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Abstract: This paper demonstrates several sufficient frameworks for the multi-cluster flocking
behavior of the fractional Cucker—Smale (CS) model. For this, we first employ the Caputo fractional
derivative instead of the usual derivative to propose the fractional CS model with the memory effect.
Then, using mathematical tools based on fractional calculus, we present suitable sufficient conditions in
terms of properly separated initial data close to the multi-cluster, and well-prepared system parameters
for the multi-cluster flocking of the fractional system to emerge. Finally, we offer several numerical
simulations and compare them with the analytical results.
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1. Introduction

The term “flocking” refers to a phenomenon in which agents governed by an interacting many-
body system converge at the same velocity while forming an appropriate group based on limited
environmental information and simple laws. Flocking behaviors are ubiquitous in complex ecosystems.
Examples include the flocks of birds, fish, sheep, spectators at sport events and the platooning of
automated vehicles. Many mathematical models have been proposed in the mathematics community
to describe flocking. Among them, the Cucker—Smale (CS) model introduced in [14] is a successful
mathematical model representing flocking. The CS model is a Newtonian second-order system in terms
of position-velocity, which is given by the following Cauchy problem concerning {(x;, vi)}Y,:

dx;
=i >0, i€[Nl:={L....N),

il iqﬁ(nxi = xjl (v = vi), (1.1
dt N ‘=

(x:(0), vi(0)) € RY x R,
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where N and ||-|| denote the number of agents and the standard Euclidean />-norm, respectively, and we
set R, := [0, co0) throughout the paper. In addition, ¢ : R, — R, is a communication weight satisfying
the following conditions:

0< () <p0) =1, (d(r) —(r))(r1 —12) <0, @) € Col(R;R).

Due to the suitable dissipative structure regarding velocity in (1.1),, the CS model and its variants
have been actively studied from various perspectives. Examples include the mean-field limit [22, 23],
kinetic descriptions [7,25], hydrodynamic descriptions [17,27], time delay [13], stochastic analysis [8],
relativistic correction [3, 21], bi-cluster flocking [9], unit-speed constraint [1, 10], temperature
fields [16, 24], collision avoidance [12] and extension to manifolds [2,4]. For the survey paper, refer
to [11].

However, the literature on the CS model has only been investigated through a Markovian approach.
Indeed, the behaviors of many agents (humans, animals, plants, etc.) in an ecosystem tend to be
influenced by their memories and experiences, at least their short-term memory. Therefore, instead
of the CS system (1.1) ignoring memory effects, we are primarily interested in studying the flocking
system in a non-Markovian sense to investigate more realistic flocking mathematically. We consider
the following fractional CS system by changing the usual time-derivative to the Caputo fractional
derivative of order a € (0, 1):

szi =V, 1> 0, i€ [N],
1 N
Divi =~ ,Z‘ ol = x,lD (v = vi) (1.2)

(x:(0),vi(0)) € R x RY,

where D¢, denotes the Caputo fractional derivative of order « € (0, 1) (see Definition 2.1).

The Caputo fractional derivative is used in memory-preserving dynamic systems because it
incorporates historical information into the derivative operator, reflecting the system’s dependence
on past states. This feature allows for more accurate modeling of systems with memory effects,
such as viscoelastic materials, biological tissues, and economic systems. The flexibility of fractional
derivatives enables the capture of complex temporal behaviors and nonlinear characteristics that
integer-order derivatives cannot adequately describe. Consequently, the Caputo derivative is essential
for representing the intricate dynamics of various natural and engineered systems.

Because dealing with a fractional derivative is more complicated than dealing with the usual
derivative, (1.2) has been less lively studied than that in (1.1) (e.g., the discrete model [18, 19], the
Riemann—Liouville fractional derivative under a constant communication weight [29], optimal control
problems [32,33], and mono-clustser flocking dynamics under a general communication weight [20]
and under general network topologies [26]).

From the mentioned literature on (1.2), the multi-cluster flocking of the system (1.2) has not yet
been addressed. Multi-cluster flocking behavior is often observed in nature and human society, for
example, in social opinion disagreement, animal herding invaded by predators, K-means algorithms,
flight multi-formation, and groups with members with similar characteristics.

Throughout this paper, we are primarily concerned with the following problem: Under what
conditions in terms of initial data and system parameters does multi-cluster flocking occur in the
proposed fractional system (1.2)?
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Next, we provide concept definitions for the mono-, bi- and multi-cluster flocking of the
system (1.2) as follows:

Definition 1.1. (n-cluster flocking) Let Z = {(x;, v,-)}f\; | be the solution of (1.2).

(1) The configuration Z exhibits n-cluster flocking behavior if there exist n-cluster groups Zg =
{(xgi, vﬁi)}?iﬁl such that the following assertions hold:

DIZd=Ns =1, > 1Zgl= D Ng=N, U Zs=2
B=1 B=1

(if) (Flocking of the S-th cluster group)

sup max |lxgi(t) — xg()ll < co,  lim max [[vg(t) —vau(d)ll = 0,
ZER]i_) k,l€[Ng] A A t—00 k,l€[Ng] A A

(iii) (Separation between different groups)
lim su min X (1) — x,,(D)|| = o0, .
msup _min - (0) = 500 By

(2) The configuration Z exhibits mono-cluster flocking when n = 1, bi-cluster flocking when n = 2,
and multi-cluster flocking when n > 3.

The rest of the paper is organized as follows: In Section 2, we briefly introduce basic materials to
be used in Section 3 and Section 4 based on fractional calculus and present several basic estimates
for (1.2). In Section 3, we study a sufficient framework guaranteeing the bi-cluster flocking of (1.2). In
Section 4, we demonstrate a sufficient framework for the multi-cluster flocking of (1.2). In Section 5,
we provide several numerical simulations and compare them with the analytical results. Finally,
Section 6 is devoted to a brief summary of the main results and some discussion on the remaining
issues to be investigated in future work.

Notation. We employ the following notations for concision:

(D[] :=A{1,...,1} for e N, 1;:=dxd identity matrix, R, := [0, 00),
(2) R™" := the set of m x n matrices, A’ := the transpose of A, [-] := Gauss integer,
B)X == (xp,...,x0)T €RY V= (v,...,vp)" €eRM x;,v; e R,

4) Dz = max llzi — zjll for Z = (z1,...,zx)", |-l := the standard l,-norm.
ije

2. Preliminaries

In this section, we revisit basic materials for fractional calculus to be crucially employed in
Sections 3 and 4. Subsequently, we present two preliminary lemmas to study the bi- and multi-cluster
flocking of the proposed fractional system (1.2).

2.1. Fractional calculus

In this subsection, we briefly introduce basic concepts and the backgrounds based on fractional
calculus, beginning with defining the Caputo fractional derivative.

Mathematics in Engineering Volume 6, Issue 4, 607-647.



610

Definition 2.1 (Caputo derivative). [31] For a € (0, o), if the right sides are well defined, the Caputo
fractional derivative DS, f of order « is defined as

1 d f(LCVJH)(S) ‘
nyf(t) = I'la]+1-a) 0 (t— s)a—LaJ ds, lfa' # la],

1@, ifa = la].

Next, we recall the gamma function and beta function as follows:

Definition 2.2 (Gamma and beta functions). Let C and Zy be the set of complex numbers and the set
of nonpositive integers, respectively and let Re(w) be the real part of w € C. The gamma function
I' =T'(z) for z € C and beta function B = B(z,w) for Re(z) > 0 and Re(w) > 0 are given by

(1) (Gamma function) T(z) ::f et ldt, zeC.
0

1
(2) (Beta function) B(z,w) := f (1 -0"'dt,  for Re(z), Re(w) > 0.
0

Thus, the following basic properties hold for I" and B:
Remark 2.1. (Basic properties for I and B)
(1) T(1)=1, T'(n)=m-1)! forall positive integer n, T'(z+ 1) = z['(z).
_ T
C(z+w)

The following text provides the basic concepts and essential relations for the Mittag-Leffler
function. This function is often employed when addressing the convergence analysis of fractional
ordinary differential equations, especially when deriving bi- and multi-flocking estimates.

(2) B is symmetric, i.e., B(z,w) = B(w,z), B(z,w)

Definition 2.3 (Mittag-Leffler function). For given a,f € C, the Mittag-Leffler function, denoted by
E,p, is defined as

P N Zk
Eep(@) = ,;‘ T(ak +B)

Proposition 2.1 (Basic facts (I)). [20,31] For a,,y € C, one has the following assertions:

1
1) E =zE —_—
( ) a,,B(Z) < cx,cx+ﬁ(z) + F(ﬂ)
(2) For B,y >0and a,A € C,
1

!
o fo (t = 5) ' Eqp(As")s* 1ds = P E, g (7).
(3) Fora,y,z€ C,and B,y > 0,

Eo piy(1?) = 2E o piy(21?) Brr-1
Y-z '

!
— o4 — (07 y
f s7 lEa,y(ys )(t_ s)ﬂ lEa,,B(Z(l - S) )dS =
0
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The proposition below guarantees that the flocking estimates for E,4(-) that we obtain later are
related to an algebraic decay rate.

Proposition 2.2 (Basic facts (II)). [20,31] Suppose that a, B and 7y satisfy

ae(0,2), BeR, % <y < min(x, 7a).

Let N be the set of all natural numbers. Then, we have the following relations for n € N:

(1) For larg(z)| <7,

k

1 1 - a _1-n
Eop() = S oxp) = ) pr— o + O™, as [ — .
k=1

(2) Fory < |arg(z)| < m,

n —k
<
Eop@)=—) ———+0(d™"™"), as [ - oo
; (3 - ak)

(3) As a direct consequence of (2),

—a

t
Ey 1 (=Ct") ~ m,

as t— oo, for every positive constant C.

Subsequently, we define “completely monotone” to treat the fractional Caputo derivative of order
a € (0, 1) in more detail.

Definition 2.4 (Completely monotone). [30] A C*-function f is completely monotone if

D fP@) >0, te(0,00), keNU{O).
In addition, every completely monotone function is always nonnegative, monotonically decreasing, and
convex.

Next, we present a previous result regarding the necessary and sufficient conditions for E, g(—1) to
be completely monotone.

Proposition 2.3 (Complete monotonicity of E, g(—t)). [34] The term E, g(—t) is completely monotone
onteR, —{0}ifand only if « € (0, 1] and B > «.

Next, for @ € (0,1) and T > 0, we consider
Dix(r) = f(£,x(1)), t€[0,T), x(0)=xo. 2.1)
Then, (2.1) can be transformed into the following integral equation when f is continuous:

" f(s,x(5)) J

x(t) = xo + D" f(t, x(1)) = xo + M@ Jy Gos s (2.2)
For a constant matrix A € R®? and £(t, x(t)) = Ax(t) + y(¢), (2.1) is written as
Dx(t) = Ax(t) + y(t), t€[0,T), x(0)=xp. 2.3)

In this case, under the appropriate conditions for y(), a unique solution x(#) exists on [0, 7].
Moreover, the solution can be expressed in a more specific form than (2.2).
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Proposition 2.4 (Solution of (2.3)). [5,20] Let x(t) be the solution of (2.3) of order a € (0, 1) and let
y(t) be an element of a space €1_,([0, T]), where €,_,([0, T]) is given by

©1-([0,T]) := {f(t) € C'[0,T] ‘ £l == sup [l f@)Il < 00}-

t€[0,T]

Then, the solution of (2.3) uniquely exists and is expressed by

2(0) = Eay(A)x0 + f (= Y Eu At — $))(5)ds,
0

where E,g(A) is defined as

E 3A) = Y —— A e R™
s(A) ;r(akw) forA

In the sequel, we briefly describe the Cauchy—Lipschitz theory for the fractional ODE of order
a € (0, 1] as follows:

Proposition 2.5 (Cauchy-Lipschitz theory for a fractional ODE). [6] We consider the following
fractional ODE system of order a € (0, 1]:

Dix() = f(t,x(1)),  x(fo) = xo. (2.4)

If f is locally Lipschitz continuous in x and continuous in t, then for some strictly positive number ¢,
there exists a unique solution x(t) of (2.4) on the interval [ty — €, 1ty + €].

Finally, we state the comparison principle for the fractional ODE system (2.1).

Proposition 2.6 (Comparison principle for a fractional ODE). [28] Suppose that f(t, x) and F(t, x)
are two continuous functions defined on G := [0, T] X R satisfying

f(t,x(1)) < F(t,x(t)) for(t,x) €G.

Next, assume that x = Y(t) and x = ¢(t) are the solutions of the following initial value problem for
a € 0,1):

(1) D¢x(t) = f(1, x(1)),  x(0) = xo,

(2) Dix(t) = F(t,x(t)), x(0)=xo, respectively.

Then, we have

Y < ¢(n), 1€[0,T]

For readers interested in several relations between the monotone function and the sign change of its
Caputo derivative, we recommend [15].
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2.2. Preparatory lemmas

In this subsection, we estimate the uniform boundedness of ||V|| in terms of the initial data motivated
by the arguments employed in [20] and offer the previous lemma proven in [16]. First, we define the
following functional:

w0 = B0, (1 i qzk(r)) i,

N N

where ¢;; denotes the Kronecker delta, and for simplicity, we set the following throughout the paper:

¢ij(1) = ¢(llx;(1) — x; DI, i, )€ [N].

Then, it is straightforward to check that, for i, j € [N], the functional ¥;; satisfies

. L& N
¥ij > N Z‘sz =1, N JZ:; Gij(v;i—vi) = ;‘Pij(vj - V).

In the following text, we convert (1.2) into a matrix formulation in terms of X, V and the system
parameters using the above functional ¥;;, as follows:

ijs
D X() =V(), D,V()=-=-V(@)+DdX®)V(1), (2.5)
where ®(X(1)) € RV is given by
(P(X(0)));j = ¥ij(1) for i, je[N].

Then, combining (2.5) and Proposition 2.4 results in
t
V(1) = Eqa(-1)V(0) + f (t = )" Eqa(—( — )M)O(X(5)V(s)ds. (2.6)
0

Next, we consider the following recurrence relation {V?} based on (2.6):
VO =0, ieNuU{0},

| , . 2.7)
VD = B, (=1)V(0) + f (t = )" Eo(=(t = ))DX(s)VO(s)ds.
0

We observe that, for r € R,

sup [[D(X(s)llop < 1, (2.8)
s€[0,1]

where || - ||, denotes the operator norm of a matrix. Because ¥;; > 0 and Z?’:l ¥;; = 1, we derive

N
Z \I"ij(s)
j=1

Hence, we prove that ||V|| is uniformly bounded by ||V (0)|| from the above frameworks.

2
= 1.

N
OX < Y2 () <
IDX()llop < m[%zl () < max
j:
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Lemma 2.1 (Uniform boundedness of ||V||). In the recurrence relation (2.7), the following assertion
holds fori € N U {0}:

@i+1) _ @)
IV VA

' +1C 1 .
< ||V<0)||(sup ||<I>(X(s>>||0p) Z( GG 1Y ).taw)

s€[0.1] = Lle(j+D+1)
= V)| (— sup ||c1>(x<s>)||0p)l i (ﬁ) Y
5€[0,1] [(aj+1)
Furthermore, if V is the solution of (2.5), we also demonstrate that, fort € R,,
limV® =V, IVIF < IV O

Proof. We employ an inductive argument to verify the assertion.

e (The case of i = 0): Definition 2.3 and (2.7) yield that

S
VD = VO < IVO)|E,1 (~1%) = [[VO)] (—) -1,
! ; T(aj+1)

Therefore, we reach the desired assertion when i = 0.

e (The case of i > 0): We assume that the assertion holds for £ < i, where k € N U {0}. Then, the
inductive assumption, (2.7), (2.8), and Definition 2.3 imply that

”V(i+2) _ V(i+l)”

i+1
<[Vl ( sup ||<I>(X(S))||op)

s€[0,¢]
»Cj - (-1 »
f(t S)a lEozoz( (t - S) )Z (I_(‘za')(] N l() +)1)) . SQ(.I'H)dS

i+1
= [[V(O)l ( sup ”(D(X(S))Hop)

s€[0,¢]

(2.9)

[

\ <J'+i>cj‘(—1)k+j . t _ oalk+D=1 a(+i)
XZZ(F(“(’” D)C(a(j + i) + 1)) fo(t 5)" D57 s,

k=0 j=0

From the beta function (see Definition 2.2) and the second assertion of Remark 2.1, we immediately
have that for z, w € C satisfying Re(z) > 0 and Re(w) > 0,

T@row) _ w1 f (r- )Wl
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and we obtain

o o0 (j+i)C‘.(—1)k+j t et e
ZZ(F(a(kH))F(a(Hz)H)) fo(t s) s g g

k=0

DM T 1M

( G+ Cj - (=D - T(ak + 1)T(a(j + i) + 1)

. ga(k+j+i+1)
INatk+1)a(G+i)+ DItk +j+i+1)+ 1)) e

:Me 1M

G+ Cj - (=D . gatkejrivD) i o GGt (1 D 10)
F(a(k+]+z+1)+1) i INa(l+i+1)+1) '

b l
(j+,-)Cj( (_‘1)1 ) jai) Z( (l+i+1)Cj1 (=D )_ta(l+i+1)
0 IMNa(l+i+1)+1) INa(l+i+1)+1)

=0

J

~ |l

l

I
[«

j:
_ oyt N (G GO
=D l;( F(cyl+1)) !

Thus, we combine (2.9) and (2.10) to attain the desired assertion. Subsequently, we estimate
from (2.10), Definition 2.3, Proposition 2.3, and (2.8) that

D IvED — v
k=0

<voy ) (— sup ||c1><X(s>>||op) (’ o )) 7

0 o\ Ossi [(aj+1)

1 Jsj J i
= V)] Z - ) : (— sup ||®(X<s>)||op) <
i=0

0<s<t

—1) 12 i
=Vl Z ( ) (1 — sup ||®(X(S))||op)

0<s<t

j
= IVl Z F( D (Sup IPX()llop = 1)

0<s<t

= [IV(OIEq, (( sup | QX (s)llop = 1)t)

0<s<t

< [IVOl-

The outcome induces that {V(i)};?zo is a Cauchy sequence, and if we set V= := lim,;_, V@ then V= is
the unique solution of (2.6) (i.e., V = V). Therefore, the desired lemma holds due to

VI =Vl = ) IvED — vOl < Vo).
=0
]
Moreover, we introduce the following crucial lemma to investigate the velocity alignment estimate

in terms of Dy in (1.2):
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Lemma 2.2 (Key estimate). [16] Assume that A € RN is a nonnegative stochastic matrix (i.e., A; >

0 and Zy:l A;; = 1fori, j€[N]) and Z,W € RN are matrices satisfying
W = AZ

Then, it follows that
Dy < (1 — u(A))Dy,

where p(A) denotes the ergodicity coefficient of A € RV defined by
N
A) := min min(Ay, A i),
H(A) 1= min ; (Aus Aje)

and we set
. T . T . 1 d\T . 1
Z':(Zla""ZN)’ W':(Wla-'-awN)a Zi-:(zia"'azi)a Wi':(wi"",w'

3. Bi-cluster flocking dynamics

In this section, we demonstrate the bi-cluster flocking of the fractional system (1.2) under admissible
data in terms of the initial data and system parameters. For this, we reorganize (1.2) to discriminate
two cluster groups Z; = {(xy;, vl,-)}?fl and Z, = {(xy, vzj)}?ljl from each other, where Ny + N, = N and

N1, N> > 1, as follows:
Dgxli = Vi, D(CI-XZ_] = sz, r> 0’ I € [Nl]’ je [N2]7

Np Ny
1 1
Divy; = N ; d(llxr; = x1ell) Vig = vii) + N ; d(llx1i = x2l]) Vo — vii) s

Ny N
1 1
Doy = N E é(lx2; — xl) (V2k - sz) + N E élx2; — xill) (Vlk - sz) ,
k=1 k=1

(0(0), ve(0) € R*, k€ [N].

3.1. Sufficient frameworks

3.1

In this subsection, we present several sufficient frameworks for the bi-cluster flocking of (3.1) and
employ notation for simplicity. First, we set the following deviations and averages for position-velocity:

For i € [N,] and j € [N,],

e (Position averages and deviations)

1 1
Xlcen = F Z Xlis  X2cen = ﬁ § X2js  X1i = X1i — Xlcens  X2j = X2j = X2cen-
2

e (Velocity averages and deviations)

1
Vicen = 37 Viis  V2cen = 7 V2j,  V1i = V1i = Vicens V2j = V2j = Vacen-
N J J J

i=1 2=
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Then, we define the configuration vectors for each cluster group by

o (Configuration vectors for each cluster group)

Xp = (x11,.. -,Xuvl), Vii=(n,. --’VlNl),

X5 = (x21,...,X2n,), Vo= (var, ..o s vany).

Moreover, we set

o (Reordering of configuration vectors)
X := (Xl,Xz) and V := (Vl, Vz)

Similarly, we let
e (Configuration vectors for the deviation of each cluster group)

X = ()?11,---,)?11\/1), V= (\911,---,\711\/.),
X5 = (%1, -,JACzNz), Vo i= (Do, --,\A’zNz),

and
e (Configuration vectors for deviation)

X := ()Afl,f(z) and V= (\71, \72).

Next, we define A, as
k k k
A = Vicen ~ Vacen> ke [d]’

14

where a* denotes the k-th component of a € R?. The functional A, measures the difference between
velocity averages in the two cluster groups Z; and Z,.
Subsequently, we obtain basic estimates concerning the mentioned notation as follows:

Lemma 3.1 (Basic estimate). Suppose that (X, V) is the solution of the fractional system (3.1). Then,
the following relations hold fort € R,:

N Ny

A 112 2 2 ~ 12 2 2
D ABlP + Nillvicenl® = VA2, > 9ol + Nallvseanl? = V1P
i=1 j=1

Proof. To prove the first assertion, from Zﬁi L (Vi = Vicen) = 0, we get

Nj Nj 1 Nj
w2 = > i = Vieal? = 5= > lvig = vy |1
J
. . 2N, £
i=1 i=1 i,j=1
Ny 1 N
2 2 2
= Y all = > wivi) = Vil = Nl
i=1 N ij=1

Likewise, one has

N
A 112 2 2
DR + Nallvaceall® = IVl

j=1
i
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In what follows, we reinterpret the bi-cluster fractional system (3.1) in terms of position—velocity
averages to later estimate A and the rate at which the bi-cluster formation occurs.

Lemma 3.2 (Fractional systems for averages and deviations). Let (X,V) be the solution of the
SyStem (3 l) Then’ (-xlcena Vlcen)’ (-XZCen’ VZCen)’ (5511" ‘A"li), and (552]3 i>2j) satisfy

C —
Da,-xlcen = Vicen»

Dy, o X2cen = Vocens > 0,
N1 N>

NiDvicen = = Z Z d(llx1;i — x2ill) Vor — vii) s

i=1 k=1
N, N

NoDovocen = — Z Z é(lx2; — x1ll) (Vlk = sz)

]lkl

and
Dg)?:li = 1,>lia D XZ/ VZJ’ t> 05 ie [Nl]a je [NZ]’

Ny
. X 1
Do = ~DiVicen + & ; #ln; = Xl Oue = 91) + ; d(l1x1i = xulD(var — Vi),

Ny N
1 R R 1
DVs; = =Dgvocen + N Z d(1x2j — x2lD(Pox — D2j) + N Z d(l1x2; — xiklDV ik = v2)).
=1 =1

Proof. We take Zﬁ'] and 21}/:21 in (3.1), and (3.1);, respectively, and then use the standard technique of

interchanging i(j) and k and dividing by 2 to these, respectively, to reach the desired first equation. To

get the second equation, we use (3.1) and the definitions of £y;, ¥1;, X2, and ¥,;. O
In the following, we define position-velocity diameters for each cluster group as follows:

e (The position-velocity diameter of each cluster group)

DX] = maX Il2x1; — xl]” DV] = maX lvii = vl]”
i,jE[N1] i,jelN1]
DX2 .= max ||x21 - x2]|| Dy, := max ||V21 - V2]||

-
i,j€[N2] i,j€[N2]

In addition, we set
o (Total position-velocity diameter)

Dy = DX1 + DXZ’ Dy = DV1 + DVZ'
Before we end this subsection, we provide several sufficient frameworks concerning the initial data

and system parameters to derive the bi-cluster flocking estimate of the fractional system (3.1). Now,
we display the admissible set (7)) as follows:

(F) = {(X(0), V(0)) € R*N | (F1) - (F3) hold}.
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o (1) (Separated initial data): For some k € [d], there is a nonnegative number r, satisfying that initial
position configurations are selected to be split suitably as below:

0<rg< min (x},(0) - x5,00)).

i€[N1],j€[N2]

o (F2) (Assumption for group formation): There exists a nonnegative number DY > 0 such that

D X(0) +

Dvo 22 V2Vl (™~ ( A0)
$D(@)  $D(@) Jo "4l +1)
AY0)

2 \/EHV(O)” ft ¢ (4r(a/+l) (%) + r())
+ ————=—-sup
¢(D§§)F(a') R, Jo (t — S)l—(x

s* + ro)ds

ds < Dy.

o (F3) (Closeness to the bi-cluster): The initial data are in a formation state close to the bi-cluster as
follows: For g8 € [2],

A%(0)
o 1 > \/2(N1 — 1)D‘71(0) + V2(N2 - 1)DV2(O)’
AO) o
VNIIVO)| f ¢ (—4r<a+1>s - ’0)
z ———— SUu
2N, NI (@) teRE) 0 (t— )l

ds|,

ANO) o
2V2(N = Np)lIVO)] f’¢ aarnS 10
o Su
No(DT) s |Je  (t-se

Herein, we briefly comment on the described sufficient framework (7). In (#7), the initial positions of
the two clusters Z; and Z, are sufficiently far apart to attain the desired bi-cluster flocking. In addition,
() is the condition ensuring the group formation of each cluster group, and (#3) is the condition that
the initial state of (3.1) is close to a bi-cluster. Finally, we notice that (¥) is not empty when we take a
sufficiently large ry and appropriate initial data and system parameters, for instance, ¢ with a compact
support or an exponential decay rate, etc.

3.2. Bi-cluster flocking estimate

In this subsection, we verify the bi-cluster flocking of (3.1) under the sufficient framework (7). To
do this, we begin with demonstrating that the distance between two cluster groups is greater than some
function proportional to * for ¢t € R,. Throughout this subsection, we define the following:

m(® = max  ¢(llxz; — x1ll).
¢ ie[Nl],je[N2]¢ b

Lemma 3.3 (Estimate for Dg(A’j(r))). Suppose that (X, V) is the solution of (3.1). Then, it follows that,
forteR,,

VNIVl
VNN,
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Proof. By Lemma 3.2, we have

ky k k
DE(AV) - Dg(vlcen - v2cen)
N N N N

ZZ(M”XU x5l (VA = vA) N}VZ ZZcp(nxu x5l (VA = vA)
i=1 j=1 i=1 j=1
N1 N

k k
- xli”)(vli - sz)-

i=1 j=1
Then, we employ Cauchy—Schwarz’s inequality and Lemma 2.1 to find

N1 N

D5(AY) > ——¢M PPN

i=1 j=1
N N

PGS

11]1

N
N2 Z |Vlfl~| + N] Z |V§j|
i=1 J=1
1
> _m(pM ( \/ﬁlNzllvlu + \/FZNIHVZH)

1
- \/_¢M-<«/Vz||vl||+ NEANAD

_Swwi, L NNIvo,
VNN, VNN,

Thus, we conclude the desired lemma. O

Next, we set
S = sup{s >0 ' Dxy < DY, te [O,S)},

S1:=supS§, and

. . — . > V7 g <9
S = sup {S >0 ie[l\’l?il,i'lel[Nz] ||X1,(t) .ij(t)” = I_( l)t +ry, te]0, S), s < Sl} N

§*:=supS. From (%,) and the continuity of Dy, we observe that S| # () and §7 € (0, oo]. In addition,
since (F) yields that

0<ry< min (50)=x.(0)< min x1;(0) — x2:(0
ie[Nl]’je[Nz]( 11(0) — x3,;(0)) ie[Nl]’je[Nz]Il i(0) = x2,;(0)|

and min;epn, ), je(ny) l1X1; — X2/l| 1s continuous, we can obtain that § # @ and S* € (0, S7].
Subsequently, for 8 € [2], let

épij (1) := dlxg; (1) — xg:(DI), i, ] € [Ngl,
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and we employ the following functional:

Tﬁij(l) =

&pij(1) N (1 _ ZkN:'Bl ¢,Bik(l)]5ij.
Npg Ny

Then, it is straightforward to check that

¢ Ng Ng ¢
Bij z : z : ~ ~ z : Bij ~
\Pﬁij > 7, \P,Bij = 1, \P,Bij(vﬁj - Vﬁ,’) = —( ,BJ Vﬁi).
B j=1 j=1 =1 5

Based on the recurrence Eq (2.7) and motivated by the second assertion of Lemma 3.2 with the
definitions of W, V, and V,, we consider the following recurrence relation with respect to {Vé’)}fjo for

BeE2]:
Ve =0, ieNu{0), Bel2],

Ve = Eaa(=1")Vy(0) + fo (t = )" Eaa(=(t = /)X () V, (s)ds (32)
b [ 9 Bl = 9RO V),
0

where \A/g)(s) € RY*4 and ®p(X(s)) € R¥*N are given by

T

Ng Ng
i i 1 i i 1 i ..
V()(s) () Fﬁ g v,(g;,---,vgj)vﬁ—ﬁﬁ E l(gj) s (Dp(X(9)))ij = pij(s), 1, ] € [Ngl
J=1 J=1

Furthermore, fiﬁ(X(s), V[(;)(s)) € RM*4 is written by

\T ,
L3, dllxgr — il (v = v = Qp(V®)
Rs(X(s), V,E”(s)) 1= : , where y # 3,

L3N s, — 2l (V) =0, )~ Qu(V®)
and Qz(V?) € R is defined as
N ZZ‘/’(HX;;J xykll) (’) (’)) ,  Wwhere y # .
j=1 k=1

Now, we study the uniform boundedness of Dy, and Dy,.

Lemma 3.4 (Estimates of Dy, and Dy,). Assume that (X, V) is the solution of (3.1) such that (¥1)—(%3)
hold. Then, for B € [2) and t € [0,S "],
D‘A/ﬁ S ZDV[;(O)'
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Proof. We divide the proof into several steps.

e (Step A: Estimate of u(®(X(s)))) For ¢ € [0, 5], because the following assertions hold:

DX(t) < D;}o and \Pﬁij(l) > %,
Ng

it follows from the definitions of the ergodicity coefficient (see Lemma 2.2) and (®g(X(?)));; and the
monotonicity of ¢ that, for 7 € [0, S ],

p(Dp(X(1) 2 (DF), e 2] (3.3)

e (Step B: Recurrence relation) We take a diameter to (3.2) and apply (3.3) and Lemma 2.2 to this to
get that, for ¢ € [0, S "],

DV[gi+1> < Ea,1(—ta)D\7ﬁ(0)

! -
a—1 (o4 .
+ \fo(l‘ - S) Ea/,a(_(t - S) ) D(Dﬁ(X(S))V/(;)(S) + D?ﬁ(x(s)»v;gi)(s))jl ds

S Ea’l (_tQ)D‘}ﬁ(O)

N fo (1 = 9" B~ = $)) | (1 = §DFNDyus  + D ]ds.

Rs(X(5).VE(5))

To estimate D,

Re(x(9.V09)" we note that, for j € [Ng] and y # 3,

L VIVl

= N M>

N.
1 < b _ 0\
% 2 9lbsg; = 0l (v = 1)
k=1

where we used the proof of Lemma 2.1 to employ that

IV = vl < V21Vl < V2V )l (3.4)

vk

Then, Dfe/,(x V) can be estimated as follows:

b 2V2N,|IVO)Il
ﬁﬂ(X(s),Vg”(s)) = N Pu-

Thus, we combine the above relations and Proposition 2.3 to obtain that, for ¢ € [0, S ],

DV;(iHl) < Ea,l(_ta)DVﬁ(O)
t
" f (t = )" Eqa(=(t = )1 = ¢(DINDgo s
0

+ w f(; (t - S)a_lEa,a(_(t - S)a)¢M(s)dS

< Ea,l(_ta)DVﬁ(O)
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+ f(t — §)*  Eyo(—(t — 5)*)(1 - ¢(D§(°))D%,~)(S)ds
0

2V2N,|[V(0)| e O,
+—N tsel]g)fo(t—s) ¢(—4F(a+1)s +r0)ds.

From the above estimate, we construct the following recurrence relation for {W(i)}l?’io
WO =0, ieNuU{0}

WO = (9D + [ 0= 9 Bl = 971 = 60T ()ds
0

3.5
2 V2N, IVO)| f 1 (AN
_ t—9)"" | ———5"+1y|ds.
MY i‘%‘ffo( Y "’(4r<a 1’ r“) '
In (3.5), we can immediately know that, for each i € N U {0},
D‘A/;;i) < W9,
e (Step C: Iterative method) We claim that
|W(i+1) _ W(i)|
»Cj-(=1) "
(o) (]+) a(/+[)
< Dy 1 -¢(D - |- %
7,00 (1 = ( )l Z(F(a(]+ Eyn l))
2V2N, VOl - ¢(D))’ ! . A%(0)
t _ a— 4 a d
" N i fo( ) ¢(4F(a TN ro) ’ (3.6)

)Y ,
= Dy, ) (—(1 = (DY)’ Z(—H)).fu

2 V2N, IVO)II(1 = (D)) ' aml AO0)
+ N ,Se%?j;(t_s) gb(ms +r0)ds.

Proof of (3.6). We use induction to prove the desired claim.
¢ (The case of i = 0): From Definition 2.3 and (3.5), we have that

|W(1) _ W(O)l

2V2N,|[VO) ’ AY(0)
— DA E _ g Y _ a—1 v a
750 a1 ( t)+—N ilgfo(t s) ¢(—4F(a+l)s +"0)dS

GO 2V2N,|IV(O)| C A,
V”“”Z(r(ajn))' ”Ti‘iﬁfo(’”) "’(ms ”0)'

o (The case of i > 0): Suppose that the desired assertion holds for 0 < k < i, and we obtain from (3.5)
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that, for i € N U {0},
WD _ i)

+#Cj (=1
< Dy (1 = ¢(D°°))l+1f(t $)" " Eqo(—(1— 5)° )Z( +Ci (=1

[a(j+i)+1)

2V2N, IV - ¢(DR))*! a1 W0,
+ N tsellg)f(t—s) qﬁ(ms +r0)ds,

) - st g

where we applied the following relation induced by the first and third assertions of Propositions 2.1
and 2.3:

t
f(t = ) Eqo(=(t = ))ds = Eq o (11" = 1 = Eg1(—17) < 1.
0

Next, if we employ the same methods as (2.9) and (2.10), then we estimate that

|W(i+2) _ W(Hl)l

o o C--(—l)j -
A ~ conit] (+i+DC . a(+i+])
< Dy (1 = 6(DY)) Z(F(a(j+i+1)+1)) o
J=0

2V2N, VOl — p(D)"™*! ' -1 AYO)
+ N tselgf(t—s) ¢(ms +ro)ds.

Hence, we reach the desired claim. O

e (Step D: Desired result) Using Lemma 2.1 and (3.6) yields that

Dy, = lim Dyo < lim W < Z [WED — o)

[—00 /3 i—00
<Dvﬁ(0)ZZ( (1- ¢(D°°)))’(’ : (+ 1))) g
i=0 j=i
2V2N,|[VO) ! o1 ANO)
+—N¢(D§§) zgf)(t—s) ¢(—4F(a+1)s +r0)ds.

Because

ii( (1 - (D)) (—’ ’ (+ 1))) 17

1)] ta]

( ' .
F(QJH)Z( (1= $(DRN) /€,

; (3.7)
_ s (_1)jtaj o - i ’
—;—F(ajﬂ)( (1 - ¢(DF)) +1)

i “Di (—pDR)Y

@j+1)  (-1y

Ea/,l (_¢(D;)t0) ,

'1A
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it follows from Proposition 2.3 and (73) that, for ¢ € [0, S *],

DV/; < DVﬁ(O)Ea,l (_¢(D§(o)ta)
2 V2N, ||V (0)| ! et [ ANO)
TNGDY) fo =) "’(ma T ro) ds

t k
2\/§Nyllv(0)|| f(t— S)a_1¢( Av(o)
0

<Dy g+ —2 T " gu v
V(@ N¢(DY) tele AT(a + 1)

Sa' + r()) ds < 2D‘7ﬂ(0)'
Finally, we conclude the desired lemma. O

From Lemmas 3.3 and 3.4, we can show that minjeqy, jern,] [1X1; — X2l is greater than a function that
increases proportionally to * under (7)—(7F3).

Lemma 3.5 (Estimate of min;ey, ), jein,) 11 — X2/l1). Assume that (X(0), V(0)) satisfies (F1)—(F3), and
let (X, V) be the solution of (3.1). Then, we can derive S* = S, which leads to

A%(0)

i (1) = ;DI > ———1" +ry, 1€[0,S7].
ie[Nrurllj‘rel[Nz] Ihe1i() = 2,0 I+ 1) 70 (0. 51]

Proof. For the proof by contradiction, suppose that §* < §7. Then, we notice that

: . . AO) e
min - fle(S7) = xSl = 7 ()" +ro.

i€[N1],j€[Na] I'a+1)

Thus, by the definition of ¢,,(#) and the monotonicity of ¢, we attain that, for r € [0, S "],
AO)
¢M(l) <o (l’—t +ry).

This relation and Lemme 3.3 induce that, for ¢t € [0, .S "],

_VNIVOL, VNIV ( A3(0) taH)
VNN, M TTUNN, 4+

If we apply Proposition 2.6 and (2.2) to the above inequality, then we can estimate that, for 7 € [0, S "],

DE(AY) >

MO o
VNIV ("¢ \aTen * 70

AX() > A*(0) - ds.
0280 N b T o
Using (¥3) implies that, for ¢t € [0, S ],
AO) o
NIV t ¢(ms + VO)
AK(t) > AK0) - VNIIV(O)| * 1 ds
VN]NZF(CY) 0 (t - S) @
\/_ 0 r @ (&Sa + I’Q)
4T (a+1)
> Ak0) - VO g f — s
VNlNzr(a’) teR, 0 (t - S) -
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A"(O)

> AK(0) = 2 2(N; = DDy, ) = 2 Y2(N> = DDy, ) >

Therefore, from the above outcome, (¥3), and Lemma 3.4, we deduce that, for ¢ € [0, S *],

Vi0) = vh,(0) = A(0) + 9, — 15, > AY(D) — 9] -

A"(O) Nl - 1 Nz -1
Vl(t) ——Dy Va(0)

k
(0) /
— V2(N; - DVl(O) 2(N, - 1)D\A/Z(O)

M@
> b
4
where we applied the below relations:
M (N, — 1)D?
vw<§ﬁmﬁ Z|m—mWs—7rla
Vizjij=1

Because of the above relation, the first assertion of Remark 2.1, (%), (1.2),, and (2.2), we reach the
following inequality:
[121(S ™) = 22, (S = K[ (S ™) — H5(S )
1 ST (V(5) = V5 ()
[@Jo (S*—9'

=ﬁ®—%@+

A"(O) 1
> 7 ds
4F( ) (S* = s)l-@
A"(0) o
=ro+ (89
A (e + 1)
which reveals that
in flx;(S7) (SOl > A0 ()" +
min  ||xy; — X2 —_— ro.
i€[N, 1, j€[Na] : 2 M (a+1) 0
This results in a contradiction. Accordingly, $* = S, and we prove the desired lemma. O

In what follows, we study the velocity alignment estimate for each cluster group based on the
iterative method dealt with in Section 2.2. For g € [2], we recall

Gpii(1) = P(llxg;() — x5O, 1, j € [Ng],

and again employ the following functional:

&pij(1) N (1 _ Zivfl ¢ﬂik(l‘)]5lj.
Npg Ng

\Pﬁij(t) =

Then, we remind that

¢ &
vpij
Wgij > , Wgij =1,
J Nﬁ Z:; J
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Ng Np i

i j
D Wi = ve) = N, Vi = vpi)-
j=1 =1 'k

From the recurrence Eq (2.7) and Wsi; with V| and V, defined in Section 3.1, we consider the
following subrecurrence relation { V[g’)};’io for g € [2]:

V) =0, ieNu{0}, Bel2l,

VitV = Eq 1 (—1)V(0) + fo (t = )" Eqa(=(t = $))Dp(X(5)) Vg (5)ds (3.8)
+ f (t = )" Eqo(=(t = 5)Re(X(5), V(5))ds,
0

where Vi'(s) € RN, @p(X(s)) € R is given by
(Pp(X(5)))ij := Ppij(s) for 1i,je€ [Ngl,
and Rg(X(s), Vi (5)) € RY*? is defined by
N, i Y
2o el — D (V5 = vi)
Re(X(s), V/(;)(S)) = : , where vy #8.
N, i H A\
2 2ty (0, — ) (v = vi, )
Next, for 7 € [0, S |1, we note that (3.3) holds in this case as follows:
u(Ds(X (@) 2 $(DF), B e [nl. (3.9)
Taking a diameter to (3.8), and then applying (3.9) and Lemma 2.2 to this derives that, for € [0, S]],
DV/EM) < Ea71(—ta)DVﬁ(0)
!
a—1 a .
; fo (t = $) B a(—(t — 5)%) [Dq,ﬁ(x(s»vm + Dy (300 0 (S))] ds
< Eq1(=1%)Dyy)

+ fo (t = 9" Eqa(=(t = $)%) [(1 — #(DxNDyo, + Dyeﬁ(X(s),vg%s))] ds.

To estimate D VO(5)? we observe from (3.4) that, for j € [Ng],
B

Ro(X(s),
Vol

= N M-

N

1 ; N

N Z Pllxg; — Xyl (V(y,)c - Vt(ij)
k=1

Then, DRﬁ(X V) can be estimated as follows:

2V2N,IIVO)|

D Rs(X(9).V () = N

b (3.10)
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Hence, combining the above outcomes implies that, for 7 € [0, S]],

DV,(;M) < Ea,l(_ta)DVg(O)
!
b [ = 9 = 971 - DRIy s
0

+ w j; (t - S)(l_lEa/,a/(_(t - S)a)ng(s)ds'

Therefore, we have from Proposition 2.3 and Lemma 3.5 that, for ¢ € [0, S 7],

!
Dy < Eq(=1)Dy;0) + fo (t = )" Eqa(=(t = Y)(1 = §(DINDyo, ds

2N2N VOl ol . A0y
+Tf0(t—s) E,o(—(—5) )¢(ms +r0)ds

= Eaa(-E) D0+ [ (1= 9" Eval=(t = 7)1 = ADTID g ds
0

, 2PNAVO [ Bt o (s + s
N w f;(t o E, S)a)d)(%sa . ro) o (3.11)
< Eun =D+ [ (1= 9 Byt 970 = 6DRND g s
O (()5) [ el o)
e VO (452(2)1) (2 + ro) f (1= 9" Eual=t = 5)")ds,
which leads to
Dy < Ena (—)Dyy0,+ fo (1= 9 Eul=1 = 5)°)(1 = BOPID s
IO, (0[SO o
L 2PNIVON, ( e (4 o) (0= 97 Eunta - sy,
Since the first and third assertions of Proposition 2.1 yield that
(=9 Bttt ) = By = 1= By < 1. (3.13)

for 7 € [0, S7], one has
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!
Dvg“) < Ea,l(_ta)DVﬁ(O) + ﬁ (t - s)a_lE(z,a(_(t - S)a)(l - ¢(D;))DV/§i>(s)ds

I NG [ )

2V2N,|IVO) ( AX0) (r)a )
+ — +7r9].
N AT(a + 1) \2

Now, we investigate D,» to demonstrate the velocity alignment of each cluster group. To do this,
B

we address the following recurrence relation in terms of {W®}®,
w9 =0, ieNuU{0},

W(i+1) = Ea’l(—l‘a[)DVﬁ(()) + f(t - S)a_lEoz,oz(_(t - S)a)(l - (b(D;’))W(L)(S)dS
0

. 2\/§Ny”V(O)”EM (_(5)0)(5)0—1 f“(f)( A¥(0) s“+r0)ds (3.14)
0

N 2 2 M(a+1)
L ZV2NAVOl ( AKO) (5) )
N AT+ 1) \2 0

In (3.14), we can easily check that, for each i € N U {0},

D,» < W9,
Ve

Next, we estimate |[W*! — W[ for each i € N U {0} to deduce the decay rate of Dy,.

Lemma 3.6 (Estimate of WD —WY|), In the recurrence relation (3.14), the following assertion holds
forie NU{0}andt € [0,S7]:

i i pCj (=1 a(ji+i
|W(+1)—W()|SDV/;(O)(1— #(DY))' Z((ﬁ) )-t””

Ia(j+i)+1)

. 2V2N,IIVO)II(1 - $(DY))’ £ (_( 5)")( 5)“—‘ f“’ ¢( A0, HO)dS
0

N 2] J\2 4T(a + 1)
s 2V2N,IV(O)II(1 — (D))’ AX0) (5)" iy
N 4T+ 1) \2 0
- i (=D
= Dy, (=(1 = ¢(DY)))' Z(j—Jrl)) 1
2V2N,IIVO)I(1 = (D)) ([T A0)
* N Eva (_(E) )(E) fo ¢(4F(a+ 0’ +r°)ds
s 2V2N,IIVO)I(1 = ¢(DF))! A%(0) (5)“ o
N AT+ 1)\2 )

Proof. We employ an inductive method to show the desired lemma.
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o (The case of i = 0): From (3.14), we directly attain that
(WD — WOl = Dy o) Eq 1 (—1)

e ()G [ efar oo

, ZV2NAVOl ( AYO) (5)“+r
N AT(a+ 1) \2 0

ED Y e
Dvﬁ(O)Z(r( ]+1)). J

2V2N,|IV(O)| VA A©O)
" N E“’“(_(E) )(5) fo ¢(4F(a+1)s +r°)ds
, ZV2NAVOl ( AYO) (5)"+r
N AT(a+ 1) \2 o

Then, we reach the desired lemma when i = 0.

o (The case of i > 0): Suppose that the desired assertion holds for 0 < k < i, and we note from (3.14)
that, for i € N U {0},

W — Wb < fo (1 = 5)" ™ Eqo(~(t = ))(1 = gDINIW TV (s) = WO(5)ds.

We employ the inductive assumption, Proposition 2.1, Definition 2.3, and (3.13) to estimate that

‘ ‘ _ f © N (_1)J o
w2 _ witD) < p 1 — &(D))H! f f— a—lEa (=t = 5)° (+D*J . g@U+) g
| | < Do) (1= ¢DFN™ | (1= 9" Enal=(t = 9) )ZFO faeG+n+n) " @

L 2VIN VO — D7)
N

@ a— 00 k
en-G))G) [ ol + o)
+ (ﬁy—@l) (f)a + ro) X f (= 5By (=t — )

+)Cj 1 .
<Dvﬁ(0)(1 qﬁ(Dw))lJrl f(t )* lEaa( (t—s)" )Z(Wl()-l-)l))'sa(ﬁl)ds

X

L 2VINIVO)I - 9(D)"!
N

« a— 00 k
ru(-G))G) [ e lararn o
AYO) 1y
+¢(4F(a+1)(2) +r°)]

= coyyi+l G+ Cj - (=D t atk+1)=1 (a(j+i)
= Pyo (1= 40x) Z(F(a(k+1)>r<au+z>+1>)fo (=T

X
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+ 2 \/ENVHV(O)”(l - ¢(D;>))i+1
N

ru ()6 [ o {amn e
AO) (1Y
¥ ¢(4F(a T 1) (2) ¥ r(’)]

o LinCi (=1)7 o
—_ coyyit+1 E (J+i+)j a(itit]
= Do (1~ 40D (F(a(j+i+ 1)+ 1))% o
Jj=0

X

L 2VEN IV - (D)
N

a a— 00 k
Eaa (_(é) )(%) lfo ¢(4r?;(3)1)sa+r°)ds
AYO) (1
+¢(4F(a/+1)(2) ”")]’

where we used the same methodology as in (2.10) to the last equation. Finally, we obtain the desired
lemma. O

X

As a direct consequence of Lemma 3.6, we verify from Lemma 2.1 and Definition 2.3 that, for
t€[0,87],

=lim Do < lim w® < Z |[WiD — W)

i—00 B i—oo
i=0
<DVB<O>ZZ( (1 - (DF >))’(’ : (+ 1))

i=0 j=i
2V2N,|IV(O)| t A0,

T TNGODY) E““( f (4F(a+1) HO)dS
2V2N,|[VO)| ( A€<0> (t) )

+ —| +ry].

N¢(D§§) AT+ 1) \2

Moreover, we see from (3.7) that, for ¢ € [0, S]],

Dy, < Dy,)Ea,1 (=¢p(DX)t")

Db e (NG [ el
2V, V) ( A40) (f)“+r)
).

No(DY) 4T(a + 1) \2

In conclusion, we deduce that, for € [0, S]],
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2
DV = Z Dvﬂ
B=1

< Dyo)Eq,1 (=p(DY)E?)

2V2AVO ARV RO (3.15)
O (e [ o s
L 2V21vol ( AX0) (z)aﬂo).

#(DY) “\dT@+1)\2

Now, we are ready to demonstrate the bi-cluster flocking of the fractional system (3.1) by proving
that §7 = oo.

Theorem 3.1 (Bi-cluster flocking). Assume that (X(0), V(0)) satisfies (¥1)—(F3), and suppose that

(X, V) is the solution of the system (3.1). Then, we get the following bi-cluster flocking estimate for
teR;:

(1) (Group formation and bi-cluster formation)

Dxqy < DY d in_||x;(7) Ol = 40
min () = x| > ———
Xo = Sx A e ! 2 4T(a + 1)

t“+r0.
(2) (Velocity alignment)
Dy < Dy Eo1 (—¢(DY)1Y)
2V2|[v )l ARV VIR O
N E“’“(_(E) )(5) fo ¢(4F(a/+ D’ +r°)ds
L 22V o)) ( AY(0) (z)“+ro).
$(DY) AT(a + 1) \2

Proof. Due to Lemma 3.5 and (3.15), it suffices to derive that S = co. For the proof by contradiction,
suppose that §] < co. Then, we have

DX(ST) = D;o
Subsequently, from (2.2) and
D(lel = V] and D;XZ = V2,

one has
B 1 " Vis)
Xi(t) = X;(0) + @) ‘f; = S)l_ads,
1 " Va(s)

Xo(1) = X5(0) +

S
(@) Jo (1=9)'
Thus, taking a diameter to the above relations leads to

1 (7 Dyyy

D <D + S,
Xl(t) XI(O) r(a’) 0 ([ _ S)l_a
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1 7 Dyyy i
L) Jo =9l

Dy, < Dxy0) +

. 1 T Dy
and we obtain Dx(;) < Dx) + @ Jo Gy =95-

Herein, (3.15), Propositions 2.1 and 2.3 yield that
1 (57 Dy

M@ Jy -9

Dy (i Ean (-6(D)s?)

< Dy + d
SO T@ Sy s ©

DX(S*[) < DX(O) +

04 a—1
L 2V2v )l °°¢( AX(0) S"+r)ds- fs*; E.o(-(5))(3)
#(DT(@) Jo ~ \4T(@+ 1)~ ° 0
L 22V SW(—&S)U(%) ”0)
(DT (@) Jo ST s

_D +% L_E (_¢(D00(S*)a)
= Dx©) ¢(D§;) T(a) oo+l x WO
2 V2VOIS* ™ [ AO oo
' $(D3) fo ¢(4F(a+l)s “‘))dS'EM»a(‘(g) '(51))
2o (s ¢ (s (2 +ro)ds
H(DT (@) Jo TEDEG
< Dx) + ﬂ 416
(DI ()
2NAVOUST (A0, N vzt
+ o) j; ¢(4F(a+ 1)s +r0)ds-E2aﬂ(—(§) (8% )
2o, [ ol () +n)
SDT@) 1w o~ =9y
DV(O)
= D v

O D@

Zza ﬁ”V(O)” ” Al‘i(()) a 1 1 ¢ #\2a—1
BEECRI "’(4r<a+1>s ”O)ds'[@_E“’“(_(i) o )]
(2o, [ ot (s) +n)

¢(D§(O)F(a’) IER]i) 0 (t — S)l—a/

2a 00 k
< Dy + I?X,V(O) L2 \/zHV(O)II ( A%0) s“+r0)ds
(DT (@)  $DNT(@) Jo "~ \4l(@ + 1)

MO (5)
2V2|IV(0 ’¢(4r<a+1> (3) +r0)
(v, [ .
0

¢(D§(O)F(a') zellg) (t—s)l@
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which gives that
DX(ST) < D;’

This is contradictory to DX(ST) = DY; thus, §7 = oo, and we demonstrate the desired bi-cluster flocking
estimate. O

4. Multi-cluster flocking dynamics

In this section, we obtain the multi-cluster flocking of the fractional system (1.2) under admissible
data in terms of the initial data and system parameters. As in the bi-cluster system (3.1), we
reformulate (1.2) to distinguish several cluster groups Zz = {(x;, vﬂ,)} for 5 € [n] from Definition 1.1,
where Zﬁ:l Nz = N and N; > 1, as follows:

DCXIBI' = Vﬁ,, t>0, i€ [NB], ﬁ € [n],

Np N,

D = Z D — 55l (vt = Vi) + Ly Z B (Il = el (Vi = vgi) (.1)
Y#B k=1

(3(0), v4(0)) € R¥, k€ [N].

The methodology in this section is an extended version of that in Section 3, where n = 2 extends to
a general n; thus, the detailed proof and arguments are omitted.

4.1. Sufficient frameworks

In this subsection, we provide suitable sufficient frameworks guaranteeing the multi-cluster flocking
of (4.1) and handy notation for brevity. Similar to Section 3.1, for g € [n], we define
o (Position averages and deviations)
| & )
Xpeen '= — ) Xgi»  Xpgi ‘= Xgi — Xpeen-
D %
Been NIB L Bi Bi Bi Bcen
o (Velocity averages and deviations)
Np

1 .
VBcen = 77 Z Vgis Vi -= Vgi = Vpcen-
Ns 5

e (Configuration vectors for each cluster group)
Xp := (Xp15 - - - Xgny)s Vi := (Vg5 -+ 5 Vi)
¢ (Reordering of configuration vectors)
=(X,...,X,) and V:=(Vi,...,V,).
o (Configuration vectors for the deviation of each cluster group)

Xﬁ = (-)%ﬁl,---,)%ﬁNﬁ)» Vﬁ = (ﬁﬂla"'aﬁﬁ]\/ﬁ)'
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o (Configuration vectors for deviation)

A

X:=X,....X,) and V:i=(V,....,V).
¢ (Difference between velocity averages)

ko _ Kk k
Avﬁ’y = Veen = Vycens k € [d].

e (The position-velocity diameters of each cluster group)

Dy, := max ||xgz — x3; Dy, := max [|lvg — vzill-
Xp i.je[Np] ” Bi /3]”, 7] i.je[Np] ” Bi Bj”

o (Total position-velocity diameters)

Dy := Zn: Dx,, Dy := anDvﬂ.
B=1 B=1

Then, we describe the following two lemmas counterparts of Lemmas 3.1 and 3.2 without the proof:

Lemma 4.1 (Basic estimate). Suppose that (X, V) is the solution of the system (4.1). Then, we get the
following assertions for € [n] and t € R,

Np
A2 2 2
D196l + Ngllvseenll® = VP

i=1
Lemma 4.2 (Fractional systems for averages and deviations). Let (X,V) be the solution of the
system (4.1). Then, (Xgeen, Vgeen) and (Xg;, Vi) satisfy

Dgxﬁcen = Vgeens 1> 0, ﬁ € [n],
Ng Ny

NsDVpeen = % DD D ¢ = x,1 (v = vi)

y#B i=1 j=1

and
D;fcﬁi = f/ﬁi, >0, i€ [Nﬂ], ﬁ € [n],

Ng
N 1 R R
D Vs = =D Vgeen + I Z dlxgi — x5i1D(Vgj — Vgi)
=1

N.
1 Y
F > Bl = 5Dy = )

y#B =1

Finally, we present several sufficient frameworks (G) in terms of the initial data and system
parameters for the multi-cluster flocking of (4.1) as follows:

(@) = {(X(0), V(0)) € R*™ | (G1), (G2) and (G3) hold).

o (G1) (Separated initial data): For some k € [d], there exists a nonnegative number ry > 0 such that
the initial position configurations are chosen to be split as follows:
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0<ro< min min (x5(0) — x* (0)).
0 1<B<y<n ie[N/g],je[Ny]( ﬁ’( ) w( )

¢ (G>) (Condition for group formation): There is a nonnegative number DY > 0 satisfying

Do 2°N2n- DNIVO) (™ (minlsxkvsﬂ AL 0)
0

Dot @) $(DT(@) vy T ”°)ds

minj<g<y<n ‘,ﬁ,y() s\
2v2(n = DHN|[V(O ’¢(W<§) +r0)
, 2¥2( = DN]| <>||Supf : ds < DY.
teR, JO

¢(DY) () (t—s)'

o ((73) (Closeness to the multi-cluster): The initial data are in a formation state close to the multi-cluster
as follows: For 8,y € [n],

min1 <ﬁ<y<n

< vﬂ
o 1 0 > V2(Ng = DDy, + 2N, = DDy, o),
Il’llIllg[;‘<ysn A{i,ﬁ, (0) 104
N = W+ NIV f (e o)
> Su
ZNF(CL’) I‘ER+ 0 (t - S)l—(l

ds|,

minlsﬁ<y§n A]:ﬁy(o)
2V2(N - Np)lIV )] f”’ — @@ S T
o Su
NoDT) | Jo (- s

4.2. Multi-cluster flocking estimate

In this subsection, we demonstrate the multi-cluster flocking of (4.1), assuming (G). Throughout
the subsection, we set the following:

1) := max max Xyi — Xgill)-
du(0) 1= max  max gl ~ i)

Next, we prove that the distance between two distinct cluster groups is greater than some function
proportional to . To achieve this, we provide the following lemma counterpart of Lemma 3.3:

Lemma 4.3 (Estimate of D¢ (Af
that, for B,y € [n] and t € R,

VB, y(t))). Let (X, V) be the solution of the system (4.1). Then, we obtain

M-

V22N — (N + N,)IIV(O
DE(AY, ) = - ( (Ng + N))IIVO)
N
Proof. Employing Lemma 4.2 gives that
DC(Avﬁy) = DC(Vg’cen - k )

ycen

N Z Z ¢(||Xﬁz - Xek”) Vok — V,Bt)
0+p

i=1 k=1
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"N S S =l (s - ).

Y i=1 0y k=1

Thus, we attain the following estimates from Cauchy—Schwarz’s inequality and Lemma 2.1:

DAY, = ——¢M Z > Z [vail + Ivgil) = —¢M Z >, Z [yl + Vel)

i=1 08 k=1 i=1 0y k=1
~ V2(N - Nﬁ)llv(0)||¢ ~ V2(N = N)IIVO)
= N M N M
V2(2N - (Ng + N)IV(O)|
= — N M-
In conclusion, we get the desired lemma. m]

In what follows, as in Section 3, we consider
S = sup{s > OiDX(t) <D}, te [O,s),},
S1:=supS§, and

mlnﬁq ()]
Vﬂy “+ry, tel0,s), s<Si¢,

S = >0 i i P — ill 2
{s ' minmin g =l 2 =R

§* := supS. By the continuity of Dy and (G,), one has §; # @ and 7 € (0, co]. Moreover, because
(G) implies that

0<ry< min min xkO x 0)) < min min x5(0) — x,:(0
0™ Bey<n ie[Ngl.jelN, ( {(0) = 2,()) 1<B<y<n i€[Ngl, ]e[zvy]” 5i(0) = 2y O

and mingepyg) jern, 1% — Xyl s continuous, it follows that § # 0and S* € (0,571
Then, we can obtain the same result as Lemma 3.4 on [0, S *].

Lemma 4.4 (Estimate of D(,ﬁ). Assume that (X(0), V(0)) satisfies (G1)—(G3), and suppose that (X, V)
is the solution of (4.1). Then, for 8 € [n] and t € [0, S7],

DV;; S 2D\7ﬁ(0).
Proof. We omit this proof because it is similar to the proof of Lemma 3.4. O

In the same manner as the proof of Lemma 3.5, when the three frameworks (G;)—(G3) are assumed,
we verify that for 8 # y, mineyy). jern,1 1% — Xyjl| 18 greater than a function that increases proportionally
to 1%, as follows:

Lemma 4.5 (Estimate of minje,) jev, [1Xgi — Xyl Suppose that (X(0), V(0)) satisfies (G1)~(Gs), and
let (X, V) be the solution of (4.1). Then, S* = S| holds, which asserts that

. k
. . minj<g<y<n A (0)
min  min g — x> A T () (4.2)
1<B<y<n i€[Ngl,je[Ny] I (a + 1)

Mathematics in Engineering Volume 6, Issue 4, 607-647.



638

To derive the velocity alignment estimate concerning each cluster group based on the iterative
method, we extend (3.8) to the multi-cluster setting. For this, for 8 € [n], we let

Gpii (1) = P(llxg;() — x5:(DID), 1, j € [Ng],

and set the following functional:

_ Gpij(D) N (1 _ Zkal (bﬁik(t)]dij‘
N N

Then, we immediately have that

¢ S S ¢

,BU aij

Wpij = Ny’ Z Wpij =1, Z Wpij(vgj = vpi) Z (Vm Vgi)-
=1 =1

Similar to the construction of (3.8), we consider a subrecurrence relation {V;;)};jo for g € [n], as
follows:

V) =0, ieNU{0}, Belnl,

Vg™ = Ena(-1")V5(0) + fo (t = )" Eaa(—(t = ) Dp(X())V (5)ds 4.3)
+ f (t = )" Eao(=(t = 5)Re(X(5), V(5))ds,
0

where V[g” (s) € RV and @g(X(s)) € RV is given by
(Dp(X(5)))ij := WPpij(s) for i, je[Ngl,
and Rs(X(s), V' (5)) € RY*? is written by

| X e T Hlgr - xykn)((’) vy’
Re(X(5), Vg (5)) :=

. i i T
2 Bap Sy (115, — xykn)( 0 = vin)
Subsequently, as in (3.9), it is easy to check that, for 5 € [n] and 7 € [0, S]],
1 (Dp(X(1)) 2 (D). (4.4)

Hence, if we take a diameter to (4.3) and apply (4.4) and Lemma 2.2 to this, we reach that, for ¢ €
[0,S7],

Dygn < Eo1(=1*) Dy,

t
a—1 o4 00 .
+ fo (= 9" Eqal=(t = 5)) | (1 = DDy + Do 4, )| 45
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< Eq1(—1") Dy,

2V2(N = Np)IV(0)|
N

" fo (1= 9" Bl =(t = ") | (1 = 6Dy, + by ds,

where D V() can be estimated as follows, with the same argument as that for (3.10):
B

Re(X(s),

2V2(N = Np)IlVO) "

N <
D Rﬁ(X(s),vg)(s)) = N M-

Accordingly, under the frameworks (G)—(G3), using (3.13), (4.2), and the same methodologies
employed in (3.11) and (3.12), we induce that, for 7 € [0, S]],

!
Dysev < Eoui(<1")Dy,0) + fo (1 = )" Eqa(~(t = $))(1 = J(DNDyo s

L2 V2(N = Np)IIVO)
N

£\@ ()@ ! 0 minls,8<y£n Aﬁﬁ y(o)
Eaa “\A S — “ d
X b, ( (2))(2) fo ¢( @+ Ty
L2 V2(N = N[V ( minigpey<n Al 5 (0) (t)“ .
N T+ \2) ")

In the sequel, we consider the following recurrence relation concerning { W}, to study the velocity
alignment estimate of (4.1):

w® =0, ieNuU{0},

W(i+1) — Ea,l(_ta/)DV/g(O) + f (t _ S)a_]Ea,a(—(t _ s)(l/)(l _ ¢(D§(O))W(l)(s)ds
0

L2 V2(N = Np)IV(0)]
N

1\ [\ ] © minlsﬁ<y§n A]\iﬁ y(o)
Eool-() )(% AN
X ( (2))(2) j; ¢( Ta+1) 0%
2V2(N = NpIIVO)I|  (minispey<n Ay 5,(0) ( t )
+ =] +nrl.
N AT+ 1) ) T

4.5)

Herein, we crucially notice that for each i € N U {0}, Do < W,
s

Then, as in the proof of Lemma 3.6, the inductive argument yields a relation regarding |[W@+D — W]
for i € [N] as below:

Lemma 4.6 (Estimate for |W*D — W®|), In the recurrence relation (4.5), the following assertions hold
forie NU{0}and 1t €[0,S57]:
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WD — WO < Dy, (~(1 = gD D | (jr(‘”;”))) -
J=i

N 2] J\2
0 minlg/kyﬁn A‘]f'g 7(0)
25 fe4 d
Xf(; </)[ Mt s +rolds
L 2V2N = NIV = ¢DF))  (miMisperen ALy, (0) (L) +r
N AT(a + 1) 2 o)

Therefore, due to (3.7) and Lemma 3.6, it follows from Lemma 2.1 and Definition 2.3 that, for
t€[0,87],

Dy, = lim Dyo < lim W® < " WD — W)

i—00 B i—00
i=0

< Dy,0)Eo,1 (—¢(DY)1°)

2V2(N = Np)|IV(0)| f\y et (S (minigge A, (0)
i N¢(DY) E““(_(E) )(E) fo ¢( Mar S T
2V2(N = Np)IIV(O)|| (mini<peyen Ay, (0) 1\
No(D) M@+ 1) (E) T

which implies that, for 7 € [0, S ],

Dy = Z Dy,
B=1

< DyEq1 (—p(DY)EY)

PR ()l

2 2

Oo min1§ﬁ<y§n Al‘fﬁy(o)
X = Y+ ro|d
j; ¢( T+ O

2V2(n — DN|IV(O)|| . { Mini<p<y<n A 4.,(0) ( t )a
s(D3) T+l \2) Tf

(4.6)

Finally, we prove the multi-cluster flocking of the system (4.1) under (G,)—(G5).

Theorem 4.1 (Multi-cluster flocking). Suppose that (X(0), V(0)) satisfies (G1)—(G3), and assume that
(X, V) is the solution of (4.1). Then, the following multi-cluster flocking estimate holds fort € R, :

(1) (Group formation and multi-cluster formation)

o0 . . Mingpey< Aﬁ,ﬂ,y(o)
Dxy < DY and min  min [lxg — x,ll >

1+ 1.
1<B<y<n i€[Ngl,j€[Ny] I (e + 1)
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(2) (Velocity alignment)

Dy < Dyo)Ee,i (=D
L2 V2(n - 1)N||V(())||Ea,a (_ ( ¢ )a) (E)a_l

#(DY) 2 2
0 minls/:kySn A/\f’ﬁ’y(o) @
Xfo ¢( @+ D) s" +rolds
2V2(n = DNIVO)] , (Mitizeyn Al g, (0) (5) N
#(DY) AT+l \2) " f

Proof. By Lemma 4.5 and (4.6), it suffices to demonstrate that S| = co. For the proof by contradiction,
suppose that S| < co. Then,
DX(ST) = D;)

Similar to the proof of Theorem 3.1, one has

1 ! Dv(s)
S
(@) Jo (t—9)'

DX(Z) < DX(()) +

Moreover, based on the arguments employed in (3.16), we can derive from (4.6), Propositions 2.1
and 2.3 that, for 7 € [0, S 7],

Dy o)
Dy < D + —
TR
2 V2n - DNIVO) (Mg A, O)
H(DIT() 0 AT(a + 1) ’

min| <g<y<n Aﬁﬁ’y(O) 5\
(P 5

2V2(n - DN|[V(O)|| f’ ( Alla+1)
+ sup
teRy JO

#(D)T(a) (1= )@ ds

< D.

This causes a contradiction to DX(S;) = DY. Eventually, S} = oo, and we conclude the desired multi-
cluster flocking of (4.1). |

5. Numerical simulations

In this section, we present several numerical descriptions using the Grunwald-Letnikov
approximation to compare with the analytical result of Theorem 4.1. For all simulations, we set

N=9, At=h=0.1, t=mhel0,1000], me{0,1,2,...,1000},
N1:N2:N3:3, n=3, CL’:O.S, d:2, k=1, VOZZOO, D;’:lo,

and choose the below communication weight:

¢(s) = 10exp(=0.1s), seR,.
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Then, we select the following initial data satisfying
O, = {(305,—1), (306,0), (304,0), (0,1), (1,0), (-1,0),
(=305, -1), (=304,0), (=306, O)},
O} {(6.1,—1), (5.9,-0.9), (6,-1), (0,1.1), (0.1,0.9), (0, 1),
(=5.9,-1), (=6.1,-1), (=6, —1)},
and consider the 3-cluster groups as follows:

Zy = {(x1,v1), (x2,v2), (x3,3)},
ZZ = {(.X4, V4)’ (-XS’ VS)’ (-x65 V6)},

Z3 = {(X7, V7), (-x8a VS)a (X97 V9)}7

where we denote

(X1, vi) == (x,ve), (X2, vi2) := (X2, v2),  (X13, vi3) := (x3,V3),
(X21,v21) := (x4, va),  (X22,V22) := (X5,V5), (X23,V23) := (X6, V6),

(x31,v31) := (x7,v7),  (X32,V32) := (x8,V8), (X33,V33) := (X9, Vo).

Subsequently, we now briefly check that the above initial data and system parameters satisfy
the sufficient framework (G;)—(Gs;) addressed in Section 4. To do this, we observe through direct
calculation that

F(O.S) = \/E, F(l.S) ~ 0.88622, DV](O) = DVZ(O) = V0.0S, D‘A/?(O) = 0.2,
Dx(0)=6, Dy(0)=02+ V0.2, [[VOO) ~14.97, 2% =2 =12, ¢(10)~ 3.68,
ro=200< min  min (x5(0) - x,,00), min A}, (0) ~ 5.9667.

1<B<y<3

1<B<y<3 ie[Np].je[N, ] vy

Hence, it remains to verify the framework (G,)-(G5). When using the Python code, it follows that the
following relations hold:

© (minggpey<, ALz (0) © [ 59667
f ¢( by Py 7 gy ro)ds ~ f ¢(—SO‘5 + 200) ds <1078,
0 0

4I'(a + 1) 4-0.88622
minj<g<y<n At ,7(0> s\?
; ¢(T+l)ﬁ (5) + ”’) s
Sup (t_ S)l_a ds < 10 )
teRy 0
min|<gcy<p A{{v, 7O 4
ftqb(T”)ﬂs +r0)d <107
su S '
teRE) 0 (=)
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Therefore, it is straightforward to see that (G,) is satisfied because one has

Dvoy . 2N2(n— DNIIVO) (*  (minispeyen Al 0)
Dx(()) + +

¢(DY)I (@) d(DYI (@) 0 4f(a + 1)

min<gey<n AY 5 (0) ( s)a N )
0

+2\/§(n—1)NIIV(O)II Supf’¢( Al(a+1) 2
d(D)T(@)  er, Jo (t =)l
+0.2+ V02+4V2-9-1497-10°+4v2-9-14.97-107°
3.68 - 1

s+ ro]ds

ds

<6

~ 6.1 < DY = 10.

Furthermore, we can show that (G3) is satisfied due to for 5,y € [3],

min15ﬁ<ys3 A{f’ﬁy(())
4

> \2(Ns = DDy + v2(N, = DDy ) > 2+ 0.2+ 2V0.05 ~ 0.847 >

9667
~ > 926 >2V0.05 +2V0.05

12-14.97 - 107
9. \r

minls/kygn Al:,’/j;y(o) a
| N =N + NIV f I\ St
= su
2NI'(a) teR, | Jo (t—s)l-@

ds|,

and for S € [3],

minj<g<y<p Af(r,ﬁ,'y(o) a
2VAN - NpIVO) f (s o
sup
teR, | JO

No(DT) (1= s ds

2v2.6-14.97-107°
9.3.68

~7.67-107 < 0.2 < Dy,

Next, we describe several numerical results concerning the multi-cluster flocking result studied in
Theorem 4.1.

First, Figure 1 shows the emergence of multi-cluster flocking, substantiating the analytical results
of Theorem 4.1. Second, Figure 2 illustrates the emergence of multi-cluster formation, validating the
analytical results of Theorem 4.1. In particular, Figure 2(B) indicates that

min min Xa — Xo:
1<B<y<3 i€[Ngl,j€[Ny] I Bi 7]”

tends to increase as a constant multiple of .
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Sum of Maximum Velocity Differences within Clusters
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Figure 1. Multi-cluster flocking.
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Figure 2. Multi-cluster formation.

6. Conclusions

In this paper, we have studied the multi-cluster flocking of the fractional CS model with the
Caputo fractional derivative. In the proposed fractional system, we offered appropriate admissible
data consisting of well-separated initial data, well-prepared system parameters, and a communication
weight satisfying suitable conditions to demonstrate the desired multi-cluster flocking. Afterward,
we observed that multi-cluster flocking does not rapidly occur, unlike exponential decay. The rate
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of occurrence depends on the algebraic decay rate and communication weight. However, we are
unsatisfied with the current results and still have some topics to explore in future research. Examples
include the mean-field limit (i.e., N — o0), extension to the Riemannian manifold, and collision
avoidance of the fractional CS system. We leave these issues as future work.
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