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Abstract: In this paper, we establish a quadratic integral inequality involving the second order derivative of functions in the following
form: for all f ∈ D, ∫ b

a
r| f ′′|2 + p| f ′|2 + q| f |2 ≥ µ0

∫ b

a
| f |2.

Here r, p, q are real- valued coefficient functions on the compact interval [a, b] with r(x) > 0. D is a linear manifold in the Hilbert
function space L2(a, b) such that all integrals of the above inequality are finite and µ0 is a real number that can be determined in terms of
the spectrum of a uniquely determined self adjoint differential operator in L2(a, b). The inequality is the best possible, i.e., the number
µ0 cannot be increased. f is a complex-valued function in D.
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1. Introduction

In this paper, we establish a quadratic integral inequality
which involves the second order derivative of functions. The
integral inequality is given as below: for all f ∈ D,∫ b

a
r| f ′′|2 + p| f ′|2 + q| f |2 ≥ µ0

∫ b

a
| f |2. (1.1)

Here r, p, q are real valued coefficient functions on the
compact interval [a, b] with r(x) > 0. D is a linear manifold
in the Hilbert function space L2(a, b) such that all integrals
of the above inequality are finite and µ0 is a real number
that can be determined in terms of the spectrum of a self
adjoint differential operator in L2(a, b). The inequality is the
best possible, i.e., the number µ0 cannot be increased. f is a
complex-valued function in D.
The above inequality is an extension of the following

integral inequality:∫ b

a
p| f ′|2 + q| f |2 ≥ µ

∫ b

a
| f |2, f ∈ D, (1.2)

where p and q are given real- valued coefficient functions
defined on the interval of integration such that p(x) > 0, f

is a complex-valued function in a linear manifold D of the
Hilbert function space L2(a, b) where all integrals of (1.2)
are finite, and µ is a real number that can be characterized in
terms of the spectrum of a uniquely determined self adjoint
differential operator in L2(a, b). The inequality is best
possible, i.e., the number µ cannot be increased and all cases
of equality are characterized again in terms of the properties
of the differential operator in L2(a, b). Our objective for
this paper is to extend the inequality (1.2) to an integral
inequality which involves the second -order derivative of
functions instead of the first order. A differential operator
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associated with inequality (1.1) is introduced by minimizing
the functional in the calculus of variations.

The inequality (1.2) is established in [1–3] under different
conditions. In [2], the authors established the quadratic
integral inequality (1.2) for the interval of integration −∞ <
a < b ≤ ∞ where the problem is called regular when
b < ∞ and singular when b = ∞. In fact, we have singular
problems associated with inequality (1.2) for either of the
following cases:
i) b = ∞; or

ii) p−1 does not belong to L(a, b).

In [3], the inequality holds for singular problems on a
bounded interval [a, b], but in that case the other condition
for singular problems holds. In [1], the quadratic integral
inequality (1.2) is established for the interval of integration
[a, b) by using a new and much improved method compared
to that established in [2], where −∞ < a < b ≤ ∞.

In the present article, singular problems associated with
inequality (1.1) occurs for either of the following cases:

i) b = ∞; or
ii) r−1 does not belong to L(a, b).

In the present paper b < ∞ is considered. The positivity
condition and absolute continuous property of r(x) on [a, b]
together imply that r−1 belongs to L(a, b). Thus, the problem
is regular. Here, the differential operator associated with
inequality (1.1) is introduced by minimizing the functional
{r| f ′′|2 + p| f ′|2 + q| f |2} in the calculus of variations. Euler-
Poisson equation [4] for existence of an extremal for such a
problem for n = 2 is given by

Fy −
d
dx

(Fy′ ) +
d2

dx2 (Fy′′ ) = 0. (1.3)

For the functional {r| f ′′|2+ p| f ′|2+q| f |2}, the Eq (1.3) yields

(ry′′)′′ − (py′)′ + qy = 0. (1.4)

Now, we define the differential operator associated with
inequality (1.1) by

M(y) = λy, (1.5)

where λ is a parameter and M is the fourth order differential
equation such that

M(y) = (ry′′)′′ − (py′)′ + qy. (1.6)

Here in Section 2.1, we state the basic conditions on the
coefficients r, p, q that are required for the establishment of
our result. In Section 2.2, we first compress the domain of
the operator M so that in the contracted domain the operator
M is a closed symmetric operator, hence, it has a self-adjoint
extension [5], we then derive the domain of the self-adjoint
extension. In Section 2.3, we define three linear manifolds
∆,D,D to show differences in the domains of the operator.
We define the self adjoint differential operator Tα,β,γ,δ in
Section 2.4.

Spectral theory of self adjoint differential operators, the
theory of Lebesgue integration and absolute continuity,
and also some results from the calculus of variations
are different pillars of our results. The knowledge of
integral inequalities that depend upon Lebesgue integration
and absolute continuity are adopted here from the books
“Inequalities” by Hardy et al. [6] and “Priciples of
mathematical analysis” by Rudin [7]. The ideas of ordinary
quasi- differential expressions and operators and the spectral
theory of self adjoint differential operators are found in
the books by Akhiezer and Glazman [8], Naimark [5] and
Dunford and Schwartz [9]. The concept of the Euler-
Poisson equation for minimizing a functional involving the
second- order derivative of functions can be found in the
book by Elsgolts [4]. There are also references of some
other books. Some earlier works on self adjoint differential
operators and their associated spectrum are detailed in
the papers [2, 9–14]. The quadratic integral inequalities
associated with regular and singular problems involving the
first-order derivative of functions are detailed [1–3], and an
application of a quadratic integral inequality involving the
first-order derivative of functions associated with self adjoint
differential operator can be found in [15]. Some recent
works on self-adjoint differential operators are detailed
in [16–18]. Regarding self adjoint differential operators, we
are concerned with semi bounded operators; the theory of
unbounded linear operators is described in [19].

Some recent works on integral inequalies may be found
in [20–25], although the results therein are not directly
related to our results.

In Section 3, we prove inequality (1.1) by using a theorem
named Theorem 1. We first prove the inequality (1.1) in
a subset D( π2 ,

π
2 ,
π
2 ,
π
2 ) of the domain D; we then extend
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it to the larger set D. For this extension, we establish a
lemma, named Lemma 1, and, using this lemma, we extend
the inequality (1.1) from D( π2 ,

π
2 ,
π
2 ,
π
2 ) to the domain D.

There is an explicit application of the spectral theory of
self adjoint differential operators in our results. Establishing
the boundary conditions and the construction of the domain
of the self adjoint operator that satisfies these boundary
conditions also play significant roles.

2. Basic conditions on the coefficients and construction
of the self adjoint differential operator

2.1. Basic conditions on the coefficients r, p, q

In this section, we state the basic conditions on the real-
valued coefficient functions r, p, q which are required for our
results.

Let the following basic conditions hold for the given
real valued coefficient functions r, p and q on a closed and
bounded interval [a, b] (for detail explanation, see [5]):

i) r, r′ both are absolutely continuous on [a, b] with r(x) > 0
on [a, b] and r′′(x) ∈ L2(a, b);

ii) p is absolutely continuous on [a,b] and p′(x) ∈ L2(a, b);

iii) q ∈ L(a, b).

2.2. Construction of the domain of the self adjoint

extension

For a given function y, the self adjointness of the
differential expression (ry′′)′′ − (py′)′ + qy is ensured from
the basic conditions on the coefficients r, p, q assumed in
Section 2.1.

The differential operator

M[y] = (ry′′)′′ − (py′)′ + qy

for a given function y, defined in the previous section,
is regular on [a,b]. In order to define such an operator,
the necessary conditions are that all quasi-derivatives y[k],
k = 0, 1, 2, 3 should be absolutely continuous on every
subinterval [α, β] of (a,b) and M[y] ∈ L2(a, b). Now, these
conditions are clearly true when the the basic conditions on
the coefficient functions r, p, q hold.

The quasi derivatives y[k] are defined as follows:

y[0] = y, y[1] = y′,

y[2] = ry′′, y[3] = py′ − (ry′′)′.

Let D0 be the set of all functions y(x) which satisfy the
conditions

y[k](a) = y[k](b), k = 0, 1, 2, 3

and M0 is the restriction of the operator M to D0, i.e., the
operator M0 has the domain D0 and is defined by

M0(y) = M(y)

for every y ∈ D0. Now, the operator M0, being regular,
becomes closed symmetric and adjoint to M0; hence, M0

has a self adjoint extension [5].

Every self adjoint extension Mu of the operator M0 is
determined by the following linearly independent boundary
conditions (for more details, see [5]):

k=2n∑
k=1

α jky[k−1](a) +
k=2n∑
k=1

β jky[k−1](b) = 0, j = 1, 2, ..., 2n (2.1)

and

v=n∑
v=1

α jvᾱk,2n−v+1 −

v=n∑
v=1

α j,2n−v+1ᾱkv

=

v=n∑
v=1

β jvβ̄k,2n−v+1 −

v=n∑
v=1

β j,2n−v+1β̄kv. (2.2)

In our problem, for n = 2, the above two Eqs (2.1) and (2.2)
take the forms (2.3) and (2.4), respectively:

k=4∑
k=1

α jky[k−1](a) +
k=2n∑
k=1

β jky[k−1](b) = 0, j = 1.2, 3, 4 (2.3)

and

v=2∑
v=1

α jvᾱk,5−v −

v=2∑
v=1

α j,5−vᾱkv

=

v=2∑
v=1

β jvβ̄k,5−v −

v=2∑
v=1

β j,5−vβ̄kv, k = 1.2, 3, 4. (2.4)

Equation (2.3) gives 4 sets of equations for j = 1, 2, 3 and 4,
respectively.
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For j = 1, (2.3) gives

α11y(a) + α12y[1](a) + α13y[2](a) + α14y[3](a)

+ β11y(b) + β12y[1](b) + β13y[2](b) + β14y[3](b) = 0. (2.5)

For j = 2, (2.3) gives

α21y(a) + α22y[1](a) + α23y[2](a) + α24y[3](a) + β21y(b)

+ β22y[1](b) + β23y[2](b) + β24y[3](b) = 0. (2.6)

For j = 3, (2.3) gives

α31y(a) + α32y[1](a) + α33y[2](a) + α34y[3](a) + β31y(b)

+ β32y[1](b) + β33y[2](b) + β34y[3](b) = 0. (2.7)

For j = 4, (2.3) gives

α41y(a) + α42y[1](a) + α43y[2](a) + α44y[3](a)

+ β41y(b) + β42y[1](b) + β43y[2](b) + β44y[3](b) = 0. (2.8)

Again, for each j = 1, 2, 3, 4 from (2.4), we have four
different cases for k = 1, 2, 3, 4, respectively. There are
similar results for j = 2, j = 3, and j = 4.

Thus, Eq (2.4) generates 16 different conditions which are
given below: for j = 1; k = 1,

α11ᾱ14 + α12ᾱ13 − α14ᾱ11 − α13ᾱ12

= β11β̄14 + β12β̄13 − β14β̄11 − β13β̄12. (2.9)

For j = 1; k = 2,

α11ᾱ24 + α12ᾱ23 − α14ᾱ21 − α13ᾱ22

= β11β̄24 + β12β̄23 − β14β̄21 − β13β̄22. (2.10)

For j = 1; k = 3,

α11ᾱ34 + α12ᾱ33 − α14ᾱ31 − α13ᾱ32

= β11β̄34 + β12β̄33 − β14β̄31 − β13β̄32. (2.11)

For j = 1; k = 4,

α11ᾱ44 + α12ᾱ43 − α14ᾱ41 − α13ᾱ42

= β11β̄44 + β12β̄43 − β14β̄41 − β13β̄42. (2.12)

For j = 2; k = 1,

α21ᾱ14 + α22ᾱ13 − α24ᾱ11 − α23ᾱ12

= β21β̄14 + β22β̄13 − β24β̄11 − β23β̄12. (2.13)

For j = 2; k = 2,

α21ᾱ24 + α22ᾱ23 − α24ᾱ21 − α23ᾱ22

= β21β̄24 + β22β̄23 − β24β̄21 − β23β̄22. (2.14)

For j = 2; k = 3,

α21ᾱ34 + α22ᾱ33 − α24ᾱ31 − α23ᾱ32

= β21β̄34 + β22β̄33 − β24β̄31 − β23β̄32. (2.15)

For j = 2; k = 4,

α21ᾱ44 + α22ᾱ43 − α24ᾱ41 − α23ᾱ42

= β21β̄44 + β22β̄43 − β24β̄41 − β23β̄42. (2.16)

For j = 3; k = 1,

α31ᾱ14 + α32ᾱ13 − α34ᾱ11 − α33ᾱ12

= β31β̄14 + β32β̄13 − β34β̄11 − β33β̄12. (2.17)

For j = 3; k = 2,

α31ᾱ24 + α32ᾱ23 − α34ᾱ21 − α33ᾱ22

= β31β̄24 + β32β̄23 − β34β̄21 − β33β̄22. (2.18)

For j = 3; k = 3,

α31ᾱ34 + α32ᾱ33 − α34ᾱ31 − α33ᾱ32

= β31β̄34 + β32β̄33 − β34β̄31 − β33β̄32. (2.19)

For j = 3; k = 4,

α31ᾱ44 + α32ᾱ43 − α34ᾱ41 − α33ᾱ42

= β31β̄44 + β32β̄43 − β34β̄41 − β33β̄42. (2.20)

For j = 4; k = 1,

α41ᾱ14 + α42ᾱ13 − α44ᾱ11 − α43ᾱ12

= β41β̄14 + β42β̄13 − β44β̄11 − β43β̄12. (2.21)

For j = 4; k = 2,

α41ᾱ24 + α42ᾱ23 − α44ᾱ21 − α43ᾱ22

= β41β̄24 + β42β̄23 − β44β̄21 − β43β̄22. (2.22)

Mathematical Modelling and Control Volume 4, Issue 1, 141–151.



145

For j = 4; k = 3,

α41ᾱ34 + α42ᾱ33 − α44ᾱ31 − α43ᾱ32

= β41β̄34 + β42β̄33 − β44β̄31 − β43β̄32. (2.23)

For j = 4; k = 4,

α41ᾱ44 + α42ᾱ43 − α44ᾱ41 − α43ᾱ42

= β41β̄44 + β42β̄43 − β44β̄41 − β43β̄42. (2.24)

Now, without any loss of generality, we assume that αi j is
not purely imaginary for all i = 1, 2, 3, 4 and j = 1, 2, 3, 4.

Clarly, (2.9), (2.14), (2.19) and (2.24) are unconditionally
true. Thus, (2.10) is true if

β11 = β12 = β13 = β14 = α12 = α13 = α21 = α24 = 0. (2.25)

Hence, (2.5) gives

α11y[0](a) + α14y[3](a) = 0. (2.26)

With the conditions of (2.25), if we include α31 = α34 =

α41 = α44 = 0, then (2.11), (2.12), (2.17), (2.21) and (2.13)
become true. Combining all conditions we have

β11 = β12 = β13 = β14 = α12 = α13 = α21

= α24 = α31 = α34 = α41 = α44 = 0. (2.27)

Now, with (2.27), we include the following conditions to
make (2.15), (2.16), (2.18) and (2.22) valid.

β21 = β22 = β23 = β24 = α32 = α33 = α42 = α43 = 0.

Then from (2.6), we get

α22y[1](a) + α23y[2](a) = 0. (2.28)

Now, with all of the previous conditions, we take

β32 = β41 = β33 = β44 = 0 (2.29)

to make (2.20) and (2.23) valid.
We get the following from (2.7):

β31y[0](b) + β34y[3](b) = 0. (2.30)

We get the following from (2.8):

β42y[1](b) + β43y[2](b) = 0. (2.31)

Hence, we obtain a set of 4 different conditions,
such as, (2.26), (2.28), (2.30) and (2.31), which provide
conditions for the self adjoint extension and act as separated
boundary conditions. For n = 1, we can see the construction
of the domain D(α, β) for self adjoint extension in [1]. We
can also get some other type of boundary condition, i.e.,
periodic boundary conditions. We can obtain it by applying
suitable choices of αi j, βi j, i, j = 1, 2, 3, 4 in a similar way.
Considering separated boundary conditions for the self-
adjoint extension of the domainD, we construct the domain
D(α, β, γ, δ) and define the self adjoint operator T (α, β, γ, δ)
in L2(a, b) with this domain as given in Section 2.3 (ii) of
this paper.

2.3. Construction of the linear manifolds ∆,D,D

In this section we define the following linear manifolds of
the Hilbert function space L2(a, b):

i) ∆ = ∆(r, p, q) = { f ∈ ∆ if f , f , f ′′, f ′′′ all are absolutely
continuous on [a,b] and M[ f ] ∈ L2(a, b)}.

Here, ∆ ⊂ L2(a, b) and f ∈ ∆ implies that all quasi-
derivatives f , f [1], f [2], f [3] are absolutely continuous on
[a,b] under the given basic conditions on the coefficients
r, p, q.

ii) D = (D(α, β, γ, δ) ⊂ ∆) = { f ∈ D :
f ∈ ∆; f ′(a)cos(α) + r(a) f ′′(a)sin(α) = f ′(b)cos(β) +
r(b) f ′′(b)sin(β) = f (a)cos(γ)+ f [3](a)sin(γ) = f (b)cos(δ)+
f [3](b)sin(δ) = 0;α, β, γ, δ ∈ [0, π)},
where

f [3] = p f ′ − (r f ′′)′.

This domain obtains the separated boundary conditions,
such as, (2.26), (2.28), (2.30) and (2.31) given in this paper
in Section 2.2.

iii)

D = D(r, p, q) = { f ∈ D : f ∈ AC[a, b]; f ′, f ′′ ∈ L2(a, b)}.

Here AC[a, b] means absolute continuity on [a, b]. We note
that f ∈ D implies that r

1
2 f ′′, |p|

1
2 f ′, |q|

1
2 f ∈ L2(a, b)

For detailed explanation, see [2, 5].
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2.4. Construction of the associated self adjoint differential

operator

Below, we define the self-adjoint differential operator in
the domainD(α, β, γ, δ).

For each α, β, γ, δ ∈ [0, π), we define an operator such that

T (α, β, γ, δ) : D(α, β, γ, δ)→ L2(a, b)

by

T (α, β, γ, δ)( f ) = M[ f ], f ∈ D = D(α, β, γ, δ).

We see that the differential operator T (α, β, γ, δ) defined in
this way is self adjoint in L2(a, b) [5].

3. The inequality
∫ b

a r| f ′′|2 + p| f ′|2 + q| f |2 ≥ µ0
∫ b

a | f |
2

Below, we state Theorem 3.1 and Lemma 3.1, and we
establish inequality (3.1) by applying Theorem 3.1 and
Lemma 3.1.

Theorem 3.1. The coefficients r, p, q satisfy the basic

conditions given in Section 2.1; also let the linear manifold

D of L2(a, b) be defined as in Section 2.3; then for any

complex-valued function f in D we have the following

inequality:∫ b

a
r| f ′′|2 + p| f ′|2 + q| f |2 ≥ µ0

∫ b

a
| f |2, ( f ∈ D), (3.1)

where µ0 is a real number defined by the smallest eigen

value of the self adjoint differential operator T ( π2 ,
π
2 ,
π
2 ,
π
2 ),

which is bounded below in L2(a, b). The inequality is the

best possible, i.e., the number µ0 cannot be increased.

Lemma 3.1. We suppose that the coefficients r, p, q satisfy

the basic conditions given in Section 2.1. Then for a given

function f in D and ϵ > 0, there exists a function g in

D( π2 ,
π
2 ,
π
2 ,
π
2 ) for which

|

∫ b

a
r| f ′′|2 −

∫ b

a
r|g′′|2| < ϵ,

|

∫ b

a
p| f ′|2 −

∫ b

a
p|g′|2| < ϵ,

|

∫ b

a
q| f |2 −

∫ b

a
q|g|2| < ϵ,

|

∫ b

a
| f |2 −

∫ b

a
|g|2| < ϵ.

3.1. Proof of the inequality (1.1) inD( π2 ,
π
2 ,
π
2 ,
π
2 )

In this section, we establish inequality (3.1) for the
domainD( π2 ,

π
2 ,
π
2 ,
π
2 ).

Now,∫ b

a
r| f ′′|2 + p| f ′|2 + q| f |2

= [r f ′′ f ′]b
a −

∫ b

a
(r f ′′)′ f ′ +

∫ b

a
p f ′ f ′ +

∫ b

a
q| f |2

= [r f ′′ f ′]b
a +

∫ b

a
{(−r f ′′)′ + p f ′} f ′ +

∫ b

a
q| f |2

= [r f ′′ f ′]b
a + [((−r f ′′)′ + p f ′) f ]b

a +

∫ b

a
((r f ′′)′ − p f ′)′ f +

∫ b

a
q f f

= [r f ′′ f ′]b
a + [{(−r f ′′)′ + p f ′} f ]b

a +

∫ b

a
f M[ f ].

Hence,∫ b

a
{r| f ′′|2 + p| f ′|2 + q| f |2}

= [r f ′′ f ′]b
a + [{(−r f ′′)′ + p f ′} f ]b

a +

∫ b

a
f M[ f ]

= [r f ′′ f ′]b
a + [{(−r f ′′)′ + p f ′} f ]b

a +

∫ b

a
fλ f , (3.2)

where we have

M[ f ] = (r f ′′)′′ − (p f ′)′ + q f

from (1.6) and the differential operator M[y] = λy

from (1.5).
When α = β = γ = δ = π

2 , from the construction of
D(α, β, γ, δ) in Section 2.3, we have

r(a) f ′′(a) = r(b) f ′′(b) = f [3](a) = f [3](b) = 0,

where
f [3] = p f ′ − (r f ′′)′.

Hence, for α = β = γ = δ = π2 , from (3.2), it follows that∫ b

a
{r| f ′′|2 + p| f ′|2 + q| f |2} = λ

∫ b

a
| f |2.

In Section 2.4, the differential operator

T (α, β, γ, δ) = M( f )

is defined in a domain in such a way that the operator
becomes a self adjoint operator in L2(a, b). Hence, it has
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a discrete set of eigen- values, which are all real numbers
and have a discrete simple spectrum. Again, the operator
T (α, β, γ, δ) is bounded below in L2(a, b) for r(x) > 0 for all
(α, β, γ, δ), even when q is Lebesgue-integrable; q need not
be bounded below in L2(a, b) [5].

Hence, if µ0 is the smallest eigenvalue of the operator
T ( π2 ,

π
2 ,
π
2 ,
π
2 ) we obtain the following inequality,

∫ b

a
{r| f ′′|2 + p| f ′|2 + q| f |2} = λ

∫ b

a
| f |2 ≥ µ0

∫ b

a
| f |2. (3.3)

3.2. Proof of Lemma 3.1

Let f ∈ D; then, for a given positive number η, we
can choose a continuously differentiable function ϕ with the
property that [5]

ϕ(a) = ϕ′(a) = ϕ′′(a) = ϕ(b) = ϕ′(b) = ϕ′′(b) = 0

and ∫ b

a
| f ′′ − ϕ′|2 < η.

The existence of such a function ϕ is ensured by the fact that
f ∈ D; also, the set of continuously differentiable functions
that vanish with their quasi-derivatives at the end points is
dense in D of L2(a, b).

Now we define a function g(x) by

g(x) = f (a) + (x − a) f ′(a) +
∫ x

a
ϕ′(t)dt. (3.4)

Then

g′(x) = f ′(a) + ϕ(x), g′′(x) = ϕ′(x)

and

g(a) = f (a), g′(a) = f ′(a) + ϕ(a),

i.e., g′(a) = f ′(a) as ϕ(a) = 0.
So, ∫ b

a
| f ′′ − ϕ′|2 < η

implies that ∫ b

a
| f ′′ − g′′|2 < η. (3.5)

Now with the function g being continuously differentiable
on [a,b], and under the basic conditions on the coefficients
r, p, q assumed in this paper, we have g ∈ ∆. Again, we have

that g′′(a) = ϕ′(a) = 0. Similarly g′′(b) = ϕ′(b) = 0 and
ϕ′′(a) = g′′′(a) = ϕ′′(b) = g′′′(b) = 0.

Now, by construction of g, it follows that

g′(a)cos(
π

2
) + r(a)g′′(a)sin(

π

2
) = g′(b)cos(

π

2
) + r(b)g′′(b)sin(

π

2
)

= 0

and

g(a)cos(
π

2
)+g[3](a)sin(

π

2
) = g(b)cos(

π

2
)+g[3](b)sin(

π

2
) = 0,

where

g[3] = pg′ − (rg′′)′.

This implies that g ∈ D( π2 ,
π
2 ,
π
2 ,
π
2 ).

Now, we first assume that f is a real valued function.
Since r(x) is absolutely continuous on [a, b], there exists a
real number

R = max{r(x) : x ∈ [a, b]}.

Let ϵ > 0. Using the Cauchy-Schwarz integral inequality
and the result given by (3.5), we have

|

∫ b

a
r f ′′2 −

∫ b

a
rg′′2| ≤

∫ b

a
r| f ′′2 − g′′2|

=

∫ b

a
r| f ′′ + g′′|| f ′′ − g′′|

≤ R{
∫ b

a
| f ′′ + g′′|2}

1
2 {

∫ b

a
| f ′′ − g′′|2}

1
2

< R|| f ′′ + g′′||(η)
1
2

< ϵ.

Again, ∫ x

a
( f ′′ − g′′) = ( f ′ − g′)(x) − ( f ′ − g′)(a)

= f ′(x) − g′(x) − f ′(a) + g′(a)

= f ′(x) − g′(x),

as g′(a) = f ′(a).Using the result given by (3.5) and Cauchy-
Schwarz integral inequality in the above equation, we have

| f ′(x) − g′(x)| ≤
∫ x

a
| f ′′ − g′′|

≤ (x − a)
1
2 {

∫ x

a
| f ′′ − g′′|2}

1
2
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≤ (b − a)
1
2 {

∫ b

a
| f ′′ − g′′|2}

1
2

< (b − a)
1
2 (η)

1
2 . (3.6)

So, ∫ b

a
| f ′(x) − g′(x)|2 < (b − a)2η. (3.7)

Again, since p(x) is absolutely continuous on [a, b], there
exists a real number

P = max{|p(x)| : x ∈ [a, b]}.

Using the Cauchy-Schwarz inequality and inequality (3.7),
we have

|

∫ b

a
p f ′2 −

∫ b

a
pg′2| ≤

∫ b

a
|p|| f ′2 − g′2|

=

∫ b

a
|p|| f ′ + g′|| f ′ − g′|

≤ P{
∫ b

a
| f ′ + g′|2}

1
2 {

∫ b

a
| f ′ − g′|2}

1
2

< P|| f ′ + g′||(b − a)(η)
1
2

< ϵ. (3.8)

Proceeding in the same way we have∫ x

a
( f ′ − g′) = ( f − g)(x) − ( f − g)(a)

= f (x) − g(x) − f (a) + g(a)

= f (x) − g(x), as g(a) = f (a). (3.9)

Using inequality (3.7) and Cauchy-Schwarz integral
inequality again, we have

| f (x) − g(x)| ≤
∫ x

a
| f ′ − g′|

≤ (x − a)
1
2 {

∫ x

a
| f ′ − g′|2}

1
2

≤ (b − a)
1
2 {

∫ b

a
| f ′ − g′|2}

1
2

< (b − a)
3
2 (η)

1
2 . (3.10)

So, ∫ b

a
| f (x) − g(x)|2 < (b − a)4η. (3.11)

Using the Cauchy-Schwarz inequality and inequality (3.11),
we have

|

∫ b

a
f 2 −

∫ b

a
g2| ≤

∫ b

a
| f 2 − g2|

=

∫ b

a
| f + g|| f − g|

≤ {

∫ b

a
| f + g|2}

1
2 {

∫ b

a
| f − g|2}

1
2

< || f + g||(b − a)2(η)
1
2

< ϵ. (3.12)

Again, inequality (3.10) yields

| f (x) − g(x)|2 < (b − a)3η, (3.13)

∫ b

a
|q|| f (x) − g(x)|2 < (b − a)3η

∫ b

a
|q|

= Q(b − a)3η, (3.14)

where

Q =
∫ b

a
|q| < ∞,

as q ∈ L(a, b). Now, using (3.14), we obtain

|

∫ b

a
q f 2 −

∫ b

a
qg2| = |

∫ b

a
q( f 2 − g2)|

≤ {

∫ b

a
|q|| f + g|| f − g|}

=

∫ b

a
|q|

1
2 | f + g||q|

1
2 | f − g|

≤ {

∫ b

a
|q|| f + g|2}

1
2 {

∫ b

a
|q|| f − g|2}

1
2

< Q
1
2 (b − a)3/2(η)

1
2 {|||q|

1
2 ( f + g)||}

< ϵ.

This completes the proof of the lemma.
Now, if f is a complex valued function, we can write f −

f1 + i f2, where f1 and f2 are real valued functions, and we
have g1, g2ϵD( π2 ,

π
2 ,
π
2 ,
π
2 ) such that

|

∫ b

a
r| f ′′1 |

2 − r|g′′1 |
2| ≤ ϵ/2

and

|

∫ b

a
r| f ′′2 |

2 − r|g′′2 |
2| ≤ ϵ/2.
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Let

g = g1 + ig2.

Here, gϵD( π2 ,
π
2 ,
π
2 ,
π
2 ) given that g1, g2ϵD( π2 ,

π
2 ,
π
2 ,
π
2 ).

Therefore,

|

∫ b

a
r| f ′′|2 − r|g′′|2| ≤ |

∫ b

a
r| f ′′1 |

2 − r|g′′1 |
2| + |

∫ b

a
r| f ′′2 |

2 − r|g′′2 |
2|

< ϵ/2 + ϵ/2

= ϵ.

Similarly, the other results can be proved.

3.3. Extension of the inequality fromD( π2 ,
π
2 ,
π
2 ,
π
2 ) to D

Now, we have seen that the inequality (3.1) holds for the
domain D( π2 ,

π
2 ,
π
2 ,
π
2 ). In this section, we will extend the

inequality from the domain D( π2 ,
π
2 ,
π
2 ,
π
2 ) to D with the help

of Lemma 3.1. The domain D is defined as in Section 2.3.
Suppose that, if possible, the inequality (3.1) does not

hold for a function f ∈ D; then, there is a real number δ > 0
such that∫ b

a
{r| f ′′|2 + p| f ′|2 + (q − µ0)| f |2} = −δ.

Now, according to the above lemma, we choose ϵ <
min{ δ4 , |µ0|

δ
4 }; again for f ∈ D, we have g ∈ D( π2 ,

π
2 ,
π
2 ,
π
2 ),

which satisfies the results of Lemma 3.1. We have that∫ b

a
{r|g′′|2 + p|g′|2 + {q − µ0}|g|2} (3.15)

=

∫ b

a
{r|g′′|2 + p|g′|2 + {q − µ0}|g|2} + δ − δ

=

∫ b

a
{r|g′′|2 + p|g′|2 + {q − µ0}|g|2}

−

∫ b

a
{r| f ′′|2 + p| f ′|2 + {q − µ0}| f |2} − δ

≤ |

∫ b

a
r| f ′′|2 −

∫ b

a
r|g′′|2| + |

∫ b

a
p| f |′2 −

∫ b

a
p|g′|2|

+ |

∫ b

a
q| f |2 −

∫ b

a
q|g|2| + |µ0||

∫ b

a
| f |2 −

∫ b

a
|g|2 | − δ

< 4ϵ − δ ≤ δ − δ = 0.

But, this contradicts the fact that inequality (1.1) holds in
D( π2 ,

π
2 ,
π
2 ,
π
2 ).

Hence the inequality holds for all f ∈ D. We now show
the case of equality. We now consider a function f where

f = cΨ0 when c is any non-zero complex number and Ψ0 is
an eigenfunction of the operator T ( π2 ,

π
2 ,
π
2 ,
π
2 ) corresponding

to the eigen- value µ0. Then,

M[cΨ0] = µ0cΨ0

and we get the following from inequality (1.1):∫ b

a
{r|cΨ′′0 |

2 + p|cΨ′0|
2 + q|cΨ0|

2} =

∫ b

a
M[cΨ0]cΨ0

=

∫ b

a
µ0cΨ0cΨ0

= µ0

∫ b

a
|cΨ0|

2.

The above shows that the equality in (1.1) is obtained for
µ0. So, µ0 is the best possible number in sense of equality
in (1.1), i.e., the number µ0 can not be increased.

4. Conclusions

The inequality (1.1) is an extension of the inequality
which involves the second- order derivative of the
functions, instead of the first -order derivative of the
functions considered in inequality (1.2). The integral
inequality obtained in this paper is quite interesting, as
well as important, as it provides some applications for
the determination of domains of self adjoint operators
associated with the differential expression obtained via
minimization of a quadratic functional involving the second-
order derivative. In inequality (1.1), µ0

∫ b
a | f |

2 becomes

a true infimum of the integral
∫ b

a r| f ′′|2 + p| f ′|2 + q| f |2

because inequality (1.1) yields an equality for the real
number µ0. So, µ0 is the best possible number in sense
of equality in (1.1) as it cannot be increased. The
number µ0 has great importance in the spectral theory of
the self adjoint operator associated with the differential
expression for minimizing the functional of inequality (1.1).
The inequality (1.1) can be applied in the field of
operations research for optimization problems, as well as in
numerical analysis for finding errors or some other important
characteristics. The result obtained in this paper may have
important applications in various fields of mathematics, as
well as in different branches of science especially in the
branch of physics and mathematical sciences.
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This paper deals with separated boundary conditions at
the end points a and b. We can have different sets of
boundary conditions, as in Section 2.2 by applying some
other choices of αi j and βi j, which may lead us to periodic
boundary conditions of the mixed symmetric boundary
condition. We have established our results only for regular
cases and the uniqueness of the parameter µ0 is not discussed
in the paper. We also have not discussed the cases for
b = ∞. These are the major limitations of our paper. The
present article may be extended further by considering those
limitations in the future.
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