We consider nonlinear Kolmogorov-Fokker-Planck type equations of the form
$ \begin{equation*} (\partial_t+X\cdot\nabla_Y)u = \nabla_X\cdot(A(\nabla_X u, X, Y, t)). \end{equation*} $
The function $ A = A(\xi, X, Y, t): \mathbb R^m\times \mathbb R^m\times \mathbb R^m\times \mathbb R\to \mathbb R^m $ is assumed to be continuous with respect to $ \xi $, and measurable with respect to $ X, Y $ and $ t $. $ A = A(\xi, X, Y, t) $ is allowed to be nonlinear but with linear growth. We establish higher integrability and local boundedness of weak sub-solutions, weak Harnack and Harnack inequalities, and Hölder continuity with quantitative estimates. In addition we establish existence and uniqueness of weak solutions to a Dirichlet problem in certain bounded $ X $, $ Y $ and $ t $ dependent domains.
Citation: Prashanta Garain, Kaj Nyström. On regularity and existence of weak solutions to nonlinear Kolmogorov-Fokker-Planck type equations with rough coefficients[J]. Mathematics in Engineering, 2023, 5(2): 1-37. doi: 10.3934/mine.2023043
We consider nonlinear Kolmogorov-Fokker-Planck type equations of the form
$ \begin{equation*} (\partial_t+X\cdot\nabla_Y)u = \nabla_X\cdot(A(\nabla_X u, X, Y, t)). \end{equation*} $
The function $ A = A(\xi, X, Y, t): \mathbb R^m\times \mathbb R^m\times \mathbb R^m\times \mathbb R\to \mathbb R^m $ is assumed to be continuous with respect to $ \xi $, and measurable with respect to $ X, Y $ and $ t $. $ A = A(\xi, X, Y, t) $ is allowed to be nonlinear but with linear growth. We establish higher integrability and local boundedness of weak sub-solutions, weak Harnack and Harnack inequalities, and Hölder continuity with quantitative estimates. In addition we establish existence and uniqueness of weak solutions to a Dirichlet problem in certain bounded $ X $, $ Y $ and $ t $ dependent domains.
[1] | D. Albritton, S. N. Armstrong, J. C. Mourrat, M. Novack, Variational methods for the kinetic Fokker-Planck equation, 2019, arXiv: 1902.04037. |
[2] | F. Anceschi, S. Polidoro, M. A. Ragusa, Moser's estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients, Nonlinear Anal., 189 (2019), 111568. https://doi.org/10.1016/j.na.2019.07.001 doi: 10.1016/j.na.2019.07.001 |
[3] | F. Anceschi, A. Rebucci, A note on the weak regularity theory for degenerate Kolmogorov equations, 2021, arXiv: 2107.04441. |
[4] | S. N. Armstrong, A. Bordas, J. C. Mourrat, Quantitative stochastic homogenization and regularity theory of parabolic equations, Anal. PDE, 11 (2018), 1945–2014. https://doi.org/10.2140/apde.2018.11.1945 doi: 10.2140/apde.2018.11.1945 |
[5] | S. N. Armstrong, J. C. Mourrat, Lipschitz regularity for elliptic equations with random coefficients, Arch. Rational Mech. Anal., 219 (2016), 255–348. https://doi.org/10.1007/s00205-015-0908-4 doi: 10.1007/s00205-015-0908-4 |
[6] | L. Boccardo, F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. Theor., 19 (1992), 581–597. https://doi.org/10.1016/0362-546X(92)90023-8 doi: 10.1016/0362-546X(92)90023-8 |
[7] | F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pure. Appl., 81 (2002), 1135–1159. https://doi.org/10.1016/S0021-7824(02)01264-3 doi: 10.1016/S0021-7824(02)01264-3 |
[8] | M. Bramanti, M. C. Cerutti, M. Manfredini, $L^p$ estimates for some ultraparabolic operators with discontinuous coefficients, J. Math. Anal. Appl., 200 (1996), 332–354. https://doi.org/10.1006/jmaa.1996.0209 doi: 10.1006/jmaa.1996.0209 |
[9] | H. Brézis, I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. Le cas dépendant du temps, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1197–A1198. |
[10] | H. Brézis, I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. Le cas indépendant du temps, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A971–A974. |
[11] | C. Cercignani, $H$-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech., 34 (1982), 231–241. |
[12] | C. Cinti, A. Pascucci, S. Polidoro, Pointwise estimates for a class of non-homogeneous Kolmogorov equations, Math. Ann., 340 (2008), 237–264. https://doi.org/10.1007/s00208-007-0147-6 doi: 10.1007/s00208-007-0147-6 |
[13] | L. Desvillettes, Entropy dissipation estimates for the Landau equation in the Coulomb case and applications, J. Funct. Anal., 269 (2015), 1359–1403. https://doi.org/10.1016/j.jfa.2015.05.009 doi: 10.1016/j.jfa.2015.05.009 |
[14] | L. Desvillettes, C. Mouhot, C. Villani, Celebrating Cercignani's conjecture for the Boltzmann equation, Kinet. Relat. Mod., 4 (2011), 277–294. https://doi.org/10.3934/krm.2011.4.277 doi: 10.3934/krm.2011.4.277 |
[15] | L. Desvillettes, C. Villani, On the spatially homogeneous Landau equation for hard potentials Ⅱ: $H$-theorem and applications, Commun. Part. Diff. Eq., 25 (2000), 261–298. https://doi.org/10.1080/03605300008821513 doi: 10.1080/03605300008821513 |
[16] | E. DiBenedetto, U. Gianazza, V. Vespri, Harnack's inequality for degenerate and singular parabolic equations, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-1584-8 |
[17] | I. Ekeland, R. Temam, Convex analysis and variational problems, Amsterdam-Oxford: North-Holland Publishing Co., 1976. |
[18] | N. Ghoussoub, Self-dual partial differential systems and their variational principles, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-84897-6 |
[19] | N. Ghoussoub, L. Tzou, A variational principle for gradient flows, Math. Ann., 330 (2004), 519–549. https://doi.org/10.1007/s00208-004-0558-6 doi: 10.1007/s00208-004-0558-6 |
[20] | F. Golse, C. Imbert, C. Mouhot, A. F. Vasseur, Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 19 (2019), 253–295. https://doi.org/10.2422/2036-2145.201702_001 doi: 10.2422/2036-2145.201702_001 |
[21] | J. Guerand, Quantitative regularity for parabolic De Giorgi classes, 2019, arXiv: 1903.07421. |
[22] | J. Guerand, C. Imbert, Log-transform and the weak Harnack inequality for kinetic Fokker-Planck equations, 2021, arXiv: 2102.04105. |
[23] | J. Guerand, C. Mouhot, Quantitative de Giorgi methods in kinetic theory, 2021, arXiv: 2103.09646. |
[24] | L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–171. https://doi.org/10.1007/BF02392081 doi: 10.1007/BF02392081 |
[25] | A. N. Kolmogoroff, Zufällige Bewegungen (zur Theorie der Brownschen Bewegung), Ann. Math. (2), 35 (1934), 116–117. https://doi.org/10.2307/1968123 doi: 10.2307/1968123 |
[26] | E. Lanconelli, F. Lascialfari, A boundary value problem for a class of quasilinear operators of Fokker-Planck type, Ann. Univ. Ferrara, 41 (1996), 65–84. https://doi.org/10.1007/BF02825256 doi: 10.1007/BF02825256 |
[27] | F. Lascialfari, D. Morbidelli, A boundary value problem for a class of quasilinear ultraparabolic equations, Commun. Part. Diff. Eq., 23 (1998), 847–868. https://doi.org/10.1080/03605309808821369 doi: 10.1080/03605309808821369 |
[28] | P. L. Lions, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London Ser. A, 346 (1994), 191–204. https://doi.org/10.1098/rsta.1994.0018 doi: 10.1098/rsta.1994.0018 |
[29] | M. Litsgård, K. Nyström, The Dirichlet problem for Kolmogorov-Fokker-Planck type equations with rough coefficients, J. Funct. Anal., 281 (2021), 109226. https://doi.org/10.1016/j.jfa.2021.109226 doi: 10.1016/j.jfa.2021.109226 |
[30] | M. Litsgård, K. Nyström, Potential theory for a class of strongly degenerate parabolic operators of Kolmogorov type with rough coefficients, J. Math. Pure. Appl., 157 (2022), 45–100. https://doi.org/10.1016/j.matpur.2021.11.004 doi: 10.1016/j.matpur.2021.11.004 |
[31] | M. Manfredini, The Dirichlet problem for a class of ultraparabolic equations, Adv. Differential Equations, 2 (1997), 831–866. |
[32] | M. Manfredini, S. Polidoro, Interior regularity for weak solutions of ultraparabolic equations in divergence form with discontinuous coefficients, Bollettino dell'Unione Matematica Italiana Serie 8, 1-B (1998), 651–675. |
[33] | C. Mouhot, De Giorgi–Nash–Moser and Hörmander theories: new interplays, In: Proceedings of the International Congress of Mathematicians (ICM 2018), Hackensack, NJ: World Sci. Publ., 2018, 2467–2493. https://doi.org/10.1142/9789813272880_0146 |
[34] | A. Pascucci, S. Polidoro, The Moser's iterative method for a class of ultraparabolic equations, Commun. Contemp. Math., 6 (2004), 395–417. https://doi.org/10.1142/S0219199704001355 doi: 10.1142/S0219199704001355 |
[35] | S. Polidoro, M. A. Ragusa, Hölder regularity for solutions of ultraparabolic equations in divergence form, Potential Anal., 14 (2001), 341–350. https://doi.org/10.1023/A:1011261019736 doi: 10.1023/A:1011261019736 |
[36] | C. A. Truesdell, R. G. Muncaster, Fundamentals of Maxwell's kinetic theory of a simple monatomic gas, New York-London: Academic Press, Inc., 1980. |
[37] | C. Villani, A review of mathematical topics in collisional kinetic theory, In: Handbook of mathematical fluid dynamics, Vol I, Amsterdam: North-Holland, 2002, 71–74. https://doi.org/10.1016/S1874-5792(02)80004-0 |
[38] | W. Wang, L. Zhang, The $C^\alpha$ regularity of a class of non-homogeneous ultraparabolic equations, Sci. China Ser. A-Math., 52 (2009), 1589–1606. https://doi.org/10.1007/s11425-009-0158-8 doi: 10.1007/s11425-009-0158-8 |
[39] | W. Wang, L. Zhang, The $C^\alpha$ regularity of weak solutions of ultraparabolic equations, Discrete Contin. Dyn. Syst., 29 (2011), 1261–1275. https://doi.org/10.3934/dcds.2011.29.1261 doi: 10.3934/dcds.2011.29.1261 |
[40] | W. Wang, L. Zhang, $C^{\alpha}$ regularity of weak solutions of non-homogenous ultraparabolic equations with drift terms, 2017, arXiv: 1704.05323. |
[41] | Y. Zhu, Velocity averaging and Hölder regularity for kinetic Fokker-Planck equations with general transport operators and rough coefficients, SIAM J. Math. Anal., 53 (2021), 2746–2775. https://doi.org/10.1137/20M1372147 doi: 10.1137/20M1372147 |