Research article Special Issues

Kolmogorov variation: KAM with knobs (à la Kolmogorov)

  • Received: 04 November 2020 Revised: 01 April 2023 Accepted: 01 April 2023 Published: 15 May 2023
  • In this paper we reconsider the original Kolmogorov normal form algorithm [26] with a variation on the handling of the frequencies. At difference with respect to the Kolmogorov approach, we do not keep the frequencies fixed along the normalization procedure. Besides, we select the frequencies of the final invariant torus and determine a posteriori the corresponding starting ones. In particular, we replace the classical translation step with a change of the frequencies. The algorithm is based on the original scheme of Kolmogorov, thus exploiting the fast convergence of the Newton-Kantorovich method.

    Citation: Marco Sansottera, Veronica Danesi. Kolmogorov variation: KAM with knobs (à la Kolmogorov)[J]. Mathematics in Engineering, 2023, 5(5): 1-19. doi: 10.3934/mine.2023089

    Related Papers:

  • In this paper we reconsider the original Kolmogorov normal form algorithm [26] with a variation on the handling of the frequencies. At difference with respect to the Kolmogorov approach, we do not keep the frequencies fixed along the normalization procedure. Besides, we select the frequencies of the final invariant torus and determine a posteriori the corresponding starting ones. In particular, we replace the classical translation step with a change of the frequencies. The algorithm is based on the original scheme of Kolmogorov, thus exploiting the fast convergence of the Newton-Kantorovich method.



    加载中


    [1] V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi–periodic motions under small perturbations of the Hamiltonian, (Russian), Usp. Mat. Nauk, 18 (1963), 13–40. https://doi.org/10.1070/RM1963v018n05ABEH004130 doi: 10.1070/RM1963v018n05ABEH004130
    [2] G. Benettin, L. Galgani, A. Giorgilli, J. M. Strelcyn, A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method, Nuov. Cim. B, 79 (1984), 201–223. https://doi.org/10.1007/bf02748972 doi: 10.1007/bf02748972
    [3] A. Celletti, A. Giorgilli, On the numerical optimization of KAM estimates by classical perturbation theory, Z. angew. Math. Phys., 39 (1988), 743–747. https://doi.org/10.1007/BF00948734 doi: 10.1007/BF00948734
    [4] H. Christodoulidi, C. Efthymiopoulos, T. Bountis, Energy localization on $q$-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences, Phys. Rev. E, 81 (2010), 016210. https://doi.org/10.1103/PhysRevE.81.016210 doi: 10.1103/PhysRevE.81.016210
    [5] H. Christodoulidi, C. Efthymiopoulos, Low-dimensional q-tori in FPU lattices: Dynamics and localization properties, Physica D, 261 (2013), 92–113. https://doi.org/10.1016/j.physd.2013.07.007 doi: 10.1016/j.physd.2013.07.007
    [6] A. M. Davie, The critical function for the semistandard map, Nonlinearity, 7 (1994), 219. https://doi.org/10.1088/0951-7715/7/1/009 doi: 10.1088/0951-7715/7/1/009
    [7] J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), Ergod. Theor. Dyn. Syst., 24 (2004), 1521–1582. https://doi.org/10.1017/S0143385704000410 doi: 10.1017/S0143385704000410
    [8] C. Froeschlé, A. Giorgilli, E. Lega, A. Morbidelli, On the measure of the structure around an invariant KAM torus: analytical and numerical investigation, Symposium - International Astronomical Union, 172 (1996), 293–298. https://doi.org/10.1017/S007418090012755X doi: 10.1017/S007418090012755X
    [9] L. Galgani, Foundations of physics in Milan, Padua and Paris. Newtonian trajectories from celestial mechanics to atomic physics, Mathematics in Engineering, 3 (2021), 1–24. https://doi.org/10.3934/mine.2021045 doi: 10.3934/mine.2021045
    [10] G. Gallavotti, Twistless KAM tori, Commun. Math. Phys., 164 (1994), 145–156. https://doi.org/10.1007/BF02108809
    [11] G. Gallavotti, Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable Hamiltonian systems: a review, Rev. Math. Phys., 6 (1994), 343–411. https://doi.org/10.1142/S0129055X9400016X doi: 10.1142/S0129055X9400016X
    [12] G. Gallavotti, G. Gentile, Majorant series convergence for twistless KAM tori, Ergod. Theor. Dyn. Syst., 15 (1995), 857–869. https://doi.org/10.1017/S0143385700009676 doi: 10.1017/S0143385700009676
    [13] A. Giorgilli, Classical constructive methods in KAM theory, Planet. Space Sci., 46 (1998), 1441–1451. https://doi.org/10.1016/S0032-0633(98)00045-2 doi: 10.1016/S0032-0633(98)00045-2
    [14] A. Giorgilli, Notes on exponential stability of Hamiltonian systems, In: Dynamical systems, Part I, 2003, 87–198.
    [15] A. Giorgilli, Notes on Hamiltonian dynamical systems, Cambridge University Press, 2022. https://doi.org/10.1017/9781009151122
    [16] A. Giorgilli, U. Locatelli, On classical series expansions for quasi-periodic motions, Mathematical Physics Electronic Journal, 3 (1997), 5.
    [17] A. Giorgilli, U. Locatelli, Kolmogorov theorem and classical perturbation theory, Z. angew. Math. Phys., 48 (1997), 220–261. https://doi.org/10.1007/PL00001475 doi: 10.1007/PL00001475
    [18] A. Giorgilli, U. Locatelli, A classical self–contained proof of Kolmogorov's theorem on invariant tori, In: Hamiltonian systems with three or more degrees of freedom, Dordrecht: Springer, 1999, 72–89. https://doi.org/10.1007/978-94-011-4673-9_8
    [19] A. Giorgilli, U. Locatelli, M. Sansottera, Kolmogorov and Nekhoroshev theory for the problem of three bodies, Celest. Mech. Dyn. Astr., 104 (2009), 159–175. https://doi.org/10.1007/s10569-009-9192-7 doi: 10.1007/s10569-009-9192-7
    [20] A. Giorgilli, U. Locatelli, M. Sansottera, On the convergence of an algorithm constructing the normal form for lower dimensional elliptic tori in planetary systems, Celest. Mech. Dyn. Astr., 119 (2014), 397–424. https://doi.org/10.1007/s10569-014-9562-7 doi: 10.1007/s10569-014-9562-7
    [21] A. Giorgilli, U. Locatelli, M. Sansottera, Improved convergence estimates for the Schröder-Siegel problem, Annali di Matematica, 194 (2015), 995–1013. https://doi.org/10.1007/s10231-014-0408-4 doi: 10.1007/s10231-014-0408-4
    [22] A. Giorgilli, U. Locatelli, M. Sansottera, Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; effective stability into the light of Kolmogorov and Nekhoroshev theories, Regul. Chaot. Dyn., 22 (2017), 54–77. https://doi.org/10.1134/S156035471701004X doi: 10.1134/S156035471701004X
    [23] A. Giorgilli, S. Marmi, Convergence radius in the Poincaré-Siegel problem, Discrete Cont. Dyn. Syst. S, 3 (2010), 601–621. https://doi.org/10.3934/dcdss.2010.3.601 doi: 10.3934/dcdss.2010.3.601
    [24] A. Giorgilli, A. Morbidelli, Invariant KAM tori and global stability for Hamiltonian systems, Z. angew. Math. Phys., 48 (1997), 102–134. https://doi.org/10.1007/PL00001462 doi: 10.1007/PL00001462
    [25] A. Giorgilli, M. Sansottera, Methods of algebraic manipulation in perturbation theory, In: Third La Plata International School on Astronomy and Geophysics: Chaos, diffusion and non–integrability in Hamiltonian Systems Applications to Astronomy, La Plata Observatory, 2011,147–183.
    [26] A. A. N. Kolmogorov, Preservation of conditionally periodic movements with small change in the Hamilton function, In: Stochastic behavior in classical and quantum Hamiltonian systems, Berlin, Heidelberg: Springer, 1979, 51–56. https://doi.org/10.1007/BFb0021737
    [27] A.-S. Libert, M. Sansottera, On the extension of the Laplace-Lagrange secular theory to order two in the masses for extrasolar systems, Celest. Mech. Dyn. Astr., 117 (2013), 149–168. https://doi.org/10.1007/s10569-013-9501-z doi: 10.1007/s10569-013-9501-z
    [28] U. Locatelli, A. Giorgilli, Invariant tori in the secular motions of the three-body planetary systems, Celest. Mech. Dyn. Astr., 78 (2000), 47–74. https://doi.org/10.1023/A:1011139523256 doi: 10.1023/A:1011139523256
    [29] U. Locatelli, A. Giorgilli, From Kolmogorov's normalization algorithm to the orbits in the three-body planetary problem, In: Modern celestial mechanics: from theory to applications, Dordrecht: Springer, 2002,411–415. https://doi.org/10.1007/978-94-017-2304-6_32
    [30] U. Locatelli, A. Giorgilli, Construction of Kolmogorov's normal form for a planetary system, Regul. Chaot. Dyn., 10 (2005), 153–171. https://doi.org/10.1070/RD2005v010n02ABEH000309 doi: 10.1070/RD2005v010n02ABEH000309
    [31] J. Laskar, Frequency map analysis of an Hamiltonian system, In: Chaos and diffusion in Hamiltonian systems, Gif-sur-Yvette, France: Editions Frontieres, 1994,223–255.
    [32] J. Laskar, Frequency map analysis and quasi periodic decompositions, In: Hamiltonian systems and Fourier analysis, 2005, 99–134.
    [33] R. Mastroianni, C. Efthymiopoulos, Kolmogorov algorithm for isochronous Hamiltonian systems, Mathematics in Engineering, 5 (2023), 1–35. https://doi.org/10.3934/mine.2023035 doi: 10.3934/mine.2023035
    [34] A. Morbidelli, A. Giorgilli, On a connection between KAM and Nekhoroshev's theorem, Physica D, 86 (1995), 514–516. https://doi.org/10.1016/0167-2789(95)00199-E doi: 10.1016/0167-2789(95)00199-E
    [35] A. Morbidelli, A. Giorgilli, Superexponential stability of KAM tori, J. Stat. Phys., 78 (1995), 1607–1617. https://doi.org/10.1007/BF02180145 doi: 10.1007/BF02180145
    [36] J. Moser, On invariant curves of area–preserving mappings of an annulus, Nachr. Akad. Wiss. Gött. II, 1962 (1962), 1–20.
    [37] T. Penati, V. Danesi, S. Paleari, Low dimensional completely resonant tori in Hamiltonian Lattices and a Theorem of Poincaré, Mathematics in Engineering, 3 (2021), 1–20. https://doi.org/10.3934/mine.2021029 doi: 10.3934/mine.2021029
    [38] T. Penati, M. Sansottera, V. Danesi, On the continuation of degenerate periodic orbits via normal form: full dimensional resonant tori, Commun. Nonlinear Sci. Numer. Simulat., 61 (2018), 198–224. https://doi.org/10.1016/j.cnsns.2018.02.003 doi: 10.1016/j.cnsns.2018.02.003
    [39] J. Pöschel, On elliptic lower dimensional tori in Hamiltonian systems, Math. Z., 202 (1989), 559–608. https://doi.org/10.1007/BF01221590 doi: 10.1007/BF01221590
    [40] J. Pöschel, A lecture on the classical KAM theorem, In: Smooth ergodic theory and its applications, American Mathematical Society, 2001,707–732.
    [41] H. Rüssmann, Non–degeneracy in the perturbation theory of integrable dynamical systems, In: Number theory and dynamical systems, Cambridge University Press, 1989, 5–18. https://doi.org/10.1017/CBO9780511661983.002
    [42] H. Rüssmann, On the frequencies of quasi periodic solutions of analytic nearly integrable Hamiltonian systems, In: Seminar on dynamical systems, Basel: Birkhäuser, 1994,160–183. https://doi.org/10.1007/978-3-0348-7515-8_13
    [43] M. Sansottera, V. Danesi, T. Penati, S. Paleari, On the continuation of degenerate periodic orbits via normal form: lower dimensional resonant tori, Commun. Nonlinear Sci. Numer. Simulat., 90 (2020), 105360. https://doi.org/10.1016/j.cnsns.2020.105360 doi: 10.1016/j.cnsns.2020.105360
    [44] M. Sansottera, A. Giorgilli, T. Carletti, High-order control for symplectic maps, Physica D, 316 (2016), 1–15. https://doi.org/10.1016/j.physd.2015.10.012 doi: 10.1016/j.physd.2015.10.012
    [45] M. Sansottera, C. Lhotka, A. Lemaître, Effective stability around the Cassini state in the spin-orbit problem, Celest. Mech. Dyn. Astr., 119 (2014), 75–89. https://doi.org/10.1007/s10569-014-9547-6 doi: 10.1007/s10569-014-9547-6
    [46] M. Sansottera, C. Lhotka, A. Lemaître, Effective resonant stability of Mercury, Mon. Not. Roy. Astron. Soc., 452 (2015), 4145–4152. https://doi.org/10.1093/mnras/stv1429 doi: 10.1093/mnras/stv1429
    [47] M. Sansottera, A.-S. Libert, Resonant Laplace-Lagrange theory for extrasolar systems in mean-motion resonance, Celest. Mech. Dyn. Astr., 131 (2019), 38. https://doi.org/10.1007/s10569-019-9913-5 doi: 10.1007/s10569-019-9913-5
    [48] M. Sansottera, U. Locatelli, A. Giorgilli, A semi-analytic algorithm for constructing lower dimensional elliptic tori in planetary systems, Celest. Mech. Dyn. Astr., 111 (2011), 337–361. https://doi.org/10.1007/s10569-011-9375-x doi: 10.1007/s10569-011-9375-x
    [49] M. Sansottera, U. Locatelli, A. Giorgilli, On the stability of the secular evolution of the planar Sun-Jupiter-Saturn-Uranus system, Math. Comput. Simulat., 88 (2013), 1–14. https://doi.org/10.1016/j.matcom.2010.11.018 doi: 10.1016/j.matcom.2010.11.018
    [50] L. Stefanelli, U. Locatelli, Kolmogorov's normal form for equations of motion with dissipative effects, Discrete Contin. Dyn. Syst. B, 17 (2012), 2561–2593. https://doi.org/10.3934/dcdsb.2012.17.2561 doi: 10.3934/dcdsb.2012.17.2561
    [51] M. Volpi, U. Locatelli, M. Sansottera, A reverse KAM method to estimate unknown mutual inclinations in exoplanetary systems, Celest. Mech. Dyn. Astr., 130 (2018), 36. https://doi.org/10.1007/s10569-018-9829-5 doi: 10.1007/s10569-018-9829-5
    [52] J.-C. Yoccoz, Linéarisation des germes de difféomorphismes holomorphes de $(C, 0)$, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 55–58.
    [53] J.-C. Yoccoz, Petits diviseurs en dimension 1, Société mathématique de France, 1995.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1166) PDF downloads(81) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog