Discrete fractional calculus (DFC) use to analyse nonlocal behaviour of models has acquired great importance in recent years. The aim of this paper is to address the discrete fractional operator underlying discrete Atangana-Baleanu (AB)-fractional operator having ℏ-discrete generalized Mittag-Leffler kernels in the sense of Riemann type (ABR). In this strategy, we use the ℏ-discrete AB-fractional sums in order to obtain the Grüss type and certain other related variants having discrete generalized ℏ-Mittag-Leffler function in the kernel. Meanwhile, several other variants found by means of Young, weighted-arithmetic-geometric mean techniques with a discretization are formulated in the time domain ℏZ. At first, the proposed technique is compared to discrete AB-fractional sums that uses classical approach to derive the numerous inequalities, showing how the parameters used in the proposed discrete ℏ-fractional sums can be estimated. Moreover, the numerical meaning of the suggested study is assessed by two examples. The obtained results show that the proposed technique can be used efficiently to estimate the response of the neural networks and dynamic loads.
Citation: Maysaa Al Qurashi, Saima Rashid, Sobia Sultana, Hijaz Ahmad, Khaled A. Gepreel. New formulation for discrete dynamical type inequalities via h-discrete fractional operator pertaining to nonsingular kernel[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1794-1812. doi: 10.3934/mbe.2021093
[1] | Pshtiwan Othman Mohammed, Christopher S. Goodrich, Aram Bahroz Brzo, Dumitru Baleanu, Yasser S. Hamed . New classifications of monotonicity investigation for discrete operators with Mittag-Leffler kernel. Mathematical Biosciences and Engineering, 2022, 19(4): 4062-4074. doi: 10.3934/mbe.2022186 |
[2] | Maysaa Al Qurashi, Saima Rashid, Ahmed M. Alshehri, Fahd Jarad, Farhat Safdar . New numerical dynamics of the fractional monkeypox virus model transmission pertaining to nonsingular kernels. Mathematical Biosciences and Engineering, 2023, 20(1): 402-436. doi: 10.3934/mbe.2023019 |
[3] | Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Sarkhel Akbar Mahmood, Kamsing Nonlaopon, Khadijah M. Abualnaja, Y. S. Hamed . Positivity and monotonicity results for discrete fractional operators involving the exponential kernel. Mathematical Biosciences and Engineering, 2022, 19(5): 5120-5133. doi: 10.3934/mbe.2022239 |
[4] | Pshtiwan Othman Mohammed, Donal O'Regan, Dumitru Baleanu, Y. S. Hamed, Ehab E. Elattar . Analytical results for positivity of discrete fractional operators with approximation of the domain of solutions. Mathematical Biosciences and Engineering, 2022, 19(7): 7272-7283. doi: 10.3934/mbe.2022343 |
[5] | Jian Huang, Zhongdi Cen, Aimin Xu . An efficient numerical method for a time-fractional telegraph equation. Mathematical Biosciences and Engineering, 2022, 19(5): 4672-4689. doi: 10.3934/mbe.2022217 |
[6] | Gayathri Vivekanandhan, Hamid Reza Abdolmohammadi, Hayder Natiq, Karthikeyan Rajagopal, Sajad Jafari, Hamidreza Namazi . Dynamic analysis of the discrete fractional-order Rulkov neuron map. Mathematical Biosciences and Engineering, 2023, 20(3): 4760-4781. doi: 10.3934/mbe.2023220 |
[7] | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Taghreed M. Jawa . Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions. Mathematical Biosciences and Engineering, 2022, 19(1): 812-835. doi: 10.3934/mbe.2022037 |
[8] | Saima Rashid, Rehana Ashraf, Qurat-Ul-Ain Asif, Fahd Jarad . Novel stochastic dynamics of a fractal-fractional immune effector response to viral infection via latently infectious tissues. Mathematical Biosciences and Engineering, 2022, 19(11): 11563-11594. doi: 10.3934/mbe.2022539 |
[9] | Ming Chen, Meng Fan, Congbo Xie, Angela Peace, Hao Wang . Stoichiometric food chain model on discrete time scale. Mathematical Biosciences and Engineering, 2019, 16(1): 101-118. doi: 10.3934/mbe.2019005 |
[10] | Barbara Łupińska, Ewa Schmeidel . Analysis of some Katugampola fractional differential equations with fractional boundary conditions. Mathematical Biosciences and Engineering, 2021, 18(6): 7269-7279. doi: 10.3934/mbe.2021359 |
Discrete fractional calculus (DFC) use to analyse nonlocal behaviour of models has acquired great importance in recent years. The aim of this paper is to address the discrete fractional operator underlying discrete Atangana-Baleanu (AB)-fractional operator having ℏ-discrete generalized Mittag-Leffler kernels in the sense of Riemann type (ABR). In this strategy, we use the ℏ-discrete AB-fractional sums in order to obtain the Grüss type and certain other related variants having discrete generalized ℏ-Mittag-Leffler function in the kernel. Meanwhile, several other variants found by means of Young, weighted-arithmetic-geometric mean techniques with a discretization are formulated in the time domain ℏZ. At first, the proposed technique is compared to discrete AB-fractional sums that uses classical approach to derive the numerous inequalities, showing how the parameters used in the proposed discrete ℏ-fractional sums can be estimated. Moreover, the numerical meaning of the suggested study is assessed by two examples. The obtained results show that the proposed technique can be used efficiently to estimate the response of the neural networks and dynamic loads.
DFC has captivated a lot of consideration across various analysis and engineering disciplines, particularly in modelling [1], neural networks [2] and image encryption [3]. The developing approach portraying real-world problems have been exhibited to be helpful in numerical devices to analyze, comprehend and predict the nature within humankind live [4,5,6,7,8,9,10]. In 1974, Daiz et al. [11] introduced the idea of DFC and composed it with an infinite sum. Later on, in 1988, Gray et al. [12] extended this concept and implemented it on the finite sum. This concept is known as the nabla difference operator in the literature. Atici and Eloe [13] proposed the theory of fractional difference equations, although the practical implementation is presented in [14]. Yilmazer [15] proposed discrete fractional solution of a nonhomogeneous non-Fuchsian differential equations. Yilmazer and Ali [16] derived the discrete fractional solutions of the Hydrogen atom type equations. Many researchers' focus is directed towards modeling and analysis of various problems in bio-mathematical sciences. This field demonstrates several distinguished kernels depending on discrete power law, discrete exponential-law and discrete Mittag-Leffler law kernels which correspond to the Liouville-Caputo, Caputo-Fabrizio and the Atangana-Baleanu nabla(delta) difference operators generalized ℏZ time scale [17,18,19].
Numerous utilities have been developed via DFC such as the solution of fractional difference equations and discrete boundary value problems are proposed in terms of new mathematical techniques [20,21,22,23]. Therefore, the conventional methodology of DFC have some intriguing and less-acknowledged opportunities for modelling. DFC is proposed to depict the customary practice of time scale analysis, with discussing its numerical approximations in ˇℏZ. Furthermore, we observe that ˇℏ-discrete fractional calculus is tremendously momentous in applied sciences and can also address the requirements of synchronous operation of various mechanisms, see [24,25,26].
Among the computational models formulated in fractional calculus, discrete AB-fractional operators, which is a universal operator of fractional calculus that has been traditionally employed to develop modern operators and their characterizations have been proposed in research article [27,28]. Moreover, DFC has been theoretically presented more by introducing and analyzing discrete forms of these fractional operators [13]. Here, we intend to find the discrete fractional inequalities analogous to fractional operators having ℏ-discrete Mittag-Leffler kernels, encompassing and simplifying these operators in such a manner as to recuperate certain appropriate traits such as discrete inequalities for AB-fractional sums.
Mathematical inequalities [29,30,31,32,33,34,35,36,37,38] initially alluded to adjust, harmony, and coordination. Until modern times, refinements of inequalities were characterized as invariance to change [39,40,41,42,43]. Physics comprehends fractional inequalities as predictability, while Psychology accentuates that inequality is the trait of magnificence and art [44].
Numerous investigations have been directed on fractional inequalities in the natural science [45], engineering sciences, see [41,46,47,48] and the references cited therein. Landscapes, structures, and mechanical equipment all demonstrate inequalities attributes. Therefore, we intend to find the discrete version of the Grüss type and some further connected modifications by the ℏ-discrete AB-fractional sums depending on ℏ-discrete generalized Mittag-Leffler kernel. This stands as an inspiration for the current paper. The intensively investigated Grüss inequality can be presented as follows:
Theorem 1.1. (See [49]) Let F,G:[c,d]→R be two positive functions such that α≤F(x)≤A and β≤G(x)≤B for all x∈[c,d] and α,β,A,B∈R. Then
|1d−cd∫cF(x)G(x)dx−1(d−c)2d∫cF(x)dxd∫cG(x)dx| | (1.1) |
≤14(A−α)(B−β), |
where the constant 1/4 can not be improved.
The Grüss inequality Eq (1.1) has been broadly and intensely investigated in engineering and applied analysis, and various developed consequences have been acquired so far. Nevertheless, the prevalent existence of Grüss inequality in scientific fields is not in direct proportion to the consideration it has acknowledged. In application viewpoint, practically all mechanical structures are found to have inequality Eq (1.1), and the vast majority of them have the qualities of discrete and continuous fractional operators [50,51,52,53,54,55,56,57,58,59,60,61,62,63].
Inspired by the excellent dynamical properties of ℏ-discrete AB-fractional sums differences formulation [64], the limitations of fractional calculus can be ameliorated via discrete and continuous state-of-the-art techniques for effective information chaotic map applications, that can be inferred as a generalization of nonlocal/nonsingular type kernels. These investigations promote further sum/difference operators and related inequalities. It is our aim in this investigation to explore the discrete version of the Grüss type and certain other associated variants with some traditional and forthright inequalities in the frame of ℏ-discrete AB-fractional sums. We also would like to mention that besides these variants, several other intriguing generalizations are derived. The comparison of Grüss type with other discrete fractional calculus frameworks is currently under investigation. Finally, two examples are presented that correlate with some well-known inequalities in the relative literature and with the proposed strategy.
In this section, we evoke some basic ideas related to fractional operator, discrete generalized Mittag Leffler functions and the time scale calculus, see the detailed information in [13]. For the sake of simplicity, we use the notation, for c,d∈R and ℏ>0, Nc,ℏ={c,c+ℏ,c+2ℏ,...} and Nd,ℏ={d,d+ℏ,d+2ℏ,...}.
Definition 2.1. ([65])The backward difference operator of a function F on ℏZ is stated as
ˆ∇ℏF(t)=F(t)−F(ρℏ(t))ℏ, | (2.1) |
where ρℏ(t)=t−ℏ denotes the backward jump operator. Also, the forward difference operator of a function F on ℏZ is stated as
ˆΔℏF(t)=F(ρℏ(t))−F(t)ℏ, | (2.2) |
where σℏ(t)=t+ℏ denotes the forward jump operator.
Definition 2.2. ([65]) (ⅰ) For any t,α∈R and ℏ>0, the delta ℏ-factorial function is stated as
t(α)ℏ=ℏαΓ(tℏ+1)Γ(tℏ+1−α), | (2.3) |
where Γ denotes the Euler gamma function. For ℏ=1, then t(α)=Γ(t+1)Γ(t+1−α). Also, the division by a pole leads to zero.
(ⅱ) For any t,α∈R and ℏ>0, the nabla ℏ-factorial function is stated as
t(α)ℏ=ℏαΓ(tℏ+α)Γ(tℏ). | (2.4) |
For ℏ=1, we observe that t(α)=Γ(t+α)Γ(t).
Lemma 2.3. ([64]) Let t∈T=Nc,ℏ, then for all t∈Tι, we obtain
ˆ∇x,ℏ{(x−t)ι+1ℏ(ι+1)!}=(x−t)ιℏι!. | (2.5) |
Lemma 2.4. ([66]) For the time scale T=Nc,ℏ then the nabla Taylor polynomial
ˆBι(x,t)=(x−t)ιℏι!,ι∈N0. | (2.6) |
Now we present the concept of nabla ℏ-discrete Mittag-Leffler function which is introduced by [6].
Definition 2.5. ([6]) Let α,ϱ,Ω∈C having ℜ(α)>0 such that λ∈R with |λℏα|<1, then the nabla discrete Mittag-leffler function is defined
ℏˇEα,ϱ(λ,Ω)=∞∑ι=0λιΩια+ϱ−1ℏΓ(αι+ϱ),|λℏα|<1. | (2.7) |
For ϱ=1, we have
ℏˇEα(λ,y)≜ℏˇEα,1(λ,y)=∞∑ι=0λιyιαℏΓ(αι+1),|λℏα|<1. | (2.8) |
The following remark illustrates the strengthening properties why ℏZ is important.
Remark 1. In view of ℏZ:
Ⅰ. letting ℏ=1, we attain the nabla discrete Mittag-Leffler function stated in [67,68].
Ⅱ. letting 0<ℏ<1, the interval of convergence to which λ lies. Observe that, when ℏ↦0, then α∈(0,1). Moreover, when ℏ↦1 guarantee convergence for λ=−α1−α,α∈(0,12).
For further investigation of the discrete Mittag-Leffler function we refer the reader to [4].
Definition 2.6. ([26]) For some ι∈N,α>0 and let d=c+ιℏ. Assume that a function F be defined on T=Nc,ℏ∩Nd,ℏ. Then the delta ℏ-fractional sums in the left and right case are defined as follows
(cˆΔ−αℏF)(t)=1Γ(α)x/ℏ−α∑ι=c/ℏ(x−σ(ιℏ))(α−1)ℏF(ιℏ)ℏ,x∈{x+αℏ:x∈T} |
and
(ℏˆΔ−αdF)(t)=1Γ(α)d/ℏ−α∑ι=x/ℏ+α(ιℏ−σ(x))(α−1)ℏF(ιℏ)ℏ,x∈{x−αℏ:x∈T}, |
respectively.
Definition 2.7. ([6,66]) Assume that ℏ>0 and the backward jump operator is ρ(x)=x−ℏ. A function F:Nc,ℏ↦R is said to be nabla ℏ-fractional sum of order α, if
(cˆ∇−αℏF)(t)=1Γ(α)x/ℏ−α∑ι=c/ℏ+1(x−ρ(ιℏ))(α−1)ℏF(ιℏ)ℏ,x∈Nc+ℏ,ℏ. |
Also, the nabla right ℏ-fractional sum of order α>0(ending at d) for F:Nd,ℏ↦R is described as follows
(ℏˆ∇−αdF)(t)=1Γ(α)d/ℏ−1∑ι=x/ℏ(ιℏ−ρ(x))(α−1)ℏF(ιℏ)ℏ. |
Now, we demonstrate the some new concepts which we will be utilized for proving coming results of this paper, see [4]. Also, we use the notation, λ=−α1−α and ρ(x)=x−ℏ.
Definition 2.8. ([64]) For α∈[0,1],ℏ>0 with |λℏα|<1 and let F be a function defined on Nc,ℏ∩d,ℏN with c<d such that c≡d(modℏ), then the left nabla ABC-fractional difference (in the sense of Atangana and Baleanu) is described as
(ABCcˆ∇αℏF)(x)=B(α,ℏ)1−α+αℏ1−αx/ℏ∑ι=c/ℏ+1ℏˆ∇ℏF(ιℏ)ℏˇEα(λ,x−ρ(ιℏ)) | (2.9) |
and in the left Riemann sense by
(ABRcˆ∇αℏF)(x)=B(α,ℏ)1−α+αℏ1−αˆ∇ℏx/ℏ∑ι=c/ℏ+1ℏF(ιℏ)ℏˇEα(λ,x−ρ(ιℏ)). | (2.10) |
Definition 2.9. ([64]) For 0<α<1 and let the left ℏ-fractional sum concern to (ABRcˆ∇αℏF)(x) defined on Nc,ℏ is stated as follows
(ABcˆ∇−αℏF)(x)=1−αB(α,ℏ)(1−α+αℏ)F(x)+αB(α,ℏ)(1−α+αℏ)Γ(α)x/ℏ∑ι=c/ℏ+1(x−ρ(ιℏ))α−1ℏF(ιℏ)ℏ. | (2.11) |
The right ℏ-fractional sum is defined on d,ℏN by
(ABℏˆ∇−αdF)(x)=1−αB(α,ℏ)(1−α+αℏ)F(x)+αB(α,ℏ)(1−α+αℏ)Γ(α)d/ℏ−1∑ι=x/ℏ(ιℏ−ρ(x))α−1ℏF(ιℏ)ℏ. | (2.12) |
In this section, we present a different concept of Grüss type inequalities, which consolidates the ideas of ℏ-discrete AB-fractional sums.
Theorem 3.1. Let α∈(0,1) and let F be a positive function on Nc,ℏ. Suppose that there exist two positive functions ϕ1,ϕ2 on Nc,ℏ such that
ϕ1(x)≤F(x)≤ϕ2(x),∀x∈Nc,ℏ. | (3.1) |
Then, for x∈{c,c+ℏ,c+2ℏ,...}, one has
ABcˆ∇−βℏ[ϕ2(x)]ABcˆ∇−αℏ[F(x)]+ABcˆ∇−βℏ[F(x)]ABcˆ∇−αℏ[ϕ1(x)]≥ABcˆ∇−βℏ[ϕ2(x)]ABcˆ∇−αℏ[ϕ1(x)]+ABcˆ∇−αℏ[F(x)]ABcˆ∇−βℏ[F(x)]. | (3.2) |
Proof. From Eq (3.1), for θ,λ∈Nc,ℏ, we have
(ϕ2(θ)−F(θ))(F(λ)−ϕ1(λ))≥0. | (3.3) |
Therefore,
ϕ2(θ)F(λ)+ϕ1(λ)F(θ)≥ϕ1(λ)ϕ2(θ)+F(θ)F(λ). | (3.4) |
Taking product both sides of Eq (3.4) by 1−αB(α,ℏ)(1−α+αℏ), we get
(1−α)ϕ2(θ)F(λ)B(α,ℏ)(1−α+αℏ)+(1−α)ϕ1(λ)F(θ)B(α,ℏ)(1−α+αℏ)≥(1−α)ϕ1(λ)ϕ2(θ)B(α,ℏ)(1−α+αℏ)+(1−α)F(θ)F(λ)B(α,ℏ)(1−α+αℏ). | (3.5) |
Replacing λ by t in Eq (3.5) and conducting product both sides by α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α), we have
α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)ϕ2(θ)F(t)+α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)ϕ1(t)F(θ)≥α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)ϕ1(t)ϕ2(θ)+α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)F(θ)F(t). |
Summing both sides for t∈{c,c+ℏ,c+2ℏ,...}, we get
x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)ϕ2(θ)F(ιℏ)ℏ+x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)ϕ1(ιℏ)ℏF(θ)≥α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)ϕ1(ιℏ)ℏϕ2(θ)+x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)F(θ)F(ιℏ)ℏ. | (3.6) |
Adding Eqs (3.5) and (3.6), we have
(1−α)ϕ2(θ)F(λ)B(α,ℏ)(1−α+αℏ)+x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)ϕ2(θ)F(ιℏ)ℏ+(1−α)ϕ1(λ)F(θ)B(α,ℏ)(1−α+αℏ)+x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)ϕ1(ιℏ)ℏF(θ)≥(1−α)ϕ1(λ)ϕ2(θ)B(α,ℏ)(1−α+αℏ)+x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)ϕ1(ιℏ)ℏϕ2(θ)+(1−α)F(θ)F(λ)B(α,ℏ)(1−α+αℏ)+x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)F(θ)F(ιℏ)ℏ, |
arrives at
ϕ2(θ)ABcˆ∇−αℏ[F(x)]+F(θ)ABcˆ∇−αℏ[ϕ1(x)]≥ϕ2(θ)ABcˆ∇−αℏ[ϕ1(x)]+F(θ)ABcˆ∇−αℏ[F(x)]. | (3.7) |
Taking product both sides of Eq (3.7) by 1−βB(β,ℏ)(1−β+βℏ), we have
(1−β)ϕ2(θ)B(β,ℏ)(1−β+βℏ)ABcˆ∇−αℏ[F(x)]+(1−β)F(θ)B(β,ℏ)(1−β+βℏ)ABcˆ∇−αℏ[ϕ1(x)]≥(1−β)ϕ2(θ)B(β,ℏ)(1−β+βℏ)ABcˆ∇−αℏ[ϕ1(x)]+(1−β)F(θ)B(β,ℏ)(1−β+βℏ)ABcˆ∇−αℏ[F(x)]. | (3.8) |
Also, replacing θ by ˉt in Eq (3.8) and conducting product both sides by β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β), we have
β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β)ϕ2(θ)ABcˆ∇−αℏ[F(x)]+β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β)F(θ)ABcˆ∇−αℏ[ϕ1(x)]≥β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β)ϕ2(θ)ABcˆ∇−αℏ[ϕ1(x)]+β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β)F(θ)ABcˆ∇−αℏ[F(x)]. |
Summing both sides for ˉt∈{c,c+ℏ,c+2ℏ,...}, we get
x/ℏ∑j=c/ℏ+1β(x−ρ(jℏ))β−1ℏB(β,ℏ)Γ(β)ϕ2(jℏ)ABcˆ∇−αℏ[F(x)]+x/ℏ∑j=c/ℏ+1β(x−ρ(jℏ))β−1ℏB(β,ℏ)Γ(β)F(jℏ)ℏABcˆ∇−αℏ[ϕ1(x)]≥x/ℏ∑j=c/ℏ+1β(x−ρ(jℏ))β−1ℏB(β,ℏ)Γ(β)ϕ2(jℏ)ℏABcˆ∇−αℏ[ϕ1(x)]+x/ℏ∑j=c/ℏ+1β(x−ρ(jℏ))β−1ℏB(β,ℏ)Γ(β)F(jℏ)ℏABcˆ∇−αℏ[F(x)]. | (3.9) |
Adding Eqs (3.8) and (3.9), then in view of Definition 2.9, yields the inequality Eq (3.2). This completes the proof.
Some special cases which can be derived immediately from Theorem 3.1.
Choosing ℏ=1, then we attain a new result for discrete AB-fractional sum.
Corollary 1. Let α∈(0,1) and let F be a positive function on Nc. Suppose that there exist two positive functions ϕ1,ϕ2 on Nc such that
ϕ1(x)≤F(x)≤ϕ2(x),∀x∈Nc. | (3.10) |
Then, for x∈{c,c+1,c+2,...}, one has
ABcˆ∇−β[ϕ2(x)]ABcˆ∇−α[F(x)]+ABcˆ∇−β[F(x)]ABcˆ∇−α[ϕ1(x)]≥ABcˆ∇−β[ϕ2(x)]ABcˆ∇−α[ϕ1(x)]+ABcˆ∇−α[F(x)]ABcˆ∇−β[F(x)]. | (3.11) |
Theorem 3.2. Let α,β∈(0,1) and let F and G be two positive functions on Nc,ℏ. Suppose that Eq (3.1) satisfies and also one assumes that there exist two positive functions Ω1,Ω2 on Nc,ℏ such that
Ω1(x)≤G(x)≤Ω2(x),∀x∈Nc,ℏ. | (3.12) |
Then, for x∈{c,c+ℏ,c+2ℏ,...}, one has
(M1)ABcˆ∇−βℏ[ϕ2(x)]ABcˆ∇−αℏ[G(x)]+ABcˆ∇−βℏ[F(x)]ABcˆ∇−αℏ[Ω1(x)]≥ABcˆ∇−βℏ[ϕ2(x)]ABcˆ∇−αℏ[Ω1(x)]+ABcˆ∇−βℏ[F(x)]ABcˆ∇−αℏ[G(x)],(M2)ABcˆ∇−αℏ[ϕ1(x)]ABcˆ∇−βℏ[G(x)]+ABcˆ∇−αℏ[Ω2(x)]ABcˆ∇−αℏ[F(x)]≥ABcˆ∇−αℏ[ϕ1(x)]ABcˆ∇−βℏ[Ω2(x)]+ABcˆ∇−αℏ[F(x)]ABcˆ∇−βℏ[G(x)],(M3)ABcˆ∇−αℏ[Ω2(x)]ABcˆ∇−βℏ[ϕ2(x)]+ABcˆ∇−βℏ[F(x)]ABcˆ∇−αℏ[G(x)]≥ABcˆ∇−βℏ[ϕ2(x)]ABcˆ∇−αℏ[G(x)]+ABcˆ∇−βℏ[F(x)]ABcˆ∇−αℏ[Ω2(x)],(M4)ABcˆ∇−βℏ[ϕ1(x)]ABcˆ∇−αℏ[Ω1(x)]+ABcˆ∇−βℏ[F(x)]ABcˆ∇−αℏ[G(x)]≥ABcˆ∇−βℏ[ϕ1(x)]ABcˆ∇−αℏ[G(x)]+ABcˆ∇−αℏ[Ω1(x)]ABcˆ∇−βℏ[F(x)]. | (3.13) |
Proof. To prove Eq (M1), from Eqs (3.1) and (3.12), we have for λ,θ∈Nc,ℏ that
(ϕ2(θ)−F(θ))(G(λ)−Ω1(λ))≥0. | (3.14) |
Therefore,
ϕ2(θ)G(λ)+Ω1(λ)F(θ)≥Ω1(λ)ϕ2(θ)+G(λ)F(θ). | (3.15) |
Taking product both sides of Eq (3.17) by 1−αB(α,ℏ)(1−α+αℏ), we get
(1−α)ϕ2(θ)G(λ)B(α,ℏ)(1−α+αℏ)+(1−α)Ω1(λ)F(θ)B(α,ℏ)(1−α+αℏ)≥(1−α)Ω1(λ)ϕ2(θ)B(α,ℏ)(1−α+αℏ)+(1−α)G(λ)F(θ)B(α,ℏ)(1−α+αℏ). | (3.16) |
Moreover, replacing λ by t in Eq (3.17) and conducting product both sides by α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α), we have
α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)ϕ2(θ)G(λ)+α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)Ω1(λ)F(θ)≥α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)Ω1(λ)ϕ2(θ)+α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)G(λ)F(θ). | (3.17) |
Summing both sides for t∈{c,c+ℏ,c+2ℏ,...}, we get
x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)ϕ2(θ)G(ιℏ)ℏ+x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)Ω1(ιℏ)ℏF(θ)≥x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)Ω1(ιℏ)ℏϕ2(θ)+x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)G(ιℏ)ℏF(θ). |
Then, we have
ABcˆ∇−αℏ[G(x)]ϕ2(θ)+ABcˆ∇−αℏ[Ω1(x)]F(θ)≥ABcˆ∇−αℏ[Ω1(x)]ϕ2(θ)+ABcˆ∇−αℏ[G(x)]F(θ). | (3.18) |
Taking product both sides of Eq (3.16) by 1−βB(β,ℏ)(1−β+βℏ), we have
1−βB(β,ℏ)(1−β+βℏ)ABcˆ∇−βℏ[G(x)]ϕ2(θ)+1−βB(β,ℏ)(1−β+βℏ)ABcˆ∇−βℏ[Ω1(x)]F(θ)≥1−βB(β,ℏ)(1−β+βℏ)ABcˆ∇−βℏ[Ω1(x)]ϕ2(θ)+1−βB(β,ℏ)(1−β+βℏ)ABcˆ∇−βℏ[G(x)]F(θ). | (3.19) |
Further, replacing θ by ˉt in Eq (3.19) and conducting product both sides by β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β), we have
ABcˆ∇−αℏ[G(x)]β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β)ϕ2(θ)+ABcˆ∇−αℏ[Ω1(x)]β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β)F(θ)≥ABcˆ∇−αℏ[Ω1(x)]β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β)ϕ2(θ)+ABcˆ∇−αℏ[G(x)]β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β)F(θ). | (3.20) |
Summing both sides for ˉt∈{c,c+ℏ,c+2ℏ,...}, we get
ABcˆ∇−αℏ[G(x)]x/ℏ∑j=c/ℏ+1β(x−ρ(jℏ))β−1ℏB(β,ℏ)Γ(β)ϕ2(jℏ)ℏ+ABcˆ∇−αℏ[Ω1(x)]x/ℏ∑j=c/ℏ+1β(x−ρ(jℏ))β−1ℏB(β,ℏ)Γ(β)F(jℏ)ℏ≥ABcˆ∇−αℏ[Ω1(x)]x/ℏ∑j=c/ℏ+1β(x−ρ(jℏ))β−1ℏB(β,ℏ)Γ(β)ϕ2(jℏ)ℏ+ABcˆ∇−αℏ[G(x)]x/ℏ∑j=c/ℏ+1β(x−ρ(jℏ))β−1ℏB(β,ℏ)Γ(β)F(jℏ)ℏ. | (3.21) |
Adding Eqs (3.19) and (3.21), we conclude the desired inequality Eq (M1).
To prove Eqs (M2)–(M4), we utilize the following inequalities:
(M2)(Ω2(θ)−G(θ))(F(λ)−ϕ1(λ))≥0, |
(M3)(ϕ2(θ)−F(θ))(G(λ)−Ω2(λ))≤0, |
(M4)(ϕ1(θ)−F(θ))(G(λ)−Ω1(λ))≤0. |
Some special cases which can be derived immediately from Theorem 3.2.
Choosing ℏ=1, then we attain a new result for discrete AB-fractional sums.
Corollary 2. Let α,β∈(0,1) and let F and G be two positive functions on Nc. Suppose that Eq (3.1) satisfies and also one assumes that there exist two positive functions Ω1,Ω2 on Nc such that
Ω1(x)≤G(x)≤Ω2(x),∀x∈Nc. |
Then, for x∈{c,c+1,c+2,...}, one has
(M5)ABcˆ∇−β[ϕ2(x)]ABcˆ∇−α[G(x)]+ABcˆ∇−β[F(x)]ABcˆ∇−α[Ω1(x)]≥ABcˆ∇−β[ϕ2(x)]ABcˆ∇−α[Ω1(x)]+ABcˆ∇−β[F(x)]ABcˆ∇−α[G(x)],(M6)ABcˆ∇−α[ϕ1(x)]ABcˆ∇−β[G(x)]+ABcˆ∇−α[Ω2(x)]ABcˆ∇−α[F(x)]≥ABcˆ∇−α[ϕ1(x)]ABcˆ∇−β[Ω2(x)]+ABcˆ∇−α[F(x)]ABcˆ∇−β[G(x)],(M7)ABcˆ∇−α[Ω2(x)]ABcˆ∇−β[ϕ2(x)]+ABcˆ∇−β[F(x)]ABcˆ∇−α[G(x)]≥ABcˆ∇−β[ϕ2(x)]ABcˆ∇−α[G(x)]+ABcˆ∇−β[F(x)]ABcˆ∇−α[Ω2(x)],(M8)ABcˆ∇−β[ϕ1(x)]ABcˆ∇−α[Ω1(x)]+ABcˆ∇−β[F(x)]ABcˆ∇−α[G(x)]≥ABcˆ∇−β[ϕ1(x)]ABcˆ∇−α[G(x)]+ABcˆ∇−α[Ω1(x)]ABcˆ∇−β[F(x)]. |
Theorem 3.3. Let α,β∈(0,1) and let F and G be two positive functions on Nc,ℏ with p,q>0 satisfying 1p+1q=1. Then, for x∈{c,c+ℏ,c+2ℏ,...}, one has
(M9)1pABcˆ∇−βℏ[Fp(x)]ABcˆ∇−αℏ[Gp(x)]+1qABcˆ∇−βℏ[Gq(x)]ABcˆ∇−αℏ[Fq(x)]≥ABcˆ∇−βℏ[FG(x)]ABcˆ∇−αℏ[GF(x)],(M10)1pABcˆ∇−αℏ[Gq(x)]ABcˆ∇−βℏ[Fp(x)]+1qABcˆ∇−αℏ[Fp(x)]ABcˆ∇−βℏ[Gq(x)]≥ABcˆ∇−αℏ[Gq−1Fp−1(x)]ABcˆ∇−βℏ[FG(x)],(M11)1pABcˆ∇−αℏ[G2(x)]ABcˆ∇−βℏ[Fp(x)]+1qABcˆ∇−αℏ[F2(x)]ABcˆ∇−βℏ[Gq(x)]≥ABcˆ∇−αℏ[F2qG2p(x)]ABcˆ∇−βℏ[FG(x)],(M12)1pABcˆ∇−αℏ[Gq(x)]ABcˆ∇−βℏ[F2(x)]+1qABcˆ∇−αℏ[Fp(x)]ABcˆ∇−βℏ[G2(x)]≥ABcˆ∇−αℏ[Fp−1Gq−1(x)]ABcˆ∇−βℏ[F2pG2q(x)]. | (3.22) |
Proof. According to the well-known Young's inequality:
1pap+1qbq≥ab,∀a,b≥0,p,q>0,1p+1q=1, | (3.23) |
setting a=F(θ)G(λ) and b=F(λ)G(θ),θ,λ>0, we have
1p(F(θ)G(λ))p+1q(F(λ)G(θ))q≥(F(θ)G(λ))(F(λ)G(θ)). | (3.24) |
Taking product both sides of Eq (3.24) by 1−αB(α,ℏ)(1−α+αℏ), we have
1p(1−α)Fp(θ)Gp(λ)B(α,ℏ)(1−α+αℏ)+1q(1−α)Fq(λ)Gq(θ)B(α,ℏ)(1−α+αℏ)≥(1−α)F(θ)G(λ))(F(λ)G(θ)B(α,ℏ)(1−α+αℏ). | (3.25) |
Moreover, replacing λ by t in Eq (3.25) and conducting product both sides by α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α), we have
Fp(θ)pα(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)Gp(t)+Gq(θ)qα(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)vq(t)≥F(θ)G(θ)α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)F(t)G(t). | (3.26) |
Summing both sides for t∈{c,c+ℏ,c+2ℏ,...}, we get
Fp(θ)px/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)Gp(ιℏ)ℏ+Gq(θ)qx/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)Fq(ιℏ)ℏ≥F(θ)G(θ)x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)F(ιℏ)ℏG(ιℏ)ℏ. | (3.27) |
Adding Eqs (3.24) and (3.27), we get
1p(1−α)Fp(θ)Gp(λ)B(α,ℏ)(1−α+αℏ)+Fp(θ)px/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)Gp(ιℏ)ℏ+1q(1−α)Fq(λ)Gq(θ)B(α,ℏ)(1−α+αℏ)+Gq(θ)qx/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)Fq(ιℏ)ℏ≥(1−α)F(θ)G(λ)F(λ)G(θ)B(α,ℏ)(1−α+αℏ)+F(θ)G(θ)x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)F(ιℏ)ℏG(ιℏ)ℏ. | (3.28) |
In view of Definition 2.9, yields
Fp(θ)pABcˆ∇−αℏ[Gp(x)]+Gq(θ)qABcˆ∇−αℏ[Fp(x)]≥F(θ)G(θ)ABcˆ∇−αℏ[F(x)G(x)]. | (3.29) |
Again, taking product both sides of Eq (3.29) by 1−βB(β,ℏ)(1−β+βℏ), we have
Fp(θ)p(1−β)ABcˆ∇−αℏ[Gp(x)]B(β,ℏ)(1−β+βℏ)+Gq(θ)q(1−β)ABcˆ∇−αℏ[Fp(x)]B(β,ℏ)(1−β+βℏ)≥(1−β)ABcˆ∇−αℏ[F(x)G(x)]B(β,ℏ)(1−β+βℏ)F(θ)G(θ). | (3.30) |
Further, replacing θ by ˉt in Eq (3.29) and conducting product both sides by β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β), we have
1pABcˆ∇−αℏ[Gp(x)]β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β)Fp(ˉt)+1qABcˆ∇−αℏ[Fp(x)]β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β)Gq(ˉt)≥ABcˆ∇−αℏ[F(x)G(x)]β(x−ρ(ˉt))β−1ℏB(β,ℏ)Γ(β)F(ˉt)G(ˉt). | (3.31) |
After summing the above inequality Eq (3.31) both sides for ˉt∈{c,c+ℏ,c+2ℏ,...}, yields the desired assertion Eq (M9).
The remaining variants can be derived by adopting the same technique and accompanying the selection of parameters in Young inequality.
(M10)a=F(θ)F(λ),b=G(θ)G(λ),F(λ),G(λ)≠0,(M11)a=F(θ)G2p(λ),b=F2q(λ)G(θ),(M12)a=F2p(θ)F(λ),b=G2q(θ)G(λ),F(λ),G(λ)≠0. |
Repeating the foregoing argument, we obtain Eqs (M10)–(M12).
(I) Letting ℏ=1, then we attain a result for discrete AB-fractional sums.
Corollary 3. Let α,β∈(0,1) and let F and G be two positive functions on Nc with p,q>0 satisfying 1p+1q=1. Then, for x∈{c,c+1,c+2,...}, one has
(M13)1pABcˆ∇−β[Fp(x)]ABcˆ∇−α[Gp(x)]+1qABcˆ∇−β[Gq(x)]ABcˆ∇−α[Fq(x)]≥ABcˆ∇−β[FG(x)]ABcˆ∇−α[GF(x)],(M14)1pABcˆ∇−α[Gq(x)]ABcˆ∇−β[Fp(x)]+1qABcˆ∇−α[Fp(x)]ABcˆ∇−β[Gq(x)]≥ABcˆ∇−α[Gq−1Fp−1(x)]ABcˆ∇−β[FG(x)],(M15)1pABcˆ∇−α[G2(x)]ABcˆ∇−β[Fp(x)]+1qABcˆ∇−α[F2(x)]ABcˆ∇−β[Gq(x)]≥ABcˆ∇−α[F2qG2p(x)]ABcˆ∇−βℏ[FG(x)],(M16)1pABcˆ∇−α[Gq(x)]ABcˆ∇−β[F2(x)]+1qABcˆ∇−α[Fp(x)]ABcˆ∇−β[G2(x)]≥ABcˆ∇−α[Fp−1Gq−1(x)]ABcˆ∇−β[F2pG2q(x)]. | (3.32) |
Example 3.4. Let α,β∈(0,1) and let F and G be two positive functions on Nc,ℏ with p,q>0 satisfying p+q=1. Then, for x∈{c,c+ℏ,c+2ℏ,...}, one has
(M17)pABcˆ∇−βℏ[F(x)]ABcˆ∇−αℏ[G(x)]+qABcˆ∇−αℏ[F(x)]ABcˆ∇−βℏ[G(η)≥ABcˆ∇−βℏ[FpGq(x)]ABcˆ∇−αℏ[FqGp(x)],(M18)pABcˆ∇−βℏ[Fp−1(x)]ABcˆ∇−αℏ[(F(x)]Gq(x)])+qABcˆ∇−αℏ[Gq−1(x)]ABcˆ∇−βℏ[FqG(x)]≥ABcˆ∇−βℏ[Gq(x)]ABcˆ∇−αℏ[Fp(x)],(M19)pABcˆ∇−βℏ[F(x)]ABcˆ∇−αℏ[G2p(x)]+qABcˆ∇−βℏ[G(x)]ABcˆ∇−αℏ[F2q(x)]≥ABcˆ∇−βℏ[FpG(x)]ABcˆ∇−αℏ[GqF2(x)],(M20)pABcˆ∇−βℏ[F2pGq(x)]ABcˆ∇−αℏ[Gp−1(x)]+qABcˆ∇−βℏ[Gq−1(x)]ABcˆ∇−αℏ[F2qGp(x)]≥ABcˆ∇−βℏ[F2(x)]ABcˆ∇−αℏ[G2(x)]. | (3.33) |
Proof. The example can be proved with the aid of the weighted AM–GM inequality with the same technique as we did in Theorem 3.3 and utilizing the following assumptions:
(M17)a=F(θ)G(λ),b=F(λ)G(θ).(M18)a=F(λ)F(θ),b=G(θ)G(λ),F(θ),G(λ)≠0.(M19)a=F(θ)G2p(λ),b=F2q(λ)G(θ).(M20)a=F2p(θ)G(λ),b=F2q(λ)G(θ),G(θ),G(θ)≠0. |
Example 3.5. Let α∈(0,1) and let F and G be two positive functions on Nc,ℏ with p,q>1 satisfying 1p+1q=1. Let
γ=minθ∈Nc,ℏF(θ)G(θ)andΥ=maxθ∈Nc,ℏF(θ)G(θ). | (3.34) |
Then, for x∈{c,c+ℏ,c+2ℏ,...}, one has
(i)0≤ABcˆ∇−αℏ[F2(x)]ABcˆ∇−αℏ[G2(x)]≤γ+Υ4γΥ(ABcˆ∇−αℏ[FG(x)])2,(ii)0≤√ABcˆ∇−αℏ[F2(x)]ABcˆ∇−αℏ[G2(x)]−(ABcˆ∇−αℏ[FG(x)])≤√Υ−√γ2√Υγ(ABcˆ∇−αℏ[FG(x)]),(iii)0≤ABcˆ∇−αℏ[F2(x)]ABcˆ∇−αℏ[G2(x)]−(ABcˆ∇−αℏ[FG(x)])2≤Υ−γ4γΥ(ABcˆ∇−αℏ[FG(x)])2. |
Proof. From Eq (3.34) and the inequality
(F(θ)G(θ)−γ)(Υ−F(θ)G(θ))G2(θ)≥0,θ∈Nc,ℏ | (3.35) |
then we can write as,
F2(θ)+γΥG2(θ)≤(γ+Υ)F(θ)G(θ). | (3.36) |
Taking product both sides of Eq (3.36) by 1−αB(α,ℏ)(1−α+αℏ), we have
(1−α)F2(θ)B(α,ℏ)(1−α+αℏ)+(1−α)G2(θ)B(α,ℏ)(1−α+αℏ)γx≤1−αB(α,ℏ)(1−α+αℏ)(γ+x)F(θ)G(θ). | (3.37) |
Replacing θ by t in Eq (3.36) and conducting product both sides by α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α), we have
α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)F2(t)+γΥα(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)G2(θ)≤(γ+Υ)α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)F(t)G(t). | (3.38) |
Summing both sides for t∈{c,c+ℏ,c+2ℏ,...}, we get
x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)F2(ιℏ)ℏ+γΥx/ℏ∑ι=c/ℏ+1α(x−ρ(t))α−1ℏB(α,ℏ)Γ(α)G2(ιℏ)ℏ≤(γ+Υ)x/ℏ∑ι=c/ℏ+1α(x−ρ(ιℏ))α−1ℏB(α,ℏ)Γ(α)F(ιℏ)ℏG(ιℏ)ℏ. | (3.39) |
Adding Eqs (3.37) and (3.39), yields
ABcˆ∇−αℏ[F2(x)]+γΥABcˆ∇−αℏ[G2(x)]≤(γ+Υ)ABcˆ∇−αℏ[FG(x)], | (3.40) |
on the other hand, it follows from γΥ>0 and
(√ABcˆ∇−αℏ[F2(x)]−√γΥABcˆ∇−αℏ[G2(x)])2≥0, | (3.41) |
that
2√ABcˆ∇−αℏ[F2(x)]√γΥABcˆ∇−αℏ[G2(x)]≤√ABcˆ∇−αℏ[F2(x)]+√γΥABcˆ∇−αℏ[G2(x)] | (3.42) |
then from Eqs (3.40) and (3.42), we obtain,
4γΥABcˆ∇−αℏ[F2(x)]ABcˆ∇−αℏ[G2(x)]≤(γ+Υ)2(ABcˆ∇−αℏ[FG(x)]). | (3.43) |
Which implies (i). By some change of (i), analogously, we get (ii) and (iii).
Unlike some known and established inequalities in the literature, the Grüss type inequalities have been presented via the ℏ-discrete AB-fractional sums with different values of parameters on the domain ℏZ that can be implemented to solve the qualitative properties of difference equations. Our consequences can be applied to overcome the obstacle of obtaining estimation on the explicit bounds of unknown functions and also to extend and unify continuous inequalities by using the simple technique. Several novel consequences have been derived by the use of discrete ℏ-fractional sums. The noted consequences can also be extended to the weighted function case. Certainly, the case ℏ↦1 recaptures the outcomes of the discrete AB-fractional sums. For indicating the strength of the offered fallouts, we employ them to investigate numerous initial value problems of fractional difference equations.
Authors are grateful to the referees for their valuable suggestions and comments.
The authors declare no conflict of interest.
[1] |
F. M. Atici, S. Sengul, Modeling with fractional difference equations, J. Math. Analy. Appl., 369 (2010), 1–9. doi: 10.1016/j.jmaa.2010.02.009
![]() |
[2] |
G. C. Wu, D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dyn., 75 (2014), 283–287. doi: 10.1007/s11071-013-1065-7
![]() |
[3] |
G. C. Wu, Z. G. Deng, D. Baleanu, D. Q. Zeng, New variable-order fractional chaotic systems for fast image encryption, Chaos, 29 (2019), 083103. doi: 10.1063/1.5096645
![]() |
[4] |
T. Abdeljawad, D. Baleanu, On fractional derivatives with generalized Mittag-Leffler kernels, Adv. Differ. Equations, 2018 (2018), 1–15. doi: 10.1186/s13662-017-1452-3
![]() |
[5] |
T. Abdeljawad, S. Banerjee, G. C. Wu, Discrete tempered fractional calculus for new chaotic systems with short memory and image encryption, Optik, 218 (2020), 163698. doi: 10.1016/j.ijleo.2019.163698
![]() |
[6] |
T. Abdeljawad, F. Jarad, J. Alzabut, Fractional proportional differences with memory, Eur. Phys. J. Spec. Top., 226 (2017), 3333–3354. doi: 10.1140/epjst/e2018-00053-5
![]() |
[7] |
A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, Therm. Sci., 20 (2016), 757–763. doi: 10.2298/TSCI160112019H
![]() |
[8] | D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional Dynamics and Control, Springer Science and Business Media, London, UK, 2012. |
[9] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. |
[10] |
J. Danane, K. Allali, Z. Hammouch, Mathematical analysis of a fractional differential model of HBV infection with antibody immune response, Chaos, Solitons Fractals, 136 (2020), 109787. doi: 10.1016/j.chaos.2020.109787
![]() |
[11] |
J. B.ˊDaiz, T. J. Osler, Differences of fractional order, Math. Comput., 28 (1974), 185–202. doi: 10.1090/S0025-5718-1974-0346352-5
![]() |
[12] |
H. L. Gray, N. F. Zhang, On a new definition of the fractional difference, Math. Compt., 50 (1988), 513–529. doi: 10.1090/S0025-5718-1988-0929549-2
![]() |
[13] | F. M. Atici, P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equations, 3 (2009), 1–12. |
[14] | S. Sengul, Discrete fractional calculus and its applications to tumor growth, Master Thesis, Western Kentucky University, 2010. |
[15] |
R. Yilmazer, Discrete fractional solutions of a non-homogeneous non-Fuchsian differential equations, Thermal Sci., 23 (2019), S121–S127. doi: 10.2298/TSCI180917336Y
![]() |
[16] | R. Yilmazer, K. K. Ali, On discrete fractional solutions of the Hydrogen atom type equations, Thermal Sci., 23 (2019), S1935–S1941. |
[17] | T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013), 1–12. |
[18] | T. Abdeljawad, F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012), 1–13. |
[19] |
T. Abdeljawad, Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos Solitons Fractals, 126 (2019), 315–324. doi: 10.1016/j.chaos.2019.06.012
![]() |
[20] |
A. Fernandez, T. Abdeljawad, D. Baleanu, Relations between fractional models with three-parameter Mittag-Leffler kernels, Adv. Differ. Equations, 2020 (2020), 1–13. doi: 10.1186/s13662-019-2438-0
![]() |
[21] | G. C. Wu, T. Abdeljawad, J. Liu, D. Baleanu, K. T. Wu, Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique, Nonlinear Anal. Modell. Control, 24 (2019), 919–936. |
[22] | L. L. Huang, J. H. Park, G. C. Wu, Variable-order fractional discrete-time recurrent neural networks, J. Comput. Appl. Math., 370 (2019), 112633. |
[23] |
X. F. Wang, G. Chen, Synchronization in small-world dynamical networks, Int. J. Bifurc. Chaos, 12 (2002), 187–192. doi: 10.1142/S0218127402004292
![]() |
[24] |
T. Abdeljawad, Different type kernel h-fractional differences and their fractional ˇℏ-sums, Chaos Solitons Fractals, 116 (2018), 146–156. doi: 10.1016/j.chaos.2018.09.022
![]() |
[25] |
C. S. Goodrich, Continuity of solutions to discrete fractional initial value problems, Comput. Math. Appl., 59 (2010), 3489–3499. doi: 10.1016/j.camwa.2010.03.040
![]() |
[26] |
N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete Contin. Dyn. Syst., 29 (2011), 417–437. doi: 10.3934/dcds.2011.29.417
![]() |
[27] |
M. T. Holm, The Laplace transform in discrete fractional calculus, Comput. Math. Appl., 62 (2011), 1591–1601. doi: 10.1016/j.camwa.2011.04.019
![]() |
[28] |
A. G. M. Selvam, J. Alzabut, R. Dhineshbabu, S. Rashid, M. Rehman, Discrete fractional order two-point boundary value problem with some relevant physical applications, J. Inequal. Appl., 2020 (2020), 1–19. doi: 10.1186/s13660-019-2265-6
![]() |
[29] | S. Rashid, Z. Hammouch, R. Ashraf, Y. M. Chu, New computation of unified bounds via a more general fractional operator using generalized Mittag-Leffler function in the kernel, CMES-Comput. Modell. Eng. Sci., 126 (2021), 359–378. |
[30] |
Z. Khan, S. Rashid, R. Ashraf, D. Baleanu, Y. M. Chu, Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property, Adv. Differ. Equations, 2020 (2020), 1–24. doi: 10.1186/s13662-019-2438-0
![]() |
[31] |
S. B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y. M. Chu, Integral inequalities via Raina's fractional integrals operator with respect to a monotone function, Adv. Differ. Equations, 2020 (2020), 1–20. doi: 10.1186/s13662-019-2438-0
![]() |
[32] | S. Rashid, R. Ashraf, K. S. Nisar, T. Abdeljawad, Estimation of integral inequalities using the generalized fractional derivative operator in the Hilfer sense, J. Math., 2020 (2020), 1626091. |
[33] | S. Rashid, H. Ahmad, A. Khalid, Y. M. Chu, On discrete fractional integral inequalities for a class of functions, Complexity, 2020 (2020), 8845867. |
[34] |
T. Abdeljawad, S. Rashid, Z. Hammouch, Y. M. Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, Adv. Differ. Equations, 2020 (2020), 1–26. doi: 10.1186/s13662-019-2438-0
![]() |
[35] |
T. Abdeljawad, S. Rashid, A. A. AL.Deeb, Z. hammouch, Y. M. Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, Adv. Differ. Equations, 2020 (2020), 1–16. doi: 10.1186/s13662-019-2438-0
![]() |
[36] |
S. B. Chen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, A new approach on fractional calculus and probability density function, AIMS Math., 5 (2020), 7041–7054. doi: 10.3934/math.2020451
![]() |
[37] |
H. G. Jile, S. Rashid, M. A. Noor, A. Suhail, Y. M. Chu, Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, AIMS Math., 5 (2020), 6108–6123. doi: 10.3934/math.2020392
![]() |
[38] |
T. Abdeljawad, S. Rashid, Z. Hammouch, Y. M. Chu, Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications, Adv. Differ. Equations, 2020 (2020), 1–27. doi: 10.1186/s13662-019-2438-0
![]() |
[39] |
S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Y. M. Chu, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7 (2019), 1225. doi: 10.3390/math7121225
![]() |
[40] | G. A. Anastassiou, About discrete fractional calculus with inequalities, in Intelligent mathematics: computational analysis, Springer, Berlin, Heidelberg, (2011), 575–585. |
[41] | B. Zheng, Some new discrete fractional inequalities and their applications in fractional difference equations, J. Math. Inequal., 9 (2015), 823–839. |
[42] | M. Bohner, R. A. C. Ferreira, Some discrete fractional inequalities of Chebyshev type, Afr. Diaspora J. Math., 11 (2011), 132–137. |
[43] | F. M. Atici, Y. Yaldiz, Refinements on the discrete Hermite-Hadamard inequality, Arabian J. Math. 7 (2018), 175–182. |
[44] | B. G. Pachpatte, Integral and Finite Difference Inequalities and Applications, in Mathematics Studies, Elsevier, (2006). |
[45] | R. L. Magin, Fractional Calculus in Bioengineering, Redding: Begell House, 2006. |
[46] |
M. K. Wang, H. H. Chu, Y. M. Li, Y. M. Chu, Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255–271. doi: 10.2298/AADM190924020W
![]() |
[47] |
W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1–12. doi: 10.1007/s13398-019-00732-2
![]() |
[48] | Z. H. Yang, W. M. Qian, W. Zhang, Y. M. Chu, Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77–93. |
[49] | G. Grüss, Über das Maximum des absoluten Betrages von 1b−a∫baf(x)g(x)dx−1(b−a)2∫baf(x)dx∫bag(x)dx, Math. Z. 39 (1935), 215–226. |
[50] | E. Akin, S. Asliyüce, A. F. Güvenilir, B. Kaymakçalan, Discrete Grüss type inequality on fractional calculus, J. Inequal. Appl. 2015(2015), 1–7. |
[51] |
S. Rashid, F. Jarad, M. A. Noor, K. I. Noor, D. Baleanu, J. B. Liu, On Grüss inequalities within generalized K-fractional integrals, Adv. Differ. Equations, 2020 (2020), 1–18. doi: 10.1186/s13662-019-2438-0
![]() |
[52] | T. Abdeljawad, F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal. 2012 (2012), 1–13. |
[53] | C. Goodrich, A. C. Peterson, Discrete Fractional Calculus, Springer, Berlin, 2015. |
[54] | G. A. Anastassiou, About discrete fractional calculus with inequalities, in Intelligent Mathematics: Computational Analysis, Springer, Berlin, Heidelberg, (2011), 575–585. |
[55] |
F. M. Atici, Y. Yaldiz, Refinements on the discrete Hermite-Hadamard inequality, Arabian J. Math., 7 (2018), 175–182. doi: 10.1007/s40065-017-0196-y
![]() |
[56] | M. Bohner, R. A. C. Ferreira, Some discrete fractional inequalities of Chebyshev type, Afr. Diaspora J. Math., 11 (2011), 132–137. |
[57] |
S. Rashid, Y. M. Chu, J. Singh, D. Kumar, A unifying computational framework for novel estimates involving discrete fractional calculus approaches, Alexandria Eng. J., 60 (2021), 2677–2685. doi: 10.1016/j.aej.2021.01.003
![]() |
[58] |
P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equations, 2020 (2020), 1–19. doi: 10.1186/s13662-019-2438-0
![]() |
[59] | T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite–Hadamard type with applications, J. Funct. Spaces, 2020 (2020), 4352357. |
[60] |
P. O. Mohammed, T. Abdeljawad, Opial integral inequalities for generalized fractional operators with nonsingular kernel, J. Inequal. Appl., 2020 (2020), 1–12. doi: 10.1186/s13660-019-2265-6
![]() |
[61] | A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Methods Appl. Sci., (2020), 1–18. |
[62] | L. Xu, Y. M. Chu, S. Rashid, A. A. El. Deeb, K. S. Nisar, On new unified bounds for a family of functions via fractional q-calculus theory, J. Funct. Spaces, 2020 (2020), 4984612. |
[63] |
T. Abdeljawad, S. Rashid, H. Khan, Y. M. Chu, On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equations, 2020 (2020), 1–17. doi: 10.1186/s13662-019-2438-0
![]() |
[64] |
T. Abdeljawad, Different type kernel h-fractional differences and their fractional ℏ-sums, Chaos, Solitons Fractals, 116 (2018), 146–156. doi: 10.1016/j.chaos.2018.09.022
![]() |
[65] |
I. Suwan, T. Abdeljawad, F. Jarad, Monotonicity analysis for nabla h-discrete fractional Atangana-Baleanu differences, Chaos, Solitons Fractals, 117 (2018), 50–59. doi: 10.1016/j.chaos.2018.10.010
![]() |
[66] |
I. Suwan, S. Owies, T. Abdeljawad, Monotonicity results for h-discrete fractional operators and application, Adv. Differ. Equations, 2018 (2018), 1–17. doi: 10.1186/s13662-017-1452-3
![]() |
[67] | T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013), 1–12. |
[68] |
T. Abdeljawad, Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos, Solitons Fractals, 126 (2019), 315–324. doi: 10.1016/j.chaos.2019.06.012
![]() |
1. | Mohammed Shehu Shagari, Qiu-Hong Shi, Saima Rashid, Usamot Idayat Foluke, Khadijah M. Abualnaja, Fixed points of nonlinear contractions with applications, 2021, 6, 2473-6988, 9378, 10.3934/math.2021545 | |
2. | Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Fahd Jarad, Y. S. Hamed, Khadijah M. Abualnaja, Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function, 2021, 6, 2473-6988, 8001, 10.3934/math.2021465 | |
3. | Saima Rashid, Khadija Tul Kubra, Asia Rauf, Yu-Ming Chu, Y S Hamed, New numerical approach for time-fractional partial differential equations arising in physical system involving natural decomposition method, 2021, 96, 0031-8949, 105204, 10.1088/1402-4896/ac0bce | |
4. | Saima Rashid, Khadija Tul Kubra, Sana Ullah, Fractional spatial diffusion of a biological population model via a new integral transform in the settings of power and Mittag-Leffler nonsingular kernel, 2021, 96, 0031-8949, 114003, 10.1088/1402-4896/ac12e5 | |
5. | Saima Rashid, Sobia Sultana, Zakia Hammouch, Fahd Jarad, Y.S. Hamed, Novel aspects of discrete dynamical type inequalities within fractional operators having generalized ℏ-discrete Mittag-Leffler kernels and application, 2021, 151, 09600779, 111204, 10.1016/j.chaos.2021.111204 | |
6. | Saima Rashid, Sobia Sultana, Fahd Jarad, Hossein Jafari, Y.S. Hamed, More efficient estimates via ℏ-discrete fractional calculus theory and applications, 2021, 147, 09600779, 110981, 10.1016/j.chaos.2021.110981 | |
7. | Shuang-Shuang Zhou, Saima Rashid, Erhan Set, Abdulaziz Garba Ahmad, Y. S. Hamed, On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications, 2021, 6, 2473-6988, 9154, 10.3934/math.2021532 | |
8. | SAIMA RASHID, ELBAZ I. ABOUELMAGD, AASMA KHALID, FOZIA BASHIR FAROOQ, YU-MING CHU, SOME RECENT DEVELOPMENTS ON DYNAMICAL ℏ-DISCRETE FRACTIONAL TYPE INEQUALITIES IN THE FRAME OF NONSINGULAR AND NONLOCAL KERNELS, 2022, 30, 0218-348X, 10.1142/S0218348X22401107 | |
9. | Saima Rashid, Fahd Jarad, Khadijah M. Abualnaja, On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative, 2021, 6, 2473-6988, 10920, 10.3934/math.2021635 | |
10. | Mir Sajjad Hashemi, Mohammad Partohaghighi, Hijaz Ahmad, New mathematical modelings of the human liver and hearing loss systems with fractional derivatives, 2023, 16, 1793-5245, 10.1142/S1793524522500681 | |
11. | Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi, Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative, 2023, 8, 2473-6988, 382, 10.3934/math.2023018 | |
12. | Zoheir Chebel, Abdellatif Boureghda, Common Fixed Point of the Commutative F-contraction Self-mappings, 2021, 7, 2349-5103, 10.1007/s40819-021-01107-1 | |
13. | Saleh S. Redhwan, Tariq A. Aljaaidi, Ali Hasan Ali, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi, New Grüss’s inequalities estimates considering the φ-fractional integrals, 2024, 11, 26668181, 100836, 10.1016/j.padiff.2024.100836 | |
14. | Tianwei Zhang, Huizhen Qu, Jianwen Zhou, Asymptotically almost periodic synchronization in fuzzy competitive neural networks with Caputo-Fabrizio operator, 2023, 471, 01650114, 108676, 10.1016/j.fss.2023.108676 |