Research article

On the multi-cluster flocking of the fractional Cucker–Smale model

  • Received: 26 January 2024 Revised: 02 July 2024 Accepted: 14 August 2024 Published: 19 August 2024
  • This paper demonstrates several sufficient frameworks for the multi-cluster flocking behavior of the fractional Cucker–Smale (CS) model. For this, we first employ the Caputo fractional derivative instead of the usual derivative to propose the fractional CS model with the memory effect. Then, using mathematical tools based on fractional calculus, we present suitable sufficient conditions in terms of properly separated initial data close to the multi-cluster, and well-prepared system parameters for the multi-cluster flocking of the fractional system to emerge. Finally, we offer several numerical simulations and compare them with the analytical results.

    Citation: Hyunjin Ahn. On the multi-cluster flocking of the fractional Cucker–Smale model[J]. Mathematics in Engineering, 2024, 6(4): 607-647. doi: 10.3934/mine.2024024

    Related Papers:

  • This paper demonstrates several sufficient frameworks for the multi-cluster flocking behavior of the fractional Cucker–Smale (CS) model. For this, we first employ the Caputo fractional derivative instead of the usual derivative to propose the fractional CS model with the memory effect. Then, using mathematical tools based on fractional calculus, we present suitable sufficient conditions in terms of properly separated initial data close to the multi-cluster, and well-prepared system parameters for the multi-cluster flocking of the fractional system to emerge. Finally, we offer several numerical simulations and compare them with the analytical results.



    加载中


    [1] H. Ahn, Emergent behaviors of thermodynamic Cucker–Smale ensemble with unit-speed constraint, Discrete Cont. Dyn. Syst.-Ser. B, 28 (2023), 4800–4825. https://doi.org/10.3934/dcdsb.2023042 doi: 10.3934/dcdsb.2023042
    [2] H. Ahn, S. Y. Ha, D. Kim, F. Schlöder, W. Shim, The mean-field limit of the Cucker–Smale model on Riemannian manifolds, Quart. Appl. Math., 80 (2022), 403–450. https://doi.org/10.1090/qam/1613 doi: 10.1090/qam/1613
    [3] H. Ahn, S. Y. Ha, J. Kim, Nonrelativistic limits of the relativistic Cucker–Smale model and its kinetic counterpart, J. Math. Phys., 63 (2022), 082701. https://doi.org/10.1063/5.0070586 doi: 10.1063/5.0070586
    [4] H. Ahn, S. Y. Ha, W. Shim, Emergent dynamics of a thermodynamic Cucker–Smale ensemble on complete Riemannian manifolds, Kinet. Relat. Models, 14 (2021), 323–351. https://doi.org/10.3934/krm.2021007 doi: 10.3934/krm.2021007
    [5] B. Bonilla, M. Rivero, J. J. Trujillo, On systems of linear fractional differential equations with constant coefficients, Appl. Math. Comput., 187 (2007), 68–78. https://doi.org/10.1016/j.amc.2006.08.104 doi: 10.1016/j.amc.2006.08.104
    [6] L. Bourdin, Cauchy–Lipschitz theory for fractional multi-order dynamics: state-transition matrices, Duhamel formulas and duality theorems, Differ. Integral Equ., 31 (2018), 559–594. https://doi.org/10.57262/die/1526004031 doi: 10.57262/die/1526004031
    [7] J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker–Smale model, SIAM. J. Math. Anal., 42 (2010), 218–236. https://doi.org/10.1137/090757290 doi: 10.1137/090757290
    [8] P. Cattiaux, F. Delebecque, L. Pédèches, Stochastic Cucker–Smale models: old and new, Ann. Appl. Probab., 28 (2018), 3239–3286. https://doi.org/10.1214/18-AAP1400 doi: 10.1214/18-AAP1400
    [9] J. Cho, S. Y. Ha, F. Huang, C. Jin, D. Ko, Emergence of bi-cluster flocking for the Cucker–Smale model, Math. Mod. Meth. Appl. Sci., 26 (2016), 1191–1218. https://doi.org/10.1142/S0218202516500287 doi: 10.1142/S0218202516500287
    [10] S. H. Choi, S. Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed, Commun. Math. Sci., 14 (2016), 953–972. https://doi.org/10.4310/CMS.2016.v14.n4.a4 doi: 10.4310/CMS.2016.v14.n4.a4
    [11] Y. P. Choi, S. Y. Ha, Z. Li, Emergent dynamics of the Cucker–Smale flocking model and its variants, In: N. Bellomo, P. Degond, E. Tadmor, Active particles, volume 1: advances in theory, models, and applications, Cham: Birkhäuser, 2017,299–331. https://doi.org/10.1007/978-3-319-49996-3_8
    [12] Y. P. Choi, D. Kalsie, J. Peszek, A. Peters, A collisionless singular Cucker–Smale model with decentralized formation control, SIAM J. Appl. Dyn. Syst., 18 (2019), 1954–1981. https://doi.org/10.1137/19M1241799 doi: 10.1137/19M1241799
    [13] Y. P. Choi, Z. Li, Emergent behavior of Cucker–Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49–56. https://doi.org/10.1016/j.aml.2018.06.018 doi: 10.1016/j.aml.2018.06.018
    [14] F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842 doi: 10.1109/TAC.2007.895842
    [15] K. Diethelm, Monotonocity of functions and sign changes of their Caputo derivatives, Fract. Calc. Appl. Anal., 19 (2016), 561–566. https://doi.org/10.1515/fca-2016-0029 doi: 10.1515/fca-2016-0029
    [16] J. G. Dong, S. Y. Ha, D. Kim, Emergent behaviors of continuous and discrete thermomechanical Cucker–Smale models on general digraphs, Math. Mod. Meth. Appl. Sci., 29 (2019), 589–632. https://doi.org/10.1142/S0218202519400013 doi: 10.1142/S0218202519400013
    [17] A. Figalli, M. Kang, A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE, 12 (2019), 843–866. https://doi.org/10.2140/apde.2019.12.843 doi: 10.2140/apde.2019.12.843
    [18] E. Girejko, D. Mozyrska, M. Wyrwas, Numerical analysis of behaviour of the Cucker–Smale type models with fractional operators, J. Comput. Appl. Math., 339 (2018), 111–123. https://doi.org/10.1016/j.cam.2017.12.013 doi: 10.1016/j.cam.2017.12.013
    [19] E. Girejko, D. Mozyrska, M. Wyrwas, On the fractional variable order Cucker–Smale type model, IFAC-PapersOnLine, 51 (2018), 693–697. https://doi.org/10.1016/j.ifacol.2018.06.184 doi: 10.1016/j.ifacol.2018.06.184
    [20] S. Y. Ha, J. Jung, P. Kuchling, Emergence of anomalous flocking in the fractional Cucker–Smale model, Discrete Cont. Dyn. Syst., 39 (2019), 5465–5489. https://doi.org/10.3934/dcds.2019223 doi: 10.3934/dcds.2019223
    [21] S. Y. Ha, J. Kim, T. Ruggeri, From the relativistic mixture of gases to the relativistic Cucker–Smale flocking, Arch. Rational Mech. Anal., 235 (2020), 1661–1706. https://doi.org/10.1007/s00205-019-01452-y doi: 10.1007/s00205-019-01452-y
    [22] S. Y. Ha, J. Kim, X. Zhang, Uniform stability of the Cucker–Smale model and its application to the mean-field limit, Kinet. Relat. Mod., 11 (2018), 1157–1181. https://doi.org/10.3934/KRM.2018045 doi: 10.3934/KRM.2018045
    [23] S. Y. Ha, J. G. Liu, A simple proof of Cucker–Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297–325.
    [24] S. Y. Ha, T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Rational Mech. Anal., 223 (2017), 1397–1425. https://doi.org/10.1007/s00205-016-1062-3 doi: 10.1007/s00205-016-1062-3
    [25] S. Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Mod., 1 (2008), 415–435.
    [26] J. Jung, P. Kuchling, Emergent dynamics of the fractional Cucker–Smale model under general network topologies, Commun. Pure Appl. Anal., 21 (2022), 2831–2856. https://doi.org/10.3934/cpaa.2022077 doi: 10.3934/cpaa.2022077
    [27] T. K. Karper, A. Mellet, K. Trivisa, Hydrodynamic limit of the kinetic Cucker–Smale flocking model, Math. Mod. Meth. Appl. Sci., 25 (2015), 131–163. https://doi.org/10.1142/S0218202515500050 doi: 10.1142/S0218202515500050
    [28] Z. Lu, Y. Zhu, Comparison principle for fractional differential equations with the Caputo derivatives, Adv. Differ. Equ., 2018 (2018), 237. https://doi.org/10.1186/s13662-018-1691-y doi: 10.1186/s13662-018-1691-y
    [29] A. B. Malinowska, T. Odzijewicz, E. Schmeidel, On the existence of optimal controls for the fractional continuous-time Cucker–Smale model, In: A. Babiarz, A. Czornik, J. Klamka, M. Niezabitowski, Theory and applications of non-integer order systems, Cham: Springer, 407 (2017), 227–240. https://doi.org/10.1007/978-3-319-45474-0_21
    [30] M. Merkle, Completely monotone functions: a digest, In: G. V. Milovanovi$\grave{{\rm{c}}}$, M. Rassias, Analytic number theory, approximation theory, and special functions, New York: Springer, 2014,347–364. https://doi.org/10.1007/978-1-4939-0258-3_12
    [31] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Vol. 198, Mathematics in Science and Engineering, Elsevier, 1999.
    [32] A. Ricardo, K. Rafal, A. B. Malinowska, O. Tatiana, On the necessary optimality conditions for the fractioanl Cucker–Smale optimal control problems, Commun. Nonlinear Sci. Numer. Simul., 96 (2021), 105678. https://doi.org/10.1016/j.cnsns.2020.105678 doi: 10.1016/j.cnsns.2020.105678
    [33] A. Ricardo, K. Rafal, A. B. Malinowska, O. Tatiana, On the existence of optimal consensus control for the fractioanl Cucker–Smale model, Arch. Control Sci., 30 (2020), 625–651. https://doi.org/10.24425/acs.2020.135844 doi: 10.24425/acs.2020.135844
    [34] W. R. Schneider, Completely monotone generalized Mittag-Leffler functions, Expo. Math., 14 (1996), 3–16.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(513) PDF downloads(100) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog