In this paper, we establish a quadratic integral inequality involving the second order derivative of functions in the following form: for all $ f\in D $,
$ \begin{eqnarray} \int_{a}^{b}{r|f''|^{2}+p|f'|^{2}+q|f|^{2}}\geq\mu_{0}\int_{a}^{b}|f|^{2}. \end{eqnarray} $
Here $ r, p, q $ are real- valued coefficient functions on the compact interval $ [a, b] $ with $ r(x) > 0 $. $ D $ is a linear manifold in the Hilbert function space $ L^{2}(a, b) $ such that all integrals of the above inequality are finite and $ \mu_{0} $ is a real number that can be determined in terms of the spectrum of a uniquely determined self adjoint differential operator in $ L^{2}(a, b) $. The inequality is the best possible, i.e., the number $ \mu_{0} $ cannot be increased. $ f $ is a complex-valued function in $ D. $
Citation: Moumita Bhattacharyya, Shib Sankar Sana. A second order quadratic integral inequality associated with regular problems[J]. Mathematical Modelling and Control, 2024, 4(1): 141-151. doi: 10.3934/mmc.2024013
In this paper, we establish a quadratic integral inequality involving the second order derivative of functions in the following form: for all $ f\in D $,
$ \begin{eqnarray} \int_{a}^{b}{r|f''|^{2}+p|f'|^{2}+q|f|^{2}}\geq\mu_{0}\int_{a}^{b}|f|^{2}. \end{eqnarray} $
Here $ r, p, q $ are real- valued coefficient functions on the compact interval $ [a, b] $ with $ r(x) > 0 $. $ D $ is a linear manifold in the Hilbert function space $ L^{2}(a, b) $ such that all integrals of the above inequality are finite and $ \mu_{0} $ is a real number that can be determined in terms of the spectrum of a uniquely determined self adjoint differential operator in $ L^{2}(a, b) $. The inequality is the best possible, i.e., the number $ \mu_{0} $ cannot be increased. $ f $ is a complex-valued function in $ D. $
[1] | R. J. Amos, W. N. Everitt, On a qurdratic integral inequality, Proc. R. Soc. Edinburgh, 78 (1978), 241–256. https://doi.org/10.1017/S0308210500009987 doi: 10.1017/S0308210500009987 |
[2] | J. S. Bradley, W. N. Everitt, Inequalities associated with regular and singular problems in the Calculus of variations, Trans. Amer. Math. Soc., 182 (1973), 303–321. https://doi.org/10.1090/S0002-9947-1973-0330606-8 doi: 10.1090/S0002-9947-1973-0330606-8 |
[3] | J. S. Bradley, W. N. Everitt, A singular integral inequality on a bounded interval, Proc. Amer. Math. Soc., 61 (1976), 29–35. https://doi.org/10.1090/S0002-9939-1976-0425249-X doi: 10.1090/S0002-9939-1976-0425249-X |
[4] | L. Elsgolts, Differential equations and the calculus of variations, Mir Publishers, 2003. |
[5] | M. A. Naimark, Linear differential operators: elementary theory of linear differential operators, Harrap, 1968. |
[6] | G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, 1934. |
[7] | Rudin, Priciples of mathematical analysis, McGraw-Hill, 1964. https://doi.org/10.2307/3608793 |
[8] | N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, Courier Corporation, 1964. https://doi.org/10.2307/3613994 |
[9] | N. Dunford, J. T.Schwartz, Linear operators, Spectral Theory, 2 (1963), 859–1923. |
[10] | J. S. Bradley, Adjoint quasi-differential operators of Euler type, Pacific J. Math., 16 (1966), 213–237. https://doi.org/10.2140/PJM.1966.16.213 doi: 10.2140/PJM.1966.16.213 |
[11] | J. Chaudhari, W. N. Everitt, On the spectrum of ordinary second-order differential operators, Proc. R. Soc. Edinburgh, 68 (1969), 95–119. https://doi.org/10.1017/S0080454100008293 doi: 10.1017/S0080454100008293 |
[12] | W. N. Everitt, Self-adjoint boundary value problems on finite intervals, J. London Math. Soc., 37 (1962), 372–384. https://doi.org/10.1112/jlms/s1-37.1.372 doi: 10.1112/jlms/s1-37.1.372 |
[13] | W. N. Everitt, A note on the self-adjoint domains of second-order differential expressions, Quart. J. Math., 14 (1963), 41–45. https://doi.org/10.1093/qmath/14.1.41 doi: 10.1093/qmath/14.1.41 |
[14] | I. Halperin, Closures and adjoints of linear differential operators, Ann. Math., 38 (1937), 880–919. https://doi.org/10.2307/1968845 doi: 10.2307/1968845 |
[15] | W. N. Everitt, An integral inequality with an application to ordinary differential operators, Proc. R. Soc., 80 (1978), 35–44. https://doi.org/10.1017/S0308210500010118 doi: 10.1017/S0308210500010118 |
[16] | H. Najar, M. Zahri, Self-adjointness and spectrum of Stark operators on finite intervals, arXiv, 2017 https://doi.org/10.48550/arXiv.1708.08685 |
[17] | A. Gorinov, V. Mikhailets, K. Pankrashkin, Formally self-adjoint quasi-differential operators and boundary-value problems, arXiv, 2012. https://doi.org/10.48550/arXiv.1205.1810 |
[18] | A. Wang, A. Zettl, Self-adjoint Sturm-Liouville problems with discontinuous boundary conditions, Meth. Appl. Anal., 22 (2015), 37–66. https://doi.org/10.4310/MAA.2015.v22.n1.a2 doi: 10.4310/MAA.2015.v22.n1.a2 |
[19] | S. Goldberg, Unbounded linear operators: theory and applications, McGraw-Hill, 1966. |
[20] | M. Bhattacharyya, J. Sett, On an extension of an integral inequality by Hardy, Littlewood and Polya to an integral inequality involving fourth order derivative, Bull. Calcutta Math. Soc., 109 (2017), 237–248. |
[21] | M. Bhattacharyya, S. S. Sana, An integral inequality with two parameters, Far East J. Appl. Math., 111 (2021), 97–114. https://doi.org/10.17654/0972096021003 doi: 10.17654/0972096021003 |
[22] | S. S. Dragomir, Y. H. Kim, On certain new integral inequalities and their applications, J. Inequal. Pure Appl. Math., 3 (2002), 65. |
[23] | S. S. Dragomir, Y. H. Kim, Some integral inequalities for function of two variables, Elect. J. Differ. Equations, 10 (2003), 1–13. |
[24] | Z. Liu, Some Ostrowski type inequalities, Math. Comput. Modell., 48 (2008), 949–960. https://doi.org/10.1016/j.mcm.2007.12.004 doi: 10.1016/j.mcm.2007.12.004 |
[25] | B. Çelik, M. Ç. Gürbüz, M. E. Özdemir, E. Set, On integral inequalities related to the weighted and the extended Chebyshev functionals involving different fractional operators, J. Inequal. Appl., 2020 (2020), 246. https://doi.org/10.1186/s13660-020-02512-8 doi: 10.1186/s13660-020-02512-8 |