Research article Special Issues

New classifications of monotonicity investigation for discrete operators with Mittag-Leffler kernel


  • Received: 07 December 2021 Revised: 26 January 2022 Accepted: 10 February 2022 Published: 15 February 2022
  • This paper deals with studying monotonicity analysis for discrete fractional operators with Mittag-Leffler in kernel. The $ \nu- $monotonicity definitions, namely $ \nu- $(strictly) increasing and $ \nu- $(strictly) decreasing, are presented as well. By examining the basic properties of the proposed discrete fractional operators together with $ \nu- $monotonicity definitions, we find that the investigated discrete fractional operators will be $ \nu^2- $(strictly) increasing or $ \nu^2- $(strictly) decreasing in certain domains of the time scale $ \mathbb{N}_a: = \{a, a+1, \dots\} $. Finally, the correctness of developed theories is verified by deriving mean value theorem in discrete fractional calculus.

    Citation: Pshtiwan Othman Mohammed, Christopher S. Goodrich, Aram Bahroz Brzo, Dumitru Baleanu, Yasser S. Hamed. New classifications of monotonicity investigation for discrete operators with Mittag-Leffler kernel[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 4062-4074. doi: 10.3934/mbe.2022186

    Related Papers:

  • This paper deals with studying monotonicity analysis for discrete fractional operators with Mittag-Leffler in kernel. The $ \nu- $monotonicity definitions, namely $ \nu- $(strictly) increasing and $ \nu- $(strictly) decreasing, are presented as well. By examining the basic properties of the proposed discrete fractional operators together with $ \nu- $monotonicity definitions, we find that the investigated discrete fractional operators will be $ \nu^2- $(strictly) increasing or $ \nu^2- $(strictly) decreasing in certain domains of the time scale $ \mathbb{N}_a: = \{a, a+1, \dots\} $. Finally, the correctness of developed theories is verified by deriving mean value theorem in discrete fractional calculus.



    加载中


    [1] C. Goodrich, A. C. Peterson, Discrete Fractional Calculus, Springer, New York, 2015.
    [2] T. Abdeljawad, Different type kernel $h$–fractional differences and their fractional $h$–sums, Chaos Solitons Fractals, 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022
    [3] T. Abdeljawad, F. Jarad, A. Atangana, P. O. Mohammed, On a new type of fractional difference operators on h-step isolated time scales, J. Fractional Calculus Nonlinear Syst., 1 (2021), 46–74. https://doi.org/10.48185/jfcns.v1i1.148 doi: 10.48185/jfcns.v1i1.148
    [4] P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Meth. Appl. Sci., 2020 (2020), 1–26, https://doi.org/10.1002/mma.7083 doi: 10.1002/mma.7083
    [5] T. Abdeljawad, D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Differ. Equation, 2016 (2016), 232. https://doi.org/10.1186/s13662-016-0949-5 doi: 10.1186/s13662-016-0949-5
    [6] T. Abdeljawad, F. Madjidi, Lyapunov-type inequalities for fractional difference operators with discrete Mittag-Leffler kernel of order $2 < \alpha < 5/2$, Eur. Phys. J. Spec. Top., 226 (2017), 3355–3368. https://doi.org/10.1140/epjst/e2018-00004-2 doi: 10.1140/epjst/e2018-00004-2
    [7] T. Abdeljawad, Q. M. Al-Mdallal, Q. M. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Discrete Dyn. Nat. Soc., 2017 (2017). https://doi.org/10.1155/2017/4149320 doi: 10.1155/2017/4149320
    [8] M. Yavuz, Characterizations of two different fractional operators without singular kernel, Math. Model. Nat. Phenom., 14 (2019), 302. https://doi.org/10.1051/mmnp/2018070 doi: 10.1051/mmnp/2018070
    [9] A. Keten, M. Yavuz, D. Baleanu, Nonlocal cauchy problem via a fractional operator involving power kernel in Banach spaces, Fractal Fractional, 3 (2019), 27. https://doi.org/10.3390/fractalfract3020027 doi: 10.3390/fractalfract3020027
    [10] F. M. Atici, M. Atici, M. Belcher, D. Marshall, A new approach for modeling with discrete fractional equations, Fundam. Inf., 151 (2017), 313–324. https://doi.org/10.3233/FI-2017-1494 doi: 10.3233/FI-2017-1494
    [11] F. M. Atici, M. Atici, N. Nguyen, T. Zhoroev, G. Koch, A study on discrete and discrete fractional pharmacokinetics-pharmacodynamics models for tumor growth and anti-cancer effects, Comput. Math. Biophys., 7 (2019), 10–24. https://doi.org/10.1515/cmb-2019-0002 doi: 10.1515/cmb-2019-0002
    [12] F. M. Atici, S. Sengul, Modeling with fractional difference equations, J. Math. Anal. Appl. 369 (2010), 1–9. https://doi.org/10.1016/j.jmaa.2010.02.009 doi: 10.1016/j.jmaa.2010.02.009
    [13] Z. Wang, B. Shiri, D. Baleanu, Discrete fractional watermark technique, Front. Inf. Technol. Electron. Eng., 21 (2020), 880–883. https://doi.org/10.1631/FITEE.2000133 doi: 10.1631/FITEE.2000133
    [14] G. Wu, D. Baleanu, Y. Bai, Discrete fractional masks and their applications to image enhancement, Handb. Fractional Calculus Appl., 8 (2019), 261–270. https://doi.org/10.1515/9783110571929 doi: 10.1515/9783110571929
    [15] T. Abdeljawad, Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, J. Comput. Appl. Math., 339 (2018), 218–230. https://doi.org/10.1016/j.cam.2017.10.021 doi: 10.1016/j.cam.2017.10.021
    [16] A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, H. Khan, Stability analysis of fractional nabla difference COVID-19 model, Results Phys., 22 (2021), 103888. https://doi.org/10.1016/j.rinp.2021.103888 doi: 10.1016/j.rinp.2021.103888
    [17] A. Shaikh, K. S. Nisar, V. Jadhav, S. K.Elagan, M. Zakarya, Dynamical behaviour of HIV/AIDS model using fractional derivative with Mittag-Leffler kernel, Alexandria Eng. J., 61 (2022), 2601–2610. https://doi.org/10.1016/j.aej.2021.08.030 doi: 10.1016/j.aej.2021.08.030
    [18] C. Ravichandran, K. Logeswari, S. K. Panda, K. S. Nisar, On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions, Chaos Solitons Fractals, 139 (2020), 110012. https://doi.org/10.1016/j.chaos.2020.110012 doi: 10.1016/j.chaos.2020.110012
    [19] H. Dong, Y.Gao, Existence and uniqueness of bounded stable solutions to the Peierls-Nabarro model for curved dislocations, Calculus Variations Partial Differ. Equation, 60 (2021), 62. https://doi.org/10.1007/s00526-021-01939-1 doi: 10.1007/s00526-021-01939-1
    [20] Y. Gao, J. G. Liu, Z. Liu, Existence and rigidity of the vectorial Peierls-Nabarro model for dislocations in high dimensions, Nonlinearity, 34 (2021), 7778.
    [21] P. O. Mohammed, O. Almutairi, R. P. Agarwal, Y. S. Hamed, On convexity, monotonicity and positivity analysis for discrete fractional operators defined using exponential kernels, Fractal Fractional, 6 (2022), 55. https://doi.org/10.3390/fractalfract6020055 doi: 10.3390/fractalfract6020055
    [22] R. Dahal, C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math. (Basel), 102 (2014), 293–299. https://doi.org/10.1007/s00013-014-0620-x doi: 10.1007/s00013-014-0620-x
    [23] T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos Solitons Fractals, 116 (2017), 1–5. https://doi.org/10.1016/j.chaos.2017.04.006 doi: 10.1016/j.chaos.2017.04.006
    [24] I. Suwan, T. Abdeljawad, F. Jarad, Monotonicity analysis for nabla $h$-discrete fractional Atangana-Baleanu differences, Chaos Solitons Fractals, 117 (2018), 50–59. https://doi.org/10.1016/j.chaos.2018.10.010 doi: 10.1016/j.chaos.2018.10.010
    [25] T. Abdeljawad, B. Abdallaa, Monotonicity results for delta and nabla Caputo and Riemann fractional differences via dual identities, preprint, arXiv: 1601.05510.
    [26] C. S. Goodrich, J. M. Jonnalagadda, An analysis of polynomial sequences and their application to discrete fractional operators, J. Differ. Equations Appl., 27 (2021), 1081–1102. https://doi.org/10.1080/10236198.2021.1965132 doi: 10.1080/10236198.2021.1965132
    [27] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9(2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303
    [28] P. O. Mohammed, F. K. Hamasalh, T. Abdeljawad, Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels, Adv. Differ. Equation, 2021, 2021, 213. https://doi.org/10.1186/s13662-021-03372-2 doi: 10.1186/s13662-021-03372-2
    [29] J. Bravo, C. Lizama, S. Rueda, Second and third order forward difference operator: what is in between?, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 115 (2021), 1–20. https://doi.org/10.1007/s13398-021-01015-5 doi: 10.1007/s13398-021-01015-5
    [30] C. S. Goodrich, C. Lizama, A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity, Israel J. Math., 236 (2020), 533–589. https://doi.org/10.1007/s11856-020-1991-2 doi: 10.1007/s11856-020-1991-2
    [31] C. S. Goodrich, C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst., 40 (2020), 4961–4983. https://doi.org/10.3934/dcds.2020207 doi: 10.3934/dcds.2020207
    [32] C. S. Goodrich, B. Lyons, Positivity and monotonicity results for triple sequential fractional differences via convolution, Analysis, 40 (2020), 89–103. https://doi.org/10.1515/anly-2019-0050 doi: 10.1515/anly-2019-0050
    [33] C. S. Goodrich, B. Lyons, M. T. Velcsov, Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound, Commun. Pure Appl. Anal., 20 (2021), 339–358. https://doi.org/10.3934/cpaa.2020269 doi: 10.3934/cpaa.2020269
    [34] C. S. Goodrich, J. M. Jonnalagadda, B. Lyons, Convexity, monotonicity, and positivity results for sequential fractional nabla difference operators with discrete exponential kernels, Math. Meth. Appl. Sci., 44 (2021), https://doi.org/10.1002/mma.7247 doi: 10.1002/mma.7247
    [35] C. S. Goodrich, M. Muellner, An analysis of the sharpness of monotonicity results via homotopy for sequential fractional operators, Appl. Math. Lett., 98 (2019), 446–452. https://doi.org/10.1016/j.aml.2019.07.003 doi: 10.1016/j.aml.2019.07.003
    [36] F. M. Atici, M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discrete Math., 9 2015,139–149. https://doi.org/10.2298/AADM150218007A
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1669) PDF downloads(65) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog