Loading [MathJax]/jax/output/SVG/jax.js
Case report

Genotypic and phenotypic variability of 22q11.2 microdeletions – an institutional experience

  • # Co-first authors
  • Patients with chromosome 22q11.2 deletion syndromes classically present with variable cardiac defects, parathyroid and thyroid gland hypoplasia, immunodeficiency and velopharyngeal insufficiency, developmental delay, intellectual disability, cognitive impairment, and psychiatric disorders. New technologies including chromosome microarray have identified smaller deletions in the 22q11.2 region. An increasing number of studies have reported patients presenting with various features harboring smaller 22q11.2 deletions, suggesting a need to better elucidate 22q11.2 deletions and their phenotypic contributions so that clinicians may better guide prognosis for families. We identified 16 pediatric patients at our institution harboring various 22q11.2 deletions detected by chromosomal microarray and report their clinical presentations. Findings include various neurodevelopmental delays with the most common one being attention deficit hyperactivity disorder (ADHD), one reported case of infant lethality, four cases of preterm birth, one case with dual diagnoses of 22q11.2 microdeletion and Down syndrome. We examined potential genotypic contributions of the deleted regions.

    Citation: Gabrielle C. Manno, Gabrielle S. Segal, Alexander Yu, Fangling Xu, Joseph W. Ray, Erin Cooney, Allison D. Britt, Sunil K. Jain, Randall M. Goldblum, Sally S. Robinson, Jianli Dong. Genotypic and phenotypic variability of 22q11.2 microdeletions – an institutional experience[J]. AIMS Molecular Science, 2021, 8(4): 257-274. doi: 10.3934/molsci.2021020

    Related Papers:

    [1] Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172
    [2] Hamid Boulares, Manar A. Alqudah, Thabet Abdeljawad . Existence of solutions for a semipositone fractional boundary value pantograph problem. AIMS Mathematics, 2022, 7(10): 19510-19519. doi: 10.3934/math.20221070
    [3] Reny George, Fahad Al-shammari, Mehran Ghaderi, Shahram Rezapour . On the boundedness of the solution set for the ψ-Caputo fractional pantograph equation with a measure of non-compactness via simulation analysis. AIMS Mathematics, 2023, 8(9): 20125-20142. doi: 10.3934/math.20231025
    [4] Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071
    [5] Weerawat Sudsutad, Chatthai Thaiprayoon, Aphirak Aphithana, Jutarat Kongson, Weerapan Sae-dan . Qualitative results and numerical approximations of the (k,ψ)-Caputo proportional fractional differential equations and applications to blood alcohol levels model. AIMS Mathematics, 2024, 9(12): 34013-34041. doi: 10.3934/math.20241622
    [6] Choukri Derbazi, Zidane Baitiche, Mohammed S. Abdo, Thabet Abdeljawad . Qualitative analysis of fractional relaxation equation and coupled system with Ψ-Caputo fractional derivative in Banach spaces. AIMS Mathematics, 2021, 6(3): 2486-2509. doi: 10.3934/math.2021151
    [7] Abdelkader Moumen, Ramsha Shafqat, Zakia Hammouch, Azmat Ullah Khan Niazi, Mdi Begum Jeelani . Stability results for fractional integral pantograph differential equations involving two Caputo operators. AIMS Mathematics, 2023, 8(3): 6009-6025. doi: 10.3934/math.2023303
    [8] Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi . Existence theorems for Ψ-fractional hybrid systems with periodic boundary conditions. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010
    [9] Mohamed Houas, Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence and stability results of pantograph equation with three sequential fractional derivatives. AIMS Mathematics, 2023, 8(3): 5216-5232. doi: 10.3934/math.2023262
    [10] Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477
  • Patients with chromosome 22q11.2 deletion syndromes classically present with variable cardiac defects, parathyroid and thyroid gland hypoplasia, immunodeficiency and velopharyngeal insufficiency, developmental delay, intellectual disability, cognitive impairment, and psychiatric disorders. New technologies including chromosome microarray have identified smaller deletions in the 22q11.2 region. An increasing number of studies have reported patients presenting with various features harboring smaller 22q11.2 deletions, suggesting a need to better elucidate 22q11.2 deletions and their phenotypic contributions so that clinicians may better guide prognosis for families. We identified 16 pediatric patients at our institution harboring various 22q11.2 deletions detected by chromosomal microarray and report their clinical presentations. Findings include various neurodevelopmental delays with the most common one being attention deficit hyperactivity disorder (ADHD), one reported case of infant lethality, four cases of preterm birth, one case with dual diagnoses of 22q11.2 microdeletion and Down syndrome. We examined potential genotypic contributions of the deleted regions.



    Recently, fractional calculus methods became of great interest, because it is a powerful tool for calculating the derivation of multiples systems. These methods study real world phenomena in many areas of natural sciences including biomedical, radiography, biology, chemistry, and physics [1,2,3,4,5,6,7]. Abundant publications focus on the Caputo fractional derivative (CFD) and the Caputo-Hadamard derivative. Additionally, other generalization of the previous derivatives, such as Ψ-Caputo, study the existence of solutions to some FDEs (see [8,9,10,11,12,13,14]).

    In general, an m-point fractional boundary problem involves a fractional differential equation with fractional boundary conditions that are specified at m different points on the boundary of a domain. The fractional derivative is defined using the Riemann-Liouville fractional derivative or the Caputo fractional derivative. Solving these types of problems can be challenging due to the non-local nature of fractional derivatives. However, there are various numerical and analytical methods available for solving such problems, including the spectral method, the finite difference method, the finite element method, and the homotopy analysis method. The applications of m-point fractional boundary problems can be found in various fields, including physics, engineering, finance, and biology. These problems are useful in modeling and analyzing phenomena that exhibit non-local behavior or involve memory effects (see [15,16,17,18]).

    Pantograph equations are a set of differential equations that describe the motion of a pantograph, which is a mechanism used for copying and scaling drawings or diagrams. The equations are based on the assumption that the pantograph arms are rigid and do not deform during operation, we can simply say that see [19]. One important application of the pantograph equations is in the field of drafting and technical drawing. Before the advent of computer-aided design (CAD) software, pantographs were commonly used to produce scaled copies of drawings and diagrams. By adjusting the lengths of the arms and the position of the stylus, a pantograph can produce copies that are larger or smaller than the original [20], electrodynamics [21] and electrical pantograph of locomotive [22].

    Many authors studied a huge number of positive solutions for nonlinear fractional BVP using fixed point theorems (FPTs) such as SFPT, Leggett-Williams and Guo-Krasnosel'skii (see [23,24]). Some studies addressed the sign-changing of solution of BVPs [25,26,27,28,29].

    In this work, we use Schauder's fixed point theorem (SFPT) to solve the semipostone multipoint Ψ-Caputo fractional pantograph problem

    Dν;ψrϰ(ς)+F(ς,ϰ(ς),ϰ(r+λς))=0, ς in (r,) (1.1)
    ϰ(r)=ϑ1, ϰ()=m2i=1ζiϰ(ηi)+ϑ2, ϑiR, i{1,2}, (1.2)

    where λ(0,r),Dν;ψr is Ψ-Caputo fractional derivative (Ψ-CFD) of order ν, 1<ν2, ζiR+(1im2) such that 0<Σm2i=1ζi<1, ηi(r,), and F:[r,]×R×RR.

    The most important aspect of this research is to prove the existence of a positive solution of the above m-point FBVP. Note that in [30], the author considered a two-point BVP using Liouville-Caputo derivative.

    The article is organized as follows. In the next section, we provide some basic definitions and arguments pertinent to fractional calculus (FC). Section 3 is devoted to proving the the main result and an illustrative example is given in Section 4.

    In the sequel, Ψ denotes an increasing map Ψ:[r1,r2]R via Ψ(ς)0, ς, and [α] indicates the integer part of the real number α.

    Definition 2.1. [4,5] Suppose the continuous function ϰ:(0,)R. We define (RLFD) the Riemann-Liouville fractional derivative of order α>0,n=[α]+1 by

    RLDα0+ϰ(ς)=1Γ(nα)(ddς)nς0(ςτ)nα1ϰ(τ)dτ,

    where n1<α<n.

    Definition 2.2. [4,5] The Ψ-Riemann-Liouville fractional integral (Ψ-RLFI) of order α>0 of a continuous function ϰ:[r,]R is defined by

    Iα;Ψrϰ(ς)=ςr(Ψ(ς)Ψ(τ))α1Γ(α)Ψ(τ)ϰ(τ)dτ.

    Definition 2.3. [4,5] The CFD of order α>0 of a function ϰ:[0,+)R is defined by

    Dαϰ(ς)=1Γ(nα)ς0(ςτ)nα1ϰ(n)(τ)dτ, α(n1,n),nN.

    Definition 2.4. [4,5] We define the Ψ-CFD of order α>0 of a continuous function ϰ:[r,]R by

    Dα;Ψrϰ(ς)=ςr(Ψ(ς)Ψ(τ))nα1Γ(nα)Ψ(τ)nΨϰ(τ)dτ, ς>r, α(n1,n),

    where nΨ=(1Ψ(ς)ddς)n,nN.

    Lemma 2.1. [4,5] Suppose q,>0, and ϰinC([r,],R). Then ς[r,] and by assuming Fr(ς)=Ψ(ς)Ψ(r), we have

    1) Iq;ΨrI;Ψrϰ(ς)=Iq+;Ψrϰ(ς),

    2) Dq;ΨrIq;Ψrϰ(ς)=ϰ(ς),

    3) Iq;Ψr(Fr(ς))1=Γ()Γ(+q)(Fr(ς))+q1,

    4) Dq;Ψr(Fr(ς))1=Γ()Γ(q)(Fr(ς))q1,

    5) Dq;Ψr(Fr(ς))k=0, k=0,,n1, nN, qin(n1,n].

    Lemma 2.2. [4,5] Let n1<α1n,α2>0, r>0, ϰL(r,), Dα1;ΨrϰL(r,). Then the differential equation

    Dα1;Ψrϰ=0

    has the unique solution

    ϰ(ς)=W0+W1(Ψ(ς)Ψ(r))+W2(Ψ(ς)Ψ(r))2++Wn1(Ψ(ς)Ψ(r))n1,

    and

    Iα1;ΨrDα1;Ψrϰ(ς)=ϰ(ς)+W0+W1(Ψ(ς)Ψ(r))+W2(Ψ(ς)Ψ(r))2++Wn1(Ψ(ς)Ψ(r))n1,

    with WR, {0,1,,n1}.

    Furthermore,

    Dα1;ΨrIα1;Ψrϰ(ς)=ϰ(ς),

    and

    Iα1;ΨrIα2;Ψrϰ(ς)=Iα2;ΨrIα1;Ψrϰ(ς)=Iα1+α2;Ψrϰ(ς).

    Here we will deal with the FDE solution of (1.1) and (1.2), by considering the solution of

    Dν;ψrϰ(ς)=h(ς), (2.1)

    bounded by the condition (1.2). We set

    Δ:=Ψ()Ψ(r)Σm2i=1ζi(Ψ(ηi)Ψ(r)).

    Lemma 2.3. Let ν(1,2] and ς[r,]. Then, the FBVP (2.1) and (1.2) have a solution ϰ of the form

    ϰ(ς)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+rϖ(ς,τ)h(τ)Ψ(τ)dτ,

    where

    ϖ(ς,τ)=1Γ(ν){[(Ψ()Ψ(r))ν1Σm2j=iζj(Ψ(ηj)Ψ(τ))ν1]Ψ(ς)Ψ(r)Δ(Ψ(ς)Ψ(τ))ν1,τς,ηi1<τηi,[(Ψ()Ψ(τ))ν1Σm2j=iζj(Ψ(ηj)Ψ(τ))ν1]Ψ()Ψ(r)Δ,ςτ,ηi1<τηi, (2.2)

    i=1,2,...,m2.

    Proof. According to the Lemma 2.2 the solution of Dν;ψrϰ(ς)=h(ς) is given by

    ϰ(ς)=1Γ(ν)ςr(Ψ(ς)Ψ(τ))ν1h(τ)Ψ(τ)dτ+c0+c1(Ψ(ς)Ψ(r)), (2.3)

    where c0,c1R. Since ϰ(r)=ϑ1 and ϰ()=m2i=1ζiϰ(ηi)+ϑ2, we get c0=ϑ1 and

    c1=1Δ(1Γ(ν)m2i=1ζiηjr(Ψ(ηi)Ψ(τ))ν1h(τ)Ψ(τ)dτ+1Γ(ν)r(Ψ()Ψ(τ))ν1h(τ)Ψ(τ)dτ+ϑ1[m2i=1ζi1]+ϑ2).

    By substituting c0,c1 into Eq (2.3) we find,

    ϰ(ς)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+(Ψ(ς)Ψ(r))Δϑ21Γ(ν)(ςr(Ψ(ς)Ψ(τ))ν1h(τ)Ψ(τ)dτ+(Ψ(ς)Ψ(r))Δm2i=1ζiηjr(Ψ(ηi)Ψ(τ))ν1h(τ)Ψ(τ)dτΨ(ς)Ψ(r)Δr(Ψ()Ψ(τ))ν1h(τ)Ψ(τ)dτ)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+(Ψ(ς)Ψ(r))Δϑ2+rϖ(ς,τ)h(τ)Ψ(τ)dτ,

    where ϖ(ς,τ) is given by (2.2). Hence the required result.

    Lemma 2.4. If 0<m2i=1ζi<1, then

    i) Δ>0,

    ii) (Ψ()Ψ(τ))ν1m2j=iζj(Ψ(ηj)Ψ(τ))ν1>0.

    Proof. i) Since ηi<, we have

    ζi(Ψ(ηi)Ψ(r))<ζi(Ψ()Ψ(r)),
    m2i=1ζi(Ψ(ηi)Ψ(r))>m2i=1ζi(Ψ()Ψ(r)),
    Ψ()Ψ(r)m2i=1ζi(Ψ(ηi)Ψ(r))>Ψ()Ψ(r)m2i=1ζi(Ψ()Ψ(r))=(Ψ()Ψ(r))[1m2i=1ζi].

    If 1Σm2i=1ζi>0, then (Ψ()Ψ(r))Σm2i=1ζi(Ψ(ηi)Ψ(r))>0. So we have Δ>0.

    ii) Since 0<ν11, we have (Ψ(ηi)Ψ(τ))ν1<(Ψ()Ψ(τ))ν1. Then we obtain

    m2j=iζj(Ψ(ηj)Ψ(τ))ν1<m2j=iζj(Ψ()Ψ(τ))ν1(Ψ()Ψ(τ))ν1m2i=1ζi<(Ψ()Ψ(τ))ν1,

    and so

    (Ψ()Ψ(τ))ν1m2j=iζj(Ψ(ηj)Ψ(τ))ν1>0.

    Remark 2.1. Note that rϖ(ς,τ)Ψ(τ)dτ is bounded ς[r,]. Indeed

    r|ϖ(ς,τ)|Ψ(τ)dτ1Γ(ν)ςr(Ψ(ς)Ψ(τ))ν1Ψ(τ)dτ+Ψ(ς)Ψ(r)Γ(ν)Δm2i=1ζiηir(Ψ(ηj)Ψ(τ))ν1Ψ(τ)dτ+Ψ(ς)Ψ(r)ΔΓ(ν)r(Ψ()Ψ(τ))ν1Ψ(τ)dτ=(Ψ(ς)Ψ(r))νΓ(ν+1)+Ψ(ς)Ψ(r)ΔΓ(ν+1)m2i=1ζi(Ψ(ηi)Ψ(r))ν+Ψ(ς)Ψ(r)ΔΓ(ν+1)(Ψ()Ψ(r))ν(Ψ()Ψ(r))νΓ(ν+1)+Ψ()Ψ(r)ΔΓ(ν+1)m2i=1ζi(Ψ(ηi)Ψ(r))ν+(Ψ()Ψ(r))ν+1ΔΓ(ν+1)=M. (2.4)

    Remark 2.2. Suppose Υ(ς)L1[r,], and w(ς) verify

    {Dν;ψrw(ς)+Υ(ς)=0,w(r)=0, w()=Σm2i=1ζiw(ηi), (2.5)

    then w(ς)=rϖ(ς,τ)Υ(τ)Ψ(τ)dτ.

    Next we recall the Schauder fixed point theorem.

    Theorem 2.1. [23] [SFPT] Consider the Banach space Ω. Assume bounded, convex, closed subset in Ω. If ϝ: is compact, then it has a fixed point in .

    We start this section by listing two conditions which will be used in the sequel.

    (Σ1) There exists a nonnegative function ΥL1[r,] such that rΥ(ς)dς>0 and F(ς,ϰ,v)Υ(ς) for all (ς,ϰ,v)[r,]×R×R.

    (Σ2) G(ς,ϰ,v)0, for (ς,ϰ,v)[r,]×R×R.

    Let =C([r,],R) the Banach space of CFs (continuous functions) with the following norm

    ϰ=sup{|ϰ(ς)|:ς[r,]}.

    First of all, it seems that the FDE below is valid

    Dν;ψrϰ(ς)+G(ς,ϰ(ς),ϰ(r+λς))=0, ς[r,]. (3.1)

    Here the existence of solution satisfying the condition (1.2), such that G:[r,]×R×RR

    G(ς,z1,z2)={F(ς,z1,z2)+Υ(ς), z1,z20,F(ς,0,0)+Υ(ς), z10 or z20, (3.2)

    and ϰ(ς)=max{(ϰw)(ς),0}, hence the problem (2.5) has w as unique solution. The mapping Q: accompanied with the (3.1) and (1.2) defined as

    (Qϰ)(ς)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+rϖ(ς,τ)G(ς,ϰ(τ),ϰ(r+λτ))Ψ(τ)dτ, (3.3)

    where the relation (2.2) define ϖ(ς,τ). The existence of solution of the problems (3.1) and (1.2) give the existence of a fixed point for Q.

    Theorem 3.1. Suppose the conditions (Σ1) and (Σ2) hold. If there exists ρ>0 such that

    [1+Σm2i=1ζi1Δ(Ψ()Ψ(r))]ϑ1+Ψ()Ψ(r)Δϑ2+LMρ,

    where Lmax{|G(ς,ϰ,v)|:ς[r,], |ϰ|,|v|ρ} and M is defined in (2.4), then, the problems (3.1) and (3.2) have a solution ϰ(ς).

    Proof. Since P:={ϰ:ϰρ} is a convex, closed and bounded subset of B described in the Eq (3.3), the SFPT is applicable to P. Define Q:P by (3.3). Clearly Q is continuous mapping. We claim that range of Q is subset of P. Suppose ϰP and let ϰ(ς)ϰ(ς)ρ, ς[r,]. So

    |Qϰ(ς)|=|[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+rϖ(ς,τ)G(τ,ϰ(τ),ϰ(r+λτ))Ψ(τ)dτ|[1+Σm2i=1ζi1Δ(Ψ()Ψ(r))]ϑ1+Ψ()Ψ(r)Δϑ2+LMρ,

    for all ς[r,]. This indicates that Qϰρ, which proves our claim. Thus, by using the Arzela-Ascoli theorem, Q: is compact. As a result of SFPT, Q has a fixed point ϰ in P. Hence, the problems (3.1) and (1.2) has ϰ as solution.

    Lemma 3.1. ϰ(ς) is a solution of the FBVP (1.1), (1.2) and ϰ(ς)>w(ς) for every ς[r,] iff the positive solution of FBVP (3.1) and (1.2) is ϰ=ϰ+w.

    Proof. Let ϰ(ς) be a solution of FBVP (3.1) and (1.2). Then

    ϰ(ς)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+(Ψ(ς)Ψ(r))Δϑ2+1Γ(ν)rϖ(ς,τ)G(τ,ϰ(τ),ϰ(r+λτ))Ψ(τ)dτ=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+1Γ(ν)rϖ(ς,τ)(F(τ,ϰ(τ),ϰ(r+λτ))+p(τ))Ψ(τ)dτ=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+1Γ(ν)rϖ(ς,τ)F(τ,(ϰw)(τ),(ϰw)(r+λτ))Ψ(τ)dτ+1Γ(ν)rϖ(ς,τ)p(τ)Ψ(τ)dτ=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+1Γ(ν)rϖ(ς,τ)G(τ,(ϰw)(τ),(ϰw)(r+λτ))Ψ(τ)dτ+w(ς).

    So,

    ϰ(ς)w(ς)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+1Γ(ν)rϖ(ς,τ)F(τ,(ϰw)(τ),(ϰw)(r+λτ))Ψ(τ)dτ.

    Then we get the existence of the solution with the condition

    ϰ(ς)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+1Γ(ν)rϖ(ς,τ)F(τ,ϰ(τ),ϰ(r+λτ))Ψ(τ)dτ.

    For the converse, if ϰ is a solution of the FBVP (1.1) and (1.2), we get

    Dν;ψr(ϰ(ς)+w(ς))=Dν;ψrϰ(ς)+Dν;ψrw(ς)=F(ς,ϰ(ς),ϰ(r+λς))p(ς)=[F(ς,ϰ(ς),ϰ(r+λς))+p(ς)]=G(ς,ϰ(ς),ϰ(r+λς)),

    which leads to

    Dν;ψrϰ(ς)=G(ς,ϰ(ς),ϰ(r+λς)).

    We easily see that

    ϰ(r)=ϰ(r)w(r)=ϰ(r)0=ϑ1,

    i.e., ϰ(r)=ϑ1 and

    ϰ()=m2i=1ζiϰ(ηi)+ϑ2,
    ϰ()w()=m2i=1ζiϰ(ηi)m2i=1ζjw(ηi)+ϑ2=m2i=1ζi(ϰ(ηi)w(ηi))+ϑ2.

    So,

    ϰ()=m2i=1ζiϰ(ηi)+ϑ2.

    Thus ϰ(ς) is solution of the problem FBVP (3.1) and (3.2).

    We propose the given FBVP as follows

    D75ϰ(ς)+F(ς,ϰ(ς),ϰ(1+0.5ς))=0, ς(1,e), (4.1)
    ϰ(1)=1, ϰ(e)=17ϰ(52)+15ϰ(74)+19ϰ(115)1. (4.2)

    Let Ψ(ς)=logς, where F(ς,ϰ(ς),ϰ(1+12ς))=ς1+ςarctan(ϰ(ς)+ϰ(1+12ς)).

    Taking Υ(ς)=ς we get e1ςdς=e212>0, then the hypotheses (Σ1) and (Σ2) hold. Evaluate Δ0.366, M3.25 we also get |G(ς,ϰ,v)|<π+e=L such that |ϰ|ρ, ρ=17, we could just confirm that

    [1+Σm2i=1ζi1Δ(Ψ()Ψ(r))]ϑ1+Ψ()Ψ(r)Δϑ2+LM16.3517. (4.3)

    By applying the Theorem 3.1 there exit a solution ϰ(ς) of the problem (4.1) and (4.2).

    In this paper, we have provided the proof of BVP solutions to a nonlinear Ψ-Caputo fractional pantograph problem or for a semi-positone multi-point of (1.1) and(1.2). What's new here is that even using the generalized Ψ-Caputo fractional derivative, we were able to explicitly prove that there is one solution to this problem, and that in our findings, we utilize the SFPT. The results obtained in our work are significantly generalized and the exclusive result concern the semi-positone multi-point Ψ-Caputo fractional differential pantograph problem (1.1) and (1.2).

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups (RGP.1/350/43).

    The authors declare no conflict of interest.


    Acknowledgments



    This work was supported partially by the National Institutes of Health (NIH) fund (5TL1TR001440-02), for which AY is a predoctoral trainee.

    Conflict of interest



    All authors declare no conflict of interest in this paper.

    [1] Burnside RD (2015) 22q11.21 Deletion Syndromes: A Review of Proximal, Central, and Distal Deletions and Their Associated Features. Cytogenet Genome Res 146: 89-99. doi: 10.1159/000438708
    [2] Gerdes M, Solot C, Wang PP, et al. (1999) Cognitive and behavior profile of preschool children with chromosome 22q11.2 deletion. Am J Med Genet 85: 127-133. doi: 10.1002/(SICI)1096-8628(19990716)85:2<127::AID-AJMG6>3.0.CO;2-F
    [3] McDonald-McGinn DM, Hain HS, Emanuel BS, et al. (1993) 22q11.2 Deletion Syndrome. GeneReviews((R)) Seattle (WA): University of Washington, Seattle.
    [4] McDonald-McGinn DM, Sullivan KE, Marino B, et al. (2015) 22q11.2 deletion syndrome. Nat Rev Dis Primers 1: 15071. doi: 10.1038/nrdp.2015.71
    [5] Moss EM, Batshaw ML, Solot CB, et al. (1999) Psychoeducational profile of the 22q11.2 microdeletion: A complex pattern. J Pediatr 134: 193-198. doi: 10.1016/S0022-3476(99)70415-4
    [6] Shprintzen RJ, Goldberg R, Golding-Kushner KJ, et al. (1992) Late-onset psychosis in the velo-cardio-facial syndrome. Am J Med Genet 42: 141-142. doi: 10.1002/ajmg.1320420131
    [7] Leite AJ, Pinto IP, Cunha DM, et al. (2016) The Identification of Microdeletion and Reciprocal Microduplication in 22q11.2 Using High-Resolution CMA Technology. Biomed Res Int 2016: 7415438. doi: 10.1155/2016/7415438
    [8] Davies RW, Fiksinski AM, Breetvelt EJ, et al. (2020) Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome. Nat Med 26: 1912-1918. doi: 10.1038/s41591-020-1103-1
    [9] Homans JF, Tromp IN, Colo D, et al. (2018) Orthopaedic manifestations within the 22q11.2 Deletion syndrome: A systematic review. Am J Med Genet A 176: 2104-2120. doi: 10.1002/ajmg.a.38545
    [10] Rump P, de Leeuw N, van Essen AJ, et al. (2014) Central 22q11.2 deletions. Am J Med Genet A 164A: 2707-2723. doi: 10.1002/ajmg.a.36711
    [11] Verhagen JM, Diderich KE, Oudesluijs G, et al. (2012) Phenotypic variability of atypical 22q11.2 deletions not including TBX1. Am J Med Genet A 158A: 2412-2420. doi: 10.1002/ajmg.a.35517
    [12] Yu A, Turbiville D, Xu F, et al. (2019) Genotypic and phenotypic variability of 22q11.2 microduplications: An institutional experience. Am J Med Genet A 179: 2178-2189. doi: 10.1002/ajmg.a.61345
    [13] Riggs ER, Andersen EF, Cherry AM, et al. (2020) Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med 22: 245-257. doi: 10.1038/s41436-019-0686-8
    [14] Kearney HM, Thorland EC, Brown KK, et al. (2011) Working Group of the American College of Medical Genetics Laboratory Quality Assurance, C. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med 13: 680-685. doi: 10.1097/GIM.0b013e3182217a3a
    [15] Tarquinio DC, Jones MC, Jones KL, et al. (2012) Growth Charts for 22q11 Deletion Syndrome. Am J Med Genet Part A 58: 2672-2681. doi: 10.1002/ajmg.a.35485
    [16] Abd El-Ghany HM, Mekkawy MK, Helmy NA, et al. (2018) Molecular characterization of patients with clinical suspicion of 22q11.2 deletion syndrome. Middle East J Med Genet 7: 32-38.
    [17] Miller DT, Adam MP, Aradhya S, et al. (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86: 749-764. doi: 10.1016/j.ajhg.2010.04.006
    [18] Crowley B, Ruffner M, Mcginn DM, et al. (2018) Variable immune deficiency related to deletion size in chromosome 22q11.2 deletion syndrome. Am J Med Genet A 176: 2082-2086. doi: 10.1002/ajmg.a.38597
    [19] Mikhail FM, Burnside RD, Rush B, et al. (2014) The recurrent distal 22q11.2 microdeletions are often de novo and do not represent a single clinical entity: a proposed categorization system. Genet Med 16: 92-100. doi: 10.1038/gim.2013.79
    [20] Motahari Z, Moody SA, Maynard TM, et al. (2019) In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 11: 7. doi: 10.1186/s11689-019-9267-z
    [21] Zhao Y, Guo T, Fiksinski A, et al. (2018) Variance of IQ is partially dependent on deletion type among 1,427 22q11.2 deletion syndrome subjects. Am J Med Genet A 176: 2172-2181. doi: 10.1002/ajmg.a.40359
    [22] Cirillo E, Giardino G, Gallo V, et al. (2014) Intergenerational and intrafamilial phenotypic variability in 22q11.2 deletion syndrome subjects. BMC Med Genet 15: 1. doi: 10.1186/1471-2350-15-1
    [23] Ramachandran D, Mulle JG, Locke AE, et al. (2015) Contribution of copy-number variation to Down syndrome-associated atrioventricular septal defects. Genet Med 17: 554-560. doi: 10.1038/gim.2014.144
    [24] Guo T, Diacou A, Nomaru H, et al. (2018) Deletion size analysis of 1680 22q11.2DS subjects identifies a new recombination hotspot on chromosome 22q11.2. Hum Mol Genet 27: 1150-1163. doi: 10.1093/hmg/ddy028
    [25] Das Chakraborty R, Bernal AJ, Schoch K, et al. (2012) Dysregulation of DGCR6 and DGCR6L: psychopathological outcomes in chromosome 22q11.2 deletion syndrome. Transl Psychiatry 2: e105. doi: 10.1038/tp.2012.31
    [26] Du Q, de la Morena MT, van Oers NSC (2019) The Genetics and Epigenetics of 22q11.2 Deletion Syndrome. Front Genet 10: 1365. doi: 10.3389/fgene.2019.01365
    [27] Jacquet H, Raux G, Thibaut F, et al. (2002) PRODH mutations and hyperprolinemia in a subset of schizophrenic patients. Hum Mol Genet 11: 2243-2249. doi: 10.1093/hmg/11.19.2243
    [28] Kempf L, Nicodemus KK, Kolachana B, et al. (2008) Functional polymorphisms in PRODH are associated with risk and protection for schizophrenia and fronto-striatal structure and function. PLoS Genet 4: e1000252. doi: 10.1371/journal.pgen.1000252
    [29] Namavar Y, Duineveld DJ, Both GIA, et al. (2021) Psychiatric phenotypes associated with hyperprolinemia: A systematic review. Am J Med Genet B Neuropsychiatr Genet 186: 289-317. doi: 10.1002/ajmg.b.32869
    [30] Raux G, Bumsel E, Hecketsweiler B, et al. (2007) Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Hum Mol Genet 16: 83-91. doi: 10.1093/hmg/ddl443
    [31] Richard AC, Rovelet-Lecrux A, Delaby E, et al. (2016) The 22q11 PRODH/DGCR6 deletion is frequent in hyperprolinemic subjects but is not a strong risk factor for ASD. Am J Med Genet B Neuropsychiatr Genet 171B: 377-382. doi: 10.1002/ajmg.b.32416
    [32] Fiksinski AM, Schneider M, Murphy CM, et al. (2018) Understanding the pediatric psychiatric phenotype of 22q11.2 deletion syndrome. Am J Med Genet A 176: 2182-2191. doi: 10.1002/ajmg.a.40387
    [33] Niklasson L, Rasmussen P, Oskarsdottir S, et al. (2009) Autism, ADHD, mental retardation and behavior problems in 100 individuals with 22q11 deletion syndrome. Res Dev Disabil 30: 763-773. doi: 10.1016/j.ridd.2008.10.007
    [34] Serur Y, Sofrin Frumer D, Daon K, et al. (2019) Psychiatric disorders and autism in young children with 22q11.2 deletion syndrome compared to children with idiopathic autism. Eur Psychiatry 55: 116-121. doi: 10.1016/j.eurpsy.2018.10.007
    [35] Taylor LE, Kates WR, Fremont W, et al. (2018) Young Adult Outcomes for Children With 22q11 Deletion Syndrome and Comorbid ADHD. J Pediatr Psychol 43: 636-644. doi: 10.1093/jpepsy/jsy002
    [36] Schindewolf E, Khalek N, Johnson MP, et al. (2018) Expanding the fetal phenotype: Prenatal sonographic findings and perinatal outcomes in a cohort of patients with a confirmed 22q11.2 deletion syndrome. Am J Med Genet A 176: 1735-1741. doi: 10.1002/ajmg.a.38665
    [37] Beleza-Meireles A, Clayton-Smith J, Saraiva JM, et al. (2014) Oculo-auriculo-vertebral spectrum: a review of the literature and genetic update. J Med Genet 51: 635-645. doi: 10.1136/jmedgenet-2014-102476
    [38] Bogusiak K, Puch A, Arkuszewski P (2017) Goldenhar syndrome: current perspectives. World J Pediatr 13: 405-415. doi: 10.1007/s12519-017-0048-z
    [39] Spineli-Silva S, Bispo LM, Gil-da-Silva-Lopes VL, et al. (2018) Distal deletion at 22q11.2 as differential diagnosis in Craniofacial Microsomia: Case report and literature review. Eur J Med Genet 61: 262-268. doi: 10.1016/j.ejmg.2017.12.013
    [40] Spineli-Silva S, Sgardioli IC, Dos Santos AP, et al. (2020) Genomic imbalances in craniofacial microsomia. Am J Med Genet C Semin Med Genet 184: 970-985. doi: 10.1002/ajmg.c.31857
    [41] Rozas MF, Benavides F, Leon L, et al. (2019) Association between phenotype and deletion size in 22q11.2 microdeletion syndrome: systematic review and meta-analysis. Orphanet J Rare Dis 14: 195. doi: 10.1186/s13023-019-1170-x
    [42] Hiroi N, Takahashi T, Hishimoto A, et al. (2013) Copy number variation at 22q11.2: from rare variants to common mechanisms of developmental neuropsychiatric disorders. Mol Psychiatry 18: 1153-1165. doi: 10.1038/mp.2013.92
    [43] Jensen M, Kooy RF, Simon TJ, et al. (2018) A higher rare CNV burden in the genetic background potentially contributes to intellectual disability phenotypes in 22q11.2 deletion syndrome. Eur J Med Genet 61: 209-212. doi: 10.1016/j.ejmg.2017.11.016
    [44] Mlynarski EE, Xie M, Taylor D, et al. (2016) Rare copy number variants and congenital heart defects in the 22q11.2 deletion syndrome. Hum Genet 135: 273-285. doi: 10.1007/s00439-015-1623-9
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3143) PDF downloads(140) Cited by(3)

Figures and Tables

Figures(1)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog