Research article Special Issues

New numerical dynamics of the fractional monkeypox virus model transmission pertaining to nonsingular kernels


  • Received: 03 July 2022 Revised: 22 September 2022 Accepted: 25 September 2022 Published: 09 October 2022
  • Monkeypox ($ \mathbb{MPX} $) is a zoonotic illness that is analogous to smallpox. Monkeypox infections have moved across the forests of Central Africa, where they were first discovered, to other parts of the world. It is transmitted by the monkeypox virus, which is a member of the Poxviridae species and belongs to the Orthopoxvirus genus. In this article, the monkeypox virus is investigated using a deterministic mathematical framework within the Atangana-Baleanu fractional derivative that depends on the generalized Mittag-Leffler (GML) kernel. The system's equilibrium conditions are investigated and examined for robustness. The global stability of the endemic equilibrium is addressed using Jacobian matrix techniques and the Routh-Hurwitz threshold. Furthermore, we also identify a criterion wherein the system's disease-free equilibrium is globally asymptotically stable. Also, we employ a new approach by combining the two-step Lagrange polynomial and the fundamental concept of fractional calculus. The numerical simulations for multiple fractional orders reveal that as the fractional order reduces from 1, the virus's transmission declines. The analysis results show that the proposed strategy is successful at reducing the number of occurrences in multiple groups. It is evident that the findings suggest that isolating affected people from the general community can assist in limiting the transmission of pathogens.

    Citation: Maysaa Al Qurashi, Saima Rashid, Ahmed M. Alshehri, Fahd Jarad, Farhat Safdar. New numerical dynamics of the fractional monkeypox virus model transmission pertaining to nonsingular kernels[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 402-436. doi: 10.3934/mbe.2023019

    Related Papers:

  • Monkeypox ($ \mathbb{MPX} $) is a zoonotic illness that is analogous to smallpox. Monkeypox infections have moved across the forests of Central Africa, where they were first discovered, to other parts of the world. It is transmitted by the monkeypox virus, which is a member of the Poxviridae species and belongs to the Orthopoxvirus genus. In this article, the monkeypox virus is investigated using a deterministic mathematical framework within the Atangana-Baleanu fractional derivative that depends on the generalized Mittag-Leffler (GML) kernel. The system's equilibrium conditions are investigated and examined for robustness. The global stability of the endemic equilibrium is addressed using Jacobian matrix techniques and the Routh-Hurwitz threshold. Furthermore, we also identify a criterion wherein the system's disease-free equilibrium is globally asymptotically stable. Also, we employ a new approach by combining the two-step Lagrange polynomial and the fundamental concept of fractional calculus. The numerical simulations for multiple fractional orders reveal that as the fractional order reduces from 1, the virus's transmission declines. The analysis results show that the proposed strategy is successful at reducing the number of occurrences in multiple groups. It is evident that the findings suggest that isolating affected people from the general community can assist in limiting the transmission of pathogens.



    加载中


    [1] A. W. Rimoin, P. M. Mulembakani, S. C. Johnstonm, J. O. Lloyd Smith, N. K. Kisalu, T. L. Kinkela, et al., Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo, Proc. Natl. Acad. Sci. USA, 107 (2010), 16262–16267. http://dx.doi.org/10.1073/pnas.1005769107 doi: 10.1073/pnas.1005769107
    [2] N. Sklenovská, M. Van Ranst, Emergence of monkeypox as the most important orthopoxvirus infection in humans, Front. Public Health, 241 (2018). https://doi.org/10.3389/fpubh.2018.00241
    [3] Singapore Ministry of Health, Europe, US on alert over detection of Monkeypox cases: What is the virus, symptoms and its transmission across the globe. Available from: https://news.knowledia.com/IN/en/articles/europe-us-on-alert-over-detection-of-monkeypox-cases-what-is-the-virus-5.
    [4] F. Fenner, D. A. Henderson, I. Arita, Z. Jezek, I. D. Ladnyi, Smallpox and its eradication, W. H. O., 1988.
    [5] R. B. Kennedy, J. M. Lane, D. A. Henderson, G. A. Poland, Smallpox and vaccinia, Vaccines (chapter 32), Amsterdam: Elsevier, (2012), 718–727.
    [6] P. E. M. Fine, Z. Jezek, B. Grab, H. Dixon, The transmission potential of monkeypox virus in human populations, Int. J. Epidemiol. , 17 (1988), 643–650. http://dx.doi.org/10.1093/ije/17.3.643 doi: 10.1093/ije/17.3.643
    [7] K. D. Reed, J. W. Melski, M. B. Graham, R. L. Regnery, M. J. Sotir, M. V. Wegner, et al., The detection of monkeypox in humans in the Western Hemisphere, Engl. J. Med. , 350 (2004), 342–350. http://dx.doi.org/10.1056/ NEJMoa032299 doi: 10.1056/NEJMoa032299
    [8] M. Roberts, Monkeypox to get a new name, says WHO. Available from: https://en.kataeb.org/articles/monkeypox-to-get-a-new-name-says-who.
    [9] L. A. Learned, M. G. Reynolds, D. W. Wassa, Y. Li, V. A. Olson, K. Karem, et al., Extended interhuman transmission of monkeypox in a hospital community in the Republic of the Congo, Am. J. Trop. Med. Hygiene, 73 (2005), 428–434. https://doi.org/10.4269/ajtmh.2005.73.428 doi: 10.4269/ajtmh.2005.73.428
    [10] R. A. Elderfield, S. J. Watson, A. Godlee, W. E. Adamson, C. I. Thompson, J. Dunning, M. Fernandez-Alonso, D. Blumenkrantz, T. Hussell, M. Zambon, Accumulation of human-adapting mutations during circulation of A (H1N1) pdm09 influenza virus in humans in the United Kingdom, J. Virol. , 88 (2014), 13269–13283. https://doi.org/10.1128/JVI.01636-14 doi: 10.1128/JVI.01636-14
    [11] N. C. Elde, S. J. Child, M. T. Eickbush, J. O. Kitzman, K. S. Rogers, J. Shendure, et al., Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses, Cell, 150 (2012), 831–841. https://doi.org/10.1016/j.cell.2012.05.049 doi: 10.1016/j.cell.2012.05.049
    [12] R. J. Jackson, A. J. Ramsay, C. D. Christensen, S. Beaton, D. F. Hall, I. A. Ramshaw, Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J. Virol. , 75 (2001), 1205–1210. https://doi.org/10.1128/JVI.75.3.1205-1210.2001 doi: 10.1128/JVI.75.3.1205-1210.2001
    [13] S. Bidari, E. E. Goldwyn, Stochastic models of influenza outbreaks on a college campus, Lett. Biomath. , 6 (2019), 1–14. https://doi.org/10.1080/23737867.2019.1618744 doi: 10.1080/23737867.2019.1618744
    [14] J. C. Blackwood, L. M. Childs, An introduction to compartmental modeling for the budding infectious disease modeler. Lett. Biomath. , 5 (2018), 195–221. https://doi.org/10.30707/LiB5.1Blackwood doi: 10.30707/LiB5.1Blackwood
    [15] C. Bhunu, S. Mushayabasa, Modelling the transmission dynamics of Pox-like infections, IAENG Int. J. Appl. Math. , 41 (2011), 141–149.
    [16] S. Usman, I. I. Adamu, Modeling the transmission dynamics of the monkeypox virus infection with treatment and vaccination interventions, J. Appl. Math. Phy. , 5 (2017), 2335–2353. https://doi.org/10.4236/jamp.2017.512191 doi: 10.4236/jamp.2017.512191
    [17] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci. , 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [18] S. A. Iqbal, M. G. Hafez, Y. M. Chu, C. Park, Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative, J. Appl. Anal. Comput. 12 (2022), 770–789. https://doi.org/10.11948/20210324 doi: 10.11948/20210324
    [19] Y. M. Chu, S. Bashir, M. Ramzan, M. Y. Malik, Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects, Math. Meth. Appl. Sci., 2022. https://doi.org/10.1002/mma.8234
    [20] W. M. Qian, H. H. Chu, M. K. Wang, Y. M. Chu, Sharp inequalities for the Toader mean of order $-1$ in terms of other bivariate means, J. Math. Inequal. , 16 (2022), 127–141. https://doi.org/10.7153/jmi-2022-16-10 doi: 10.7153/jmi-2022-16-10
    [21] T. H. Zhao, H. H. Chu, Y. M. Chu, Optimal Lehmer mean bounds for the $n$th power-type Toader mean of $n=-1, 1, 3$, J. Math. Inequal. , 16 (2022), 157–168. https://doi.org/10.7153/jmi-2022-16-12 doi: 10.7153/jmi-2022-16-12
    [22] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl. , 1 (2015), 1–13.
    [23] J. F. Gómez-Aguilar, H. Yéppez-Marténez, C. Calderón-Ramón, I. Cruz-Orduña, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel, Entropy, 17 (2015), 6289–6303. https://doi.org/10.3390/e17096289 doi: 10.3390/e17096289
    [24] F. Z. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations, Fractals, 30 (2022). https://doi.org/10.1142/S0218348X22400515
    [25] S. Rashid, E. I. Abouelmagd, S. Sultana, Y. M. Chu, New developments in weighted $n$-fold type inequalities via discrete generalized ${\rm{\hat h}}$-proportional fractional operators, Fractals, 30 (2022). https://doi.org/10.1142/S0218348X22400564
    [26] S. Rashid, B. Kanwal, A. G. Ahmad, E. Bonyah, S. K. Elagan, Novel numerical estimates of the pneumonia and meningitis epidemic model via the nonsingular kernel with optimal analysis, Complexity, 2022 (2022), 1–25. https://doi.org/10.1155/2022/4717663 doi: 10.1155/2022/4717663
    [27] S. W. Yao, S. Rashid, M. Inc, E. Elattar, On fuzzy numerical model dealing with the control of glucose in insulin therapies for diabetes via nonsingular kernel in the fuzzy sense, AIMS Math., 7 (2022). https://doi.org/10.3934/math.2022987
    [28] S. Rashid, F. Jarad, A. K. Alsharidi, Numerical investigation of fractional-order cholera epidemic model with transmission dynamics via fractal-fractional operator technique, Chaos Solitons Fractals, 162 (2022), 112477. https://doi.org/10.1016/j.chaos.2022.112477 doi: 10.1016/j.chaos.2022.112477
    [29] F. Jin, Z. S. Qian, Y. M. Chu, M. ur Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput. 12 (2022), 790–806. https://doi.org/10.11948/20210357 doi: 10.11948/20210357
    [30] S. Rashid, M. K. Iqbal, A. M. Alshehri, F. Jarad, R. Ashraf, A comprehensive analysis of the stochastic fractal-fractional tuberculosis model via Mittag-Leffler kernel and white noise, Results Phy. . 39 (2022), 105764. https://doi.org/10.1016/j.rinp.2022.105764 doi: 10.1016/j.rinp.2022.105764
    [31] M. Al-Qurashi, S. Rashid, F. Jarad, A computational study of a stochastic fractal-fractional hepatitis B virus infection incorporating delayed immune reactions via the exponential decay, Math. Biosci. Eng, 19 (2022), 12950–12980. https://doi.org/10.3934/mbe.2022605 doi: 10.3934/mbe.2022605
    [32] S. Rashid, A. Khalid, S. Sultana, F. Jarad, K. M. Abulanja, Y. S. Hamed, Novel numerical investigation of the fractional oncolytic effectiveness model with M1 virus via generalized fractional derivative with optimal criterion, Results Phy. , 37 (2022), 105553. https://doi.org/10.1016/j.rinp.2022.105553 doi: 10.1016/j.rinp.2022.105553
    [33] S. Rashid, B. Kanwal, F. Jarad, S. K. Elagan, A peculiar application of the fractal-fractional derivative in the dynamics of a nonlinear scabies model, Results Phys. , 38 (2022), 105634. https://doi.org/10.1016/j.rinp.2022.105634 doi: 10.1016/j.rinp.2022.105634
    [34] S. Rashid, Y. G. Sánchez, J. Singh, Kh. M. Abualnaja, Novel analysis of nonlinear dynamics of a fractional model for tuberculosis disease via the generalized Caputo fractional derivative operator (case study of Nigeria), AIMS Math. , 7 (2022), 10096–10121. https://doi.org/10.3934/math.2022562 doi: 10.3934/math.2022562
    [35] S. Rashid, F. Jarad, A. G. Ahmad, Kh. M. Abualnaja, New numerical dynamics of the heroin epidemic model using a fractional derivative with Mittag-Leffler kernel and consequences for control mechanisms, Results Phys. , 35 (2022), 105304. https://doi.org/10.1016/j.rinp.2022.105304 doi: 10.1016/j.rinp.2022.105304
    [36] S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y. M. Chu, On multi-step methods for singular fractional $q$-integro-differential equations, Open Math. 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
    [37] S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y. M. Chu, Some recent developments on dynamical $\hbar$-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022). https://doi.org/10.1142/S0218348X22401107
    [38] Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract. 5 (2021), 119. https://doi.org/10.3390/fractalfract5030119
    [39] T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl. , 10 (2017), 1098–1107. http://dx.doi.org/10.22436/jnsa.010.03.20 doi: 10.22436/jnsa.010.03.20
    [40] J. Singh, D. Kumar, D. Baleanu, On the analysis of fractional diabetes model with exponential law, Adv. Differ. Equ. , 2018 (2018), 231. https://doi.org/10.1186/s13662-018-1680-1 doi: 10.1186/s13662-018-1680-1
    [41] Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput. 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102 doi: 10.1016/j.amc.2006.07.102
    [42] S. V. Bankuru, S. Kossol, W. Hou, P. Mahmoudi, J. Rychtá${\rm{\hat r}}$, D. Taylor, A game-theoretic model of Monkeypox to assess vaccination strategies, PeerJ, 8 (2020), 9272. http://doi.org/10.7717/peerj.927 doi: 10.7717/peerj.927
    [43] O. J. Peter, S. Kumar, N. Kumari, F. A. Oguntolu, K. Oshinubi, R. Musa, Transmission dynamics of Monkeypox virus: A mathematical modelling approach, Model. Earth Sys. Envir., 2021. https://doi.org/10.1007/s40808-021-01313-2
    [44] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0
    [45] C. Bhunu, W. Garira, G. Magombedze, Mathematical analysis of a two strain hiv/aids model with antiretroviral treatment. Acta Biotheor. , 57 (2009), 361–381. https://doi.org/10.1007/s10441-009-9080-2 doi: 10.1007/s10441-009-9080-2
    [46] C. Bhunu, S. Mushayabasa, Modelling the transmission dynamics of pox-like infections, IAENG Int. J. Appl. Math. , 41 (2011), 141–149.
    [47] M. R. Odom, R. Curtis Hendrickson, E. J. Lefkowitz, Poxvirus protein evolution: Family wide assessment of possible horizontal gene transfer events, Virus Res. , 144 (2009), 233–249. https://doi.org/10.1016/j.virusres.2009.05.006 doi: 10.1016/j.virusres.2009.05.006
    [48] Y. Lia, Y. Chen, I. Podlubny, Mittag–Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965–1969. https://doi.org/10.1016/j.automatica.2009.04.003 doi: 10.1016/j.automatica.2009.04.003
    [49] S. Somma, N. Akinwande, U. Chado, A mathematical model of monkey pox virus transmission dynamics, IFE J. Sci. , 21 (2019), 195–204. https://doi.org/10.4314/ijs.v21i1.17 doi: 10.4314/ijs.v21i1.17
    [50] O. Diekmann, J. Heesterbeek, M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873–885. https://doi.org/10.1098/rsif.2009.0386 doi: 10.1098/rsif.2009.0386
    [51] P. van den Driessche, J. Watmough, Further notes on the basic reproduction number, Springer, Berlin, Heidelberg, (2008), 159–178.
    [52] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng. , 1 (2004), 361. https://doi.org/10.3934/mbe.2004.1.361 doi: 10.3934/mbe.2004.1.361
    [53] E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, On some routh–hurwitz conditions for fractional order differential equations and their applications in lorenz, rössler, chua and chen systems, Phys. Lett. A, 358 (2006), 1–4. https://doi.org/10.1016/j.physleta.2006.04.087 doi: 10.1016/j.physleta.2006.04.087
    [54] C. T. Deressa, G. F. Duressa, Analysis of Atangana–Baleanu fractional-order SEAIR epidemic model with optimal control, Adv. Diff. Equ. , 2021 (2021), 174. https://doi.org/10.1186/s13662-021-03334-8 doi: 10.1186/s13662-021-03334-8
    [55] B. Wu, F. Fu, L. Wang, Imperfect vaccine aggravates the long-standing dilemma of voluntary vaccination, PLOS ONE, 6 (2011), 20577. https://doi.org/10.1371/journal.pone.0020577 doi: 10.1371/journal.pone.0020577
    [56] L. Khodakevich, Z. Ježek, D. Messinger, Monkeypox virus: Ecology and public health significance, Bull. W. H. O. , 66 (1988), 747–752.
    [57] J. Kobe, N. Pritchard, Z. Short, I. V. Erovenko, J. Rychtář, J. T. Rowel, A game theoretic model of cholera with optimal personal protection strategies. Bull. Math. Bio., 80 (2018), 2580–2599. https://doi.org/10.1007/s11538-018-0476-5 doi: 10.1007/s11538-018-0476-5
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2312) PDF downloads(188) Cited by(10)

Article outline

Figures and Tables

Figures(19)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog