula for Nq(f=b) are difficult to obtain in general, it has been studied extensively because of their theoretical importance as well as their applications in cryptology and coding theory; see[3,4,5,6,7,8,9]. In this paper, we use the Jacobi sums, Gauss sums and the results of quadratic form to deduce the formula of the number of Fq2-rational points on a class of hypersurfaces over Fq2 under certain conditions. The main result of this paper can be stated as
Theorem 1.1. Let q=2r with r∈Z+ and Fq2 be the finite field of q2 elements. Let f(X)=a1xm11+a2xm22+⋯+asxmss, g(Y)=y1y2+y3y4+⋯+yn−1yn+y2n−2t−1+… +y2n−3+y2n−1+bty2n−2t+⋯+b1y2n−2+b0y2n, and l(X,Y)=f(X)+g(Y), where ai,bj∈F∗q2, mi≠1, (mi,mk)=1, i≠k, mi|(q+1), mi∈Z+, 2|n, n>2, 0≤t≤n2−2, TrFq2/F2(bj)=1 for i,k=1,…,s and j=0,1,…,t. For h∈Fq2, we have
(1) If h=0, then
Nq2(l(X,Y)=0)=q2(s+n−1)+∑γ∈F∗q2(s∏i=1((γai)mimi−1)(qs+2n−3+(−1)tqs+n−3)). |
(2) If h∈F∗q2, then
Nq2(l(X,Y)=h)=q2(s+n−1)+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1((hai)mimi−1)+∑γ∈F∗q2∖{h}[s∏i=1((γai)mimi−1)(q2n+s−3+(−1)tqn+s−3)]. |
Here,
(γai)mi={1,ifγaiisaresidueofordermi,0,otherwise. |
To prove Theorem 1.1, we need the lemmas and theorems below which are related to the Jacobi sums and Gauss sums.
Definition 2.1. Let χ be an additive character and ψ a multiplicative character of Fq. The Gauss sum Gq(ψ,χ) in Fq is defined by
Gq(ψ,χ)=∑x∈F∗qψ(x)χ(x). |
In particular, if χ is the canonical additive character, i.e., χ(x)=e2πiTrFq/Fp(x)/p where TrFq/Fp(y)=y+yp+⋯+ypr−1 is the absolute trace of y from Fq to Fp, we simply write Gq(ψ):=Gq(ψ,χ).
Let ψ be a multiplicative character of Fq which is defined for all nonzero elements of Fq. We extend the definition of ψ by setting ψ(0)=0 if ψ≠ε and ε(0)=1.
Definition 2.2. Let ψ1,…,ψs be s multiplicative characters of Fq. Then, Jq(ψ1,…,ψs) is the Jacobi sum over Fq defined by
Jq(ψ1,…,ψs)=∑c1+⋯+cs=1,ci∈Fqψ1(c1)⋯ψs(cs). |
The Jacobi sums Jq(ψ1,…,ψs) as well as the sums J0q(ψ1,…,ψs) can be evaluated easily in case some of the multiplicative characters ψi are trivial.
Lemma 2.3. ([10,Theorem 5.19,p. 206]) If the multiplicative characters ψ1,…,ψs of Fq are trivial, then
Jq(ψ1,…,ψs)=J0q(ψ1,…,ψs)=qs−1. |
If some, but not all, of the ψi are trivial, then
Jq(ψ1,…,ψs)=J0q(ψ1,…,ψs)=0. |
Lemma 2.4. ([10,Theorem 5.20,p. 206]) If ψ1,…,ψs are multiplicative characters of Fq with ψs nontrivial, then
J0q(ψ1,…,ψs)=0 |
if ψ1⋯ψs is nontrivial and
J0q(ψ1,…,ψs)=ψs(−1)(q−1)Jq(ψ1,…,ψs−1) |
if ψ1⋯ψs is trivial.
If all ψi are nontrivial, there exists an important connection between Jacobi sums and Gauss sums.
Lemma 2.5. ([10,Theorem 5.21,p. 207]) If ψ1,…,ψs are nontrivial multiplicative characters of Fq and χ is a nontrivial additive character of Fq, then
Jq(ψ1,…,ψs)=Gq(ψ1,χ)⋯Gq(ψs,χ)Gq(ψ1⋯ψs,χ) |
if ψ1⋯ψs is nontrivial and
Jq(ψ1,…,ψs)=−ψs(−1)Jq(ψ1,…,ψs−1)=−1qGq(ψ1,χ)⋯Gq(ψs,χ) |
if ψ1⋯ψs is trivial.
We turn to another special formula for Gauss sums which applies to a wider range of multiplicative characters but needs a restriction on the underlying field.
Lemma 2.6. ([10,Theorem 5.16,p. 202]) Let q be a prime power, let ψ be a nontrivial multiplicative character of Fq2 of order m dividing q+1. Then
Gq2(ψ)={q,ifmoddorq+1meven,−q,ifmevenandq+1modd. |
For h∈Fq2, define v(h)=−1 if h∈F∗q2 and v(0)=q2−1. The property of the function v(h) will be used in the later proofs.
Lemma 2.7. ([10,Lemma 6.23,p. 281]) For any finite field Fq, we have
∑c∈Fqv(c)=0, |
for any b∈Fq,
∑c1+⋯+cm=bv(c1)⋯v(ck)={0,1⩽k<m,v(b)qm−1,k=m, |
where the sum is over all c1,…,cm∈Fq with c1+⋯+cm=b.
The quadratic forms have been studied intensively. A quadratic form f in n indeterminates is called nondegenerate if f is not equivalent to a quadratic form in fewer than n indeterminates. For any finite field Fq, two quadratic forms f and g over Fq are called equivalent if f can be transformed into g by means of a nonsingular linear substitution of indeterminates.
Lemma 2.8. ([10,Theorem 6.30,p. 287]) Let f∈Fq[x1,…,xn], q even, be a nondegenerate quadratic form. If n is even, then f is either equivalent to
x1x2+x3x4+⋯+xn−1xn |
or to a quadratic form of the type
x1x2+x3x4+⋯+xn−1xn+x2n−1+ax2n, |
where a∈Fq satisfies TrFq/Fp(a)=1.
Lemma 2.9. ([10,Corollary 3.79,p. 127]) Let a∈Fq and let p be the characteristic of Fq, the trinomial xp−x−a is irreducible in Fq if and only if TrFq/Fp(a)≠0.
Lemma 2.10. ([10,Lemma 6.31,p. 288]) For even q, let a∈Fq with TrFq/Fp(a)=1 and b∈Fq. Then
Nq(x21+x1x2+ax22=b)=q−v(b). |
Lemma 2.11. ([10,Theorem 6.32,p. 288]) Let Fq be a finite field with q even and let b∈Fq. Then for even n, the number of solutions of the equation
x1x2+x3x4+⋯+xn−1xn=b |
in Fnq is qn−1+v(b)q(n−2)/2. For even n and a∈Fq with TrFq/Fp(a)=1, the number of solutions of the equation
x1x2+x3x4+⋯+xn−1xn+x2n−1+ax2n=b |
in Fnq is qn−1−v(b)q(n−2)/2.
Lemma 2.12. Let q=2r and h∈Fq2. Let g(Y)∈Fq2[y1,y2,…,yn] be a polynomial of the form
g(Y)=y1y2+y3y4+⋯+yn−1yn+y2n−2t−1+⋯+y2n−3+y2n−1+bty2n−2t+⋯+b1y2n−2+b0y2n, |
where bj∈F∗q2, 2|n, n>2, 0≤t≤n2−2, TrFq2/F2(bj)=1, j=0,1,…,t. Then
Nq2(g(Y)=h)=q2(n−1)+(−1)t+1qn−2v(h). | (2.1) |
Proof. We provide two proofs here. The first proof is as follows. Let q1=q2. Then by Lemmas 2.7 and 2.10, the number of solutions of g(Y)=h in Fq2 can be deduced as
Nq2(g(Y)=h)=∑c1+c2+⋯+ct+2=hNq2(y1y2+y3y4+⋯+yn−2t−3yn−2t−2=c1)⋅Nq2(yn−2t−1yn−2t+y2n−2t−1+bty2n−2t=c2)⋯Nq2(yn−1yn+y2n−1+b0y2n=ct+2)=∑c1+c2+⋯+ct+2=h(qn−2t−31+v(c1)q(n−2t−4)/21)(q1−v(c2))⋯(q1−v(ct+2))=∑c1+c2+⋯+ct+2=h(qn−2t−21+v(c1)q(n−2t−2)/21−v(c2)qn−2t−31−v(c1)v(c2)q(n−2t−4)/21)⋅(q1−v(c3))⋯(q1−v(ct+2))=∑c1+c2+⋯+ct+2=h(qn−t−21+v(c1)q(n−2)/21−v(c2)qn−t−31+⋯+(−1)t+1v(c1)v(c2)⋯v(ct+2)q(n−2t−4)/21)=qn−11+q(n−2)/21∑c1∈Fq2v(c1)+⋯+(−1)t+1∑c1+c2+⋯+ct+2=hv(c1)v(c2)⋯v(ct+2)q(n−2t−4)/21. | (2.2) |
By Lamma 2.7 and (2.2), we have
Nq2(g(Y)=h)=qn−11+(−1)t+1v(h)q(n−2)/21=q2(n−1)+(−1)t+1v(h)qn−2. |
Next we give the second proof. Note that if f and g are equivalent, then for any b∈Fq2 the equation f(x1,…,xn)=b and g(x1,…,xn)=b have the same number of solutions in Fq2. So we can get the number of solutions of g(Y)=h for h∈Fq2 by means of a nonsingular linear substitution of indeterminates.
Let k(X)∈Fq2[x1,x2,x3,x4] and k(X)=x1x2+x21+Ax22+x3x4+x23+Bx24, where TrFq2/F2(A)=TrFq2/F2(B)=1. We first show that k(x) is equivalent to x1x2+x3x4.
Let x3=y1+y3 and xi=yi for i≠3, then k(X) is equivalent to y1y2+y1y4+y3y4+Ay22+y23+By24.
Let y2=z2+z4 and yi=zi for i≠2, then k(X) is equivalent to z1z2+z3z4+Az22+z23+Az24+Bz24.
Let z1=α1+Aα2 and zi=αi for i≠1, then k(X) is equivalent to α1α2+α23+α3α4+(A+B)α24.
Since TrFq2/F2(A+B)=0, we have α23+α3α4+(A+B)α24 is reducible by Lemma 2.9. Then k(X) is equivalent to x1x2+x3x4. It follows that if t is odd, then g(Y) is equivalent to x1x2+x3x4+⋯+xn−1xn, and if t is even, then g(Y) is equivalent to x1x2+x3x4+⋯+xn−1xn+x2n−1+ax2n with TrFq2/F2(a)=1. By Lemma 2.11, we get the desired result.
From (1.1), we know that the formula for the number of solutions of f(X)=0 over Fq2 is
Nq2(f(X)=0)=q2(s−1)+d1−1∑j1=1⋯ds−1∑js=1¯ψj11(a1)⋯¯ψjss(as)J0q2(ψj11,…,ψjss), |
where di=(mi,q2−1) and ψi is a multiplicative character of Fq2 of order di. Since mi|q+1, we have di=mi. Let H={(j1,…,js)∣1≤ji<mi, 1≤i≤s}. It follows that ψj11⋯ψjss is nontrivial for any (j1,…,js)∈H as (mi,mj)=1. By Lemma 2, we have J0q2(ψj11,…,ψjss)=0 and hence Nq2(f(X)=0)=q2(s−1).
Let Nq2(f(X)=c) denote the number of solutions of the equation f(X)=c over Fq2 with c∈F∗q2. Let V={(j1,…,js)|0≤ji<mi,1≤i≤s}. Then
Nq2(f(X)=c)=∑γ1+⋯+γs=cNq2(a1xm11=γ1)⋯Nq2(asxmss=γs)=∑γ1+⋯+γs=cm1−1∑j1=0ψj11(γ1a1)⋯ms−1∑js=0ψjss(γsas). |
Since ψi is a multiplicative character of Fq2 of order mi, we have
Nq2(f(X)=c)=∑γ1c+⋯+γsc=1∑(j1,…,js)∈Vψj11(γ1c)ψj11(ca1)⋯ψjss(γsc)ψjss(cas)=∑(j1,…,js)∈Vψj11(ca1)⋯ψjss(cas)∑γ1c+⋯+γsc=1ψj11(γ1c)⋯ψjss(γsc)=∑(j1,…,js)∈Vψj11(ca1)⋯ψjss(cas)Jq2(ψj11,…,ψjss). |
By Lemma 2.3,
Nq2(f(X)=c)=q2(s−1)+∑(j1,…,js)∈Hψj11(ca1)⋯ψjss(cas)Jq2(ψj11,…,ψjss). |
By Lemma 2.5,
Jq2(ψj11,…,ψjss)=Gq2(ψj11)⋯Gq2(ψjss)Gq2(ψj11⋯ψjss). |
Since mi|q+1 and 2∤mi, by Lemma 2.6, we have
Gq2(ψj11)=⋯=Gq2(ψjss)=Gq2(ψj11⋯ψjss)=q. |
Then
Nq2(f(X)=c)=q2(s−1)+qs−1m1−1∑j1=1ψj11(ca1)…ms−1∑js=1ψjss(cas)=q2(s−1)+qs−1(m1−1∑j1=0ψj11(ca1)−1)⋯(ms−1∑js=0ψjss(cas)−1). |
It follows that
Nq2(f(X)=c)=q2(s−1)+qs−1s∏i=1((cai)mimi−1), | (3.1) |
where
(cai)mi={1,ifcai is a residue of ordermi,0,otherwise. |
For a given h∈Fq2. We discuss the two cases according to whether h is zero or not.
Case 1: h=0. If f(X)=0, then g(Y)=0; if f(X)≠0, then g(Y)≠0. Then
Nq2(l(X,Y)=0)=∑c1+c2=0Nq2(f(X)=c1)Nq2(g(Y)=c2)=q2(s−1)(q2(n−1)+(−1)t+1(q2−1)qn−2)+∑c1+c2=0c1,c2∈F∗q2Nq2(f(X)=c1)Nq2(g(Y)=c2). | (3.2) |
By Lemma 2.12, (3.1) and (3.2), we have
Nq2(l(X,Y)=0)=q2(s+n−2)+(−1)t+1q2(s−1)+hn−(−1)t+1q2(s−2)+n+∑c1∈F∗q2[q2(s+n−2)−(−1)t+1q2(s−2)+n+s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]=q2(s+n−2)+(−1)t+1q2(s−1)+n−(−1)t+1q2(s−2)+n+q2(s+n−1)−(−1)t+1q2(s−1)+n−q2(s+n−2)+(−1)t+1q2(s−2)+n+∑c1∈F∗q2[s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]=q2(s+n−1)+∑c1∈F∗q2[s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]. | (3.3) |
Case 2: h∈F∗q2. If f(X)=h, then g(Y)=0; if f(X)=0, then g(Y)=h; if f(X)∉{0,h}, then g(Y)∉{0,h}. So we have
Nq2(l(X,Y))=h)=∑c1+c2=hNq2(f(X)=c1)Nq2(g(Y)=c2)=Nq2(f(X)=0)Nq2(g(Y)=h)+Nq2(f(X)=h)Nq2(g(Y)=0)+∑c1+c2=hc1,c2∈F∗q2∖{h}Nq2(f(X)=c1)Nq2(g(Y)=c2). | (3.4) |
By Lemma 2.12, (3.1) and (3.4),
Nq2(l(X,Y)=h)=2q2(s+n−2)+(−1)t+1q2s+n−2−(−1)t+12q2s+n−4+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1((hai)mimi−1)+∑c1∈F∗q2∖{h}[q2(s+n−2)−(−1)t+1q2s+n−4+s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]. |
It follows that
Nq2(l(X,Y)=h)=2q2(s+n−2)+(−1)t+1q2s+n−2−(−1)t+12q2s+n−4+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1((hai)mimi−1)+∑c1∈F∗q2∖{h}[q2(s+n−2)−(−1)t+1q2s+n−4+s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]=q2(s+n−1)+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1((hai)mimi−1)+∑c1∈F∗q2∖{h}[s∏i=1((c1ai)mimi−1)⋅(q2n+s−3+(−1)tqn+s−3)]. | (3.5) |
By (3.3) and (3.5), we get the desired result. The proof of Theorem 1.1 is complete.
There is a direct corollary of Theorem 1.1 and we omit its proof.
Corollary 4.1. Under the conditions of Theorem 1.1, if a1=⋯=as=h∈F∗q2, then we have
Nq2(l(X,Y)=h)=q2(s+n−1)+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1(mi−1)+∑γ∈F∗q2∖{h}[s∏i=1((γh)mimi−1)(q2n+s−3+(−1)tqn+s−3)], |
where
(γh)mi={1,ifγhisaresidueofordermi,0,otherwise. |
Finally, we give two examples to conclude the paper.
Example 4.2. Let F210=⟨α⟩=F2[x]/(x10+x3+1) where α is a root of x10+x3+1. Suppose l(X,Y)=α33x31+x112+y23+α10y24+y1y2+y3y4. Clearly, TrF210/F2(α10)=1, m1=3, m2=11, s=2, n=4, t=0, a2=1. By Theorem 1.1, we have
N210(l(X,Y)=0)=10245+(327+323)×20=1126587102265344. |
Example 4.3. Let F212=⟨β⟩=F2[x]/(x12+x6+x4+x+1) where β is a root of x12+x6+x4+x+1. Suppose l(X,Y)=x51+x132+y23+β10y24+y1y2+y3y4. Clearly, TrF212/F2(β10)=1, m1=5, m2=13, s=2, n=4, t=0, a1=a2=1. By Corollary 1, we have
N212(l(X,Y)=1)=25×12+(647−643×4095)×48=1153132559312355328. |
This work was jointly supported by the Natural Science Foundation of Fujian Province, China under Grant No. 2022J02046, Fujian Key Laboratory of Granular Computing and Applications (Minnan Normal University), Institute of Meteorological Big Data-Digital Fujian and Fujian Key Laboratory of Data Science and Statistics.
The authors declare there is no conflicts of interest.
[1] |
A. H. Schapira, P. Jenner, Etiology and pathogenesis of Parkinson's disease, Mov.Disord., 26 (2011), 1049–1055. doi: 10.1002/mds.23732
![]() |
[2] |
W. Dauer, S. Przedborski, Parkinson's disease: Mechanisms and models, Neuron, 39 (2003), 889–909. doi: 10.1016/S0896-6273(03)00568-3
![]() |
[3] | R. F. Pfeiffer, Non-motor symptoms in Parkinson's disease, Parkinson. Relat. Disord., 22 (2016), 119–122. |
[4] |
A. J. Hughes, S. E. Daniel, L. Kilford, A. J. Lees, Accuracy of clinical diagnosis of idiopathic Parkinson's disease: A clinico-pathological study of 100 cases, J. Neurol. Neurosurg. Psych., 55 (1992), 181–184. doi: 10.1136/jnnp.55.3.181
![]() |
[5] |
R. B. Postuma, D. Berg, M. Stern, W. Poewe, C. W. Olanow, W. Oertel, et al., MDS clinical diagnostic criteria for Parkinson's disease, Mov. Disord., 30 (2015), 1591–1601. doi: 10.1002/mds.26424
![]() |
[6] | E. Tolosa, G. Wenning, W. Poewe, The diagnosis of Parkinson's disease, Lancet Neurol., 5 (2006), 75–86. |
[7] | E. Hustad, A. H. Skogholt, K. Hveem, J. O. Aasly, The accuracy of the clinical diagnosis of Parkinson disease, The HUNT study, J. Neurol., 265 (2018), 2120–2124. |
[8] | J. Levin, A. Kurz, T. Arzberger, A. Giese, G. U. Höglinger, The differential diagnosis and treatment of atypical Parkinsonism, Dtsch. Arztebl. Int., 113 (2016), 61–69. |
[9] | A. M. Keener, Y. M. Bordelon, Parkinsonism, Semin. Neurol., 36 (2016), 330–334. |
[10] | U. Saeed, A. E. Lang, M. Masellis, Neuroimaging advances in Parkinson's disease and atypical Parkinsonian syndromes, Front. Neurol., 11 (2020), 572976. |
[11] |
S. Mangesius, S. Mariotto, S. Ferrari, S. Jr Pereverzyev, H. Lerchner, L. Haider, et al., Novel decision algorithm to discriminate parkinsonism with combined blood and imaging biomarkers, Parkinson. Relat. Disord., 77 (2020), 57–63. doi: 10.1016/j.parkreldis.2020.05.033
![]() |
[12] |
A. Kaipainen, O. Jääskeläinen, Y. Liu, F. Haapalinna, N. Nykänen, R. Vanninen, et al., Cerebrospinal fluid and MRI biomarkers in neurodegenerative diseases: A retrospective memory clinic-based study, J. Alzheimers Dis., 75 (2020), 751–765. doi: 10.3233/JAD-200175
![]() |
[13] | N. He, J. Langley, D. E. Huddleston, S. Chen, P. Huang, H. Ling, et al., Increased iron-deposition in lateral-ventral substantia nigra pars compacta: A promising neuroimaging marker for Parkinson's disease, Neuroimage Clin., 28 (2020), 102391. |
[14] |
H. Sjöström, T. Granberg, F. Hashim, E. Westman, P. Svenningsson, Automated brainstem volumetry can aid in the diagnostics of parkinsonian disorders, Parkinson. Relat. Disord., 79 (2020), 18–25. doi: 10.1016/j.parkreldis.2020.08.004
![]() |
[15] | X. Liu, N. Wang, C. Chen, P. Y. Wu, S. Piao, D. Geng, et al., Swallow tail sign on susceptibility map-weighted imaging (SMWI) for disease diagnosing and severity evaluating in parkinsonism, Acta Radiol., (2020), 284185120920793. |
[16] | M. Picillo, M. F. Tepedino, F. Abate, R. Erro, S. Ponticorvo, S. Tartaglione, et al., Midbrain MRI assessments in progressive supranuclear palsy subtypes, J. Neurol. Neurosurg. Psych., 9 (2020), 98–103. |
[17] | A. Quattrone, A. Antonini, D. E. Vaillancourt, K. Seppi, R. Ceravolo, A. P. Strafella, et al., A New MRI measure to early differentiate progressive supranuclear palsy from De novo Parkinson's dDisease in clinical practice: An international study, Mov. Disord., (2020). |
[18] | G. Arribarat, P. Péran, Quantitative MRI markers in Parkinson's disease and parkinsonian syndromes, Curr. Opin. Neurol., 33 (2020), 222–229. |
[19] |
N. Pyatigorskaya, L. Yahia-Cherif, R. Gaurav, C. Ewenczyk, C. Gallea, R. Valabregue, et al., Multimodal magnetic resonance imaging quantification of brain changes in progressive supranuclear palsy, Mov. Disord., 35 (2020), 161–170. doi: 10.1002/mds.27877
![]() |
[20] | B. Xiao, N. He, Q. Wang, Z. Cheng, Y. Jiao, E. M. Haacke, et al., Quantitative susceptibility mapping based hybrid feature extraction for diagnosis of Parkinson's disease, Neuro. Clin., 24 (2019), 102070. |
[21] | L. Chougar, N. Pyatigorskaya, B. Degos, D. Grabli, S. Lehéricy, The role of magnetic resonance imaging for the diagnosis of atypical parkinsonism, Front. Neurol., 11 (2020), 665. |
[22] |
A. Quattrone, A. Sarica, D. La Torre, M. Morelli, B. Vescio, S. Nigro, et al., Magnetic resonance imaging biomarkers distinguish normal pressure hydrocephalus from progressive supranuclear palsy, Mov. Disord., 35(2020), 1406–1415. doi: 10.1002/mds.28087
![]() |
[23] |
D. B. Archer, T. Mitchell, R. G. Burciu, J. Yang, S. Nigro, A. Quattrone, et al., Magnetic resonance Imaging and neurofilament light in the differentiation of Parkinsonism, Mov. Disord., 35 (2020), 1388–1395. doi: 10.1002/mds.28060
![]() |
[24] |
M. Bocchetta, J. E. Iglesias, V. Chelban, E. Jabbari, R. Lamb, L. L. Russell, et al., Automated brainstem segmentation detects differential involvement in atypical parkinsonian syndromes, J. Mov. Disord., 13 (2020), 39–46. doi: 10.14802/jmd.19030
![]() |
[25] |
P. Mahlknecht, A. Hotter, A. Hussl, R. Esterhammer, M. Schocke, K. Seppi, Significance of MRI in diagnosis and differential diagnosis of Parkinson's disease, Neurodegener. Dis., 7 (2010), 300-318. doi: 10.1159/000314495
![]() |
[26] |
R. De Micco, A. Russo, A. Tessitore, Structural MRI in idiopathic Parkinson's disease, Int. Rev. Neurobio.l, 141(2018), 405–438. doi: 10.1016/bs.irn.2018.08.011
![]() |
[27] |
S. B. Kotsiantis, I. D. Zaharakis, P. E. Pintelas, Machine learning: A review of classification and combining techniques, Artif Intell. Rev., 26 (2006), 159–190. doi: 10.1007/s10462-007-9052-3
![]() |
[28] |
J. M. Mateos-Pérez, M. Dadar, M. Lacalle-Aurioles, Y. Iturria-Medina, Y. Zeighami, A. C. Evans, Structural neuroimaging as clinical predictor: A review of machine learning applications, Neuroimage Clin., 20 (2018), 506–522. doi: 10.1016/j.nicl.2018.08.019
![]() |
[29] |
R. Cuocolo, M. Caruso, T. Perillo, L. Ugga, M. Petretta, Machine learning in oncology: A clinical appraisal, Cancer Lett., 481 (2020), 55–62. doi: 10.1016/j.canlet.2020.03.032
![]() |
[30] |
L. Agnello, A. Comelli, E. Ardizzone, S. Vitabile, Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis, Int. J. Imag. Syst. Technol., 26 (2016), 136–150. doi: 10.1002/ima.22168
![]() |
[31] | A. Comelli, A. Stefano, S. Bignardi, C. Coronnello, G. Russo, M. G. Sabini, et al., Tissue classification to support local active delineation of brain tumors, in Medical Image Understanding and Analysis. MIUA (eds. Y.Zheng, B.Williams, K.Chen), Springer, 1065 (2019). |
[32] | C. Ricciardi, M. Amboni, C. Santis, G. Ricciardelli, G. Improta, G. Cesarelli, et al., Classifying patients affected by Parkinson's disease into freezers or non-freezers through machine learning, IEEE International Symposium on Medical Measurements and Applications, (2020), 1–6. |
[33] | C. Ricciardi, M. Amboni, C. De Santis, G. Ricciardelli, G. Improta, G. D'Addio, et al., Machine learning can detect the presence of Mild cognitive impairment in patients affected by Parkinson's Disease, IEEE International Symposium on Medical Measurements and Applications, (2020), 1–6. |
[34] |
R. Prashanth, S. Dutta Roy, P. K. Mandal, S. Ghosh, High-accuracy detection of early Parkinson's disease through multimodal features and machine learning, Int. J. Med. Inform., 90 (2016), 13–21. doi: 10.1016/j.ijmedinf.2016.03.001
![]() |
[35] | Ó. Peña-Nogales, T. M. Ellmore, R. De Luis-García, J. Suescun, M. C. Schiess, L. Giancardo, Longitudinal connectomes as a candidate progression marker for prodromal Parkinson's disease, Front. Neurosci., 12 (2019), 967. |
[36] |
Y. Liu, Y. Wang, C. Huang, D. Zeng, Estimating personalized diagnostic rules depending on individualized characteristics, Stat. Med., 36 (2017), 1099–1117. doi: 10.1002/sim.7182
![]() |
[37] | S. Shinde, S. Prasad, Y. Saboo, R. Kaushick, J. Saini, P.K. Pal, et al., Predictive markers for Parkinson's disease using deep neural nets on neuromelanin sensitive MRI, Neuro. Clin., 22 (2019), 101748. |
[38] |
B. Peng, S. Wang, Z. Zhou, Y. Liu, B. Tong, T. Zhang, et al., A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson's disease, Neurosci. Lett., 651 (2017), 88–94. doi: 10.1016/j.neulet.2017.04.034
![]() |
[39] |
Y. Chen, G. Zhu, D. Liu, Y. Liu, T. Yuan, X. Zhang, et al., Brain morphological changes in hypokinetic dysarthria of Parkinson's disease and use of machine learning to predict severity, CNS Neurosci. Ther., 26 (2020), 711–719. doi: 10.1111/cns.13304
![]() |
[40] |
E. Glaab, J. P. Trezzi, A. Greuel, C. Jäger, Z. Hodak, A. Drzezga, et al., Integrative analysis of blood metabolomics and PET brain neuroimaging data for Parkinson's disease, Neurobiol. Dis., 124 (2019), 555–562. doi: 10.1016/j.nbd.2019.01.003
![]() |
[41] |
K. L. Poston, S. York Williams, K. Zhang, W. Cai, D. Everling, F. M. Tayim, et al., Compensatory neural mechanisms in cognitively unimpaired Parkinson disease, Ann. Neurol., 79 (2016), 448–463. doi: 10.1002/ana.24585
![]() |
[42] |
C. Salvatore, A. Cerasa, I. Castiglioni, F. Gallivanone, A. Augimeri, M. Lopez, et al., Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy, J. Neurosci. Methods, 222 (2014), 230–237. doi: 10.1016/j.jneumeth.2013.11.016
![]() |
[43] | M. M. Correia, T. Rittman, C. L. Barnes, I. T. Coyle-Gilchrist, B. Ghosh, L. E. Hughes, et al., Towards accurate and unbiased imaging-based differentiation of Parkinson's disease, progressive supranuclear palsy and corticobasal syndrome, Brain Commun., 2 (2020), fcaa051. |
[44] | D. B. Archer, J. T. Bricker, W. T. Chu, R. G. Burciu, J. L. Mccracken, S. Lai, et al., Development and validation of the automated imaging differentiation in Parkinsonism (AID-P): A multi-site machine learning study, Lancet Digit. Health, 1 (2019), e222–e231. |
[45] |
G. Du, M. M. Lewis, S. Kanekar, N. W. Sterling, L. He, L. Kong, et al., Combined diffusion tensor imaging and apparent transverse relaxation rate differentiate Parkinson disease and atypical Parkinsonism, AJNR Am. J. Neuroradiol., 38 (2017), 966–972. doi: 10.3174/ajnr.A5136
![]() |
[46] |
N. Amoroso, M. La Rocca, A. Monaco, R. Bellotti, S. Tangaro, Complex networks reveal early MRI markers of Parkinson's disease, Med. Image Anal., 48 (2018), 12–24. doi: 10.1016/j.media.2018.05.004
![]() |
[47] |
Q. Gu, H. Zhang, M. Xuan, W. Luo, P. Huang, S. Xia, et al., Automatic classification on multi-modal MRI data for diagnosis of the postural instability and gait difficulty subtype of Parkinson's disease, J. Parkinsons Dis., 6(2016), 545–556. doi: 10.3233/JPD-150729
![]() |
[48] |
M. R. Salmanpour, M. Shamsaei, A. Saberi, I. S. Klyuzhin, J. Tang, V. Sossi, et al., Machine learning methods for optimal prediction of motor outcome in Parkinson's disease, Phys. Med., 69 (2020), 233–240. doi: 10.1016/j.ejmp.2019.12.022
![]() |
[49] |
S. Waninger, C. Berka, M. Stevanovic Karic, S. Korszen, P. D. Mozley, C. Henchcliffe, et al., Neurophysiological biomarkers of Parkinson's disease, J. Parkinsons Dis., 10 (2020), 471–480. doi: 10.3233/JPD-191844
![]() |
[50] |
J. Tang, B. Yang, M. P. Adams, N. N. Shenkov, I. S. Klyuzhin, S. Fotouhi, et al., Artificial neural network-based prediction of outcome in Parkinson's disease patients using DaTscan SPECT imaging features, Mol. Imag. Biol., 21 (2019), 1165–1173. doi: 10.1007/s11307-019-01334-5
![]() |
[51] | Y. L. Chen, X. A. Zhao, S. H. Ng, C. S. Lu, Y. C. Lin, J. S. Cheng, et al., Prediction of the clinical severity of progressive supranuclear palsy by diffusion tensor imaging, J. Clin. Med., 9 (2019), 40. |
[52] | Y. Chen, G. Zhu, D. Liu, Y. Liu, T. Yuan, X. Zhang, et al., The morphology of thalamic subnuclei in Parkinson's disease and the effects of machine learning on disease diagnosis and clinical evaluation, J. Neurol. Sci., 411(2020), 116721. |
[53] | T. Chih-Chien, L. Yu-Chun, N. Shu-Hang, C. Yao-Liang, C. Jur-Shan, L. Chin-Song, et al., A method for the prediction of clinical outcome using diffusion magnetic resonance imaging: Application on Parkinson's disease, J. Clin. Med., 9 (2020), 647. |
[54] | M. Peralta, J. S. H. Baxter, A. R. Khan, C. Haegelen, P. Jannin, Striatal shape alteration as a staging biomarker for Parkinson's Disease, Neuroimage Clin., 27 (2020), 102272. |
[55] | H. Kaka, E. Zhang, N. Khan, Artificial intelligence and deep learning in neuroradiology: Exploring the new frontier, Can. Assoc. Radiol. J., (2020), 846537120954293. |
[56] |
A. W. Olthof, P. M. A. van Ooijen, M. H. Rezazade Mehrizi, Promises of artificial intelligence in neuroradiology: A systematic technographic review, Neuroradiology, 62 (2020), 1265–1278. doi: 10.1007/s00234-020-02424-w
![]() |
[57] |
T. C. Booth, M. Williams, A. Luis, J. Cardoso, K. Ashkan, H. Shuaib, Machine learning and glioma imaging biomarkers, Clin. Radiol., 75 (2020), 20–32. doi: 10.1016/j.crad.2019.07.001
![]() |
[58] |
H. Zhou, R. Hu, O. Tang, C. Hu, L. Tang, K. Chang, et al., Automatic machine learning to differentiate pediatric posterior fossa tumors on routine MR imaging, AJNR Am. J. Neuroradiol., 41 (2020), 1279–1285. doi: 10.3174/ajnr.A6621
![]() |
[59] | S. J. Cho, L. Sunwoo, S. H. Baik, Y. J. Bae, B. S. Choi, J. H. Kim, Brain metastasis detection using machine learning: A systematic review and meta-analysis, Neuro. Oncol., (2020), noaa232. |
[60] | H. M. R. Afzal, S. Luo, S. Ramadan, J. Lechner-Scott, The emerging role of artificial intelligence in multiple sclerosis imaging, Mult. Scler., (2020), 1352458520966298. |
[61] | P. N. E. Young, M. Estarellas, E. Coomans, M. Srikrishna, H. Beaumont, A. Maass, et al., Imaging biomarkers in neurodegeneration: Current and future practices, Alzheimers Res. Ther., 12 (2020), 49. |
[62] | A. N. Nielsen, D. M. Barch, S. E. Petersen, B. L. Schlaggar, D. J. Greene, Machine learning with neuroimaging: Evaluating its applications in psychiatry, Biol. Psych. Cogn. Neurosci. Neuroimag., 5 (2020), 791–798. |
[63] |
N. M. Murray, M. Unberath, G. D. Hager, F. K. Hui, Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: A systematic review, J. Neuroint. Surg., 12 (2020), 156–164. doi: 10.1136/neurintsurg-2019-015135
![]() |
[64] |
S. Heinzel, D. Berg, T. Gasser, H. Chen, C. Yao, R. B. Postuma, MDS task force on the definition of Parkinson's disease. Update of the MDS research criteria for prodromal Parkinson's disease, Mov. Disord., 34 (2019), 1464–1470. doi: 10.1002/mds.27802
![]() |
[65] | R. B. Postuma, D. Berg, Prodromal Parkinson's disease: The decade past, the decade to come, Mov. Disord., 34 (2019), 665–675. |
[66] |
D. Salat, A. J. Noyce, A. Schrag, E. Tolosa, Challenges of modifying disease progression in prediagnostic Parkinson's disease, Lancet Neurol., 15(2016), 637–648. doi: 10.1016/S1474-4422(16)00060-0
![]() |
[67] | R. B. Postuma, D. Berg, Advances in markers of prodromal Parkinson disease, Nat. Rev. Neurol., 12 (2016), 622–634. |
[68] |
K. Marek, D. Jennings, S. Lasch, A. Siderowf, C. Tanner, T. Simuni, et al., Parkinson Progression Marker Initiative. The Parkinson Progression Marker Initiative (PPMI), Prog. Neurobiol., 95 (2011), 629–635. doi: 10.1016/j.pneurobio.2011.09.005
![]() |
[69] |
D. Frosini, M. Cosottini, D. Volterrani, R. Ceravolo, Neuroimaging in Parkinson's disease: Focus on substantia nigra and nigro-striatal projection, Curr. Opin. Neurol., 30 (2017), 416–426. doi: 10.1097/WCO.0000000000000463
![]() |
[70] | G. L. Hedlund, A. G. Osborn, K. L. Salzman, Osborn's brain imaging, pathology and anatomy, Second edition, Elsevier, Philadelphia, 2018. |
[71] |
L. Ugga, R. Cuocolo, S. Cocozza, G. Pontillo, A. Elefante, M. Quarantelli, et al., Magnetic resonance parkinsonism indices and interpeduncular angle in idiopathic normal pressure hydrocephalus and progressive supranuclear palsy, Neuroradiology, 62 (2020), 1657–1665. doi: 10.1007/s00234-020-02500-1
![]() |
[72] |
J. Xu, M. Zhang, Use of magnetic resonance imaging and artificial intelligence in studies of diagnosis of Parkinson's disease, ACS Chem. Neurosci., 10 (2019), 2658–2667. doi: 10.1021/acschemneuro.9b00207
![]() |
[73] | M. A. Thenganatt, J. Jankovic, Parkinson disease subtypes, JAMA Neurol., 71 (2014), 499–504. |
[74] |
D. Aleksovski, D. Miljkovic, D. Bravi, A. Antonini, Disease progression in Parkinson subtypes: The PPMI dataset, Neurol. Sci., 39 (2018), 1971–1976. doi: 10.1007/s10072-018-3522-z
![]() |