In this work we address the question of existence and non existence of positive solutions to a class of fractional problems with non local gradient term. More precisely, we consider the problem
$ \left\{ \begin{array}{rcll} (-\Delta )^s u & = &\lambda \dfrac{u}{|x|^{2s}}+ (\mathfrak{F}(u)(x))^p+ \rho f & \text{ in } \Omega,\\ u&>&0 & \text{ in }\Omega,\\ u& = &0 & \text{ in }(\mathbb{R}^N\setminus\Omega), \end{array}\right. $
where $ \Omega\subset \mathbb{R}^N $ is a $ C^{1, 1} $ bounded domain, $ N > 2s, \rho > 0 $, $ 0 < s < 1 $, $ 1 < p < \infty $ and $ 0 < \lambda < \Lambda_{N, s} $, the Hardy constant defined below. We assume that $ f $ is a non-negative function with additional hypotheses. Here $ \mathfrak{F}(u) $ is a nonlocal "gradient" term. In particular, if $ \mathfrak{F}(u)(x) = |(-\Delta)^{\frac s2}u(x)| $, then we are able to show the existence of a critical exponents $ p_{+}(\lambda, s) $ such that: 1) if $ p > p_{+}(\lambda, s) $, there is no positive solution, 2) if $ p < p_{+}(\lambda, s) $, there exists, at least, a positive supersolution solution for suitable data and $ \rho $ small. Moreover, under additional restriction on $ p $, there exists a solution for general datum $ f $.
Citation: Boumediene Abdellaoui, Kheireddine Biroud, Ana Primo, Fernando Soria, Abdelbadie Younes. Fractional KPZ equations with fractional gradient term and Hardy potential[J]. Mathematics in Engineering, 2023, 5(2): 1-36. doi: 10.3934/mine.2023042
In this work we address the question of existence and non existence of positive solutions to a class of fractional problems with non local gradient term. More precisely, we consider the problem
$ \left\{ \begin{array}{rcll} (-\Delta )^s u & = &\lambda \dfrac{u}{|x|^{2s}}+ (\mathfrak{F}(u)(x))^p+ \rho f & \text{ in } \Omega,\\ u&>&0 & \text{ in }\Omega,\\ u& = &0 & \text{ in }(\mathbb{R}^N\setminus\Omega), \end{array}\right. $
where $ \Omega\subset \mathbb{R}^N $ is a $ C^{1, 1} $ bounded domain, $ N > 2s, \rho > 0 $, $ 0 < s < 1 $, $ 1 < p < \infty $ and $ 0 < \lambda < \Lambda_{N, s} $, the Hardy constant defined below. We assume that $ f $ is a non-negative function with additional hypotheses. Here $ \mathfrak{F}(u) $ is a nonlocal "gradient" term. In particular, if $ \mathfrak{F}(u)(x) = |(-\Delta)^{\frac s2}u(x)| $, then we are able to show the existence of a critical exponents $ p_{+}(\lambda, s) $ such that: 1) if $ p > p_{+}(\lambda, s) $, there is no positive solution, 2) if $ p < p_{+}(\lambda, s) $, there exists, at least, a positive supersolution solution for suitable data and $ \rho $ small. Moreover, under additional restriction on $ p $, there exists a solution for general datum $ f $.
[1] | N. Abatangelo, M. Cozzi, An elliptic boundary value problem with fractional nonlinearity, SIAM J. Math. Anal., 53 (2021), 3577–3601. https://doi.org/10.1137/20M1342641 doi: 10.1137/20M1342641 |
[2] | B. Abdellaoui, A. Attar, R. Bentifour, On the fractional p-laplacian equations with weights and general datum, Adv. Nonlinear Anal., 8 (2019), 144–174. https://doi.org/10.1515/anona-2016-0072 doi: 10.1515/anona-2016-0072 |
[3] | B. Abdellaoui, R. Bentifour, Caffarelli-Kohn-Nirenberg type inequalities of fractional order with applications, J. Funct. Anal., 272 (2017), 3998–4029. https://doi.org/10.1016/j.jfa.2017.02.007 doi: 10.1016/j.jfa.2017.02.007 |
[4] | B. Abdellaoui, E. Colorado, M. Sanchón, Regularity of entropy solutions of quasilinear elliptic problems related to Hardy-Sobolev inequalities, Adv. Nonlinear Stud., 6 (2006), 547–562. https://doi.org/10.1515/ans-2006-0404 doi: 10.1515/ans-2006-0404 |
[5] | B. Abdellaoui, A. J. Fernández, Nonlinear fractional Laplacian problems with nonlocal 'gradient terms', Proc. Roy. Soc. Edinb. A, 150 (2020), 2682–2718. https://doi.org/10.1017/prm.2019.60 doi: 10.1017/prm.2019.60 |
[6] | B. Abdellaoui, A. J. Fernández, T. Leonori, A. Younes, Global fractional Calderón-Zygmund regularity, 2021, arXiv: 2107.06535. |
[7] | B. Abdellaoui, A. J. Fernández, T. Leonori, A. Younes, Deterministic KPZ equations with nonlocal "gradient terms", 2022, arXiv: 2203.11616. |
[8] | B. Abdellaoui, M. Medina, I. Peral, A. Primo, The effect of the Hardy potential in some Calderón-Zygmund properties for the fractional Laplacian, J. Differ. Equations, 260 (2016), 8160–8206. https://doi.org/10.1016/j.jde.2016.02.016 doi: 10.1016/j.jde.2016.02.016 |
[9] | B. Abdellaoui, P. Ochoa, I. Peral, A note on quasilinear equations with fractional diffusion, Mathematics in Engineering, 3 (2021), 1–28. https://doi.org/10.3934/mine.2021018 doi: 10.3934/mine.2021018 |
[10] | B. Abdellaoui, I. Peral, The equation $-\Delta u-\lambda \frac{u}{|x|^2} = |\nabla u|^p +cf(x)$: the optimal power, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 6 (2007), 159–183. https://doi.org/10.2422/2036-2145.2007.1.08 doi: 10.2422/2036-2145.2007.1.08 |
[11] | B. Abdellaoui, I. Peral, Towards a deterministic KPZ equation with fractional diffusion: the stationary problem, Nonlinearity, 31 (2018), 1260–1298. https://doi.org/10.1088/1361-6544/aa9d62 doi: 10.1088/1361-6544/aa9d62 |
[12] | B. Abdellaoui, I. Peral, A. Primo, F. Soria, Fractional elliptic problems with gradient term and Hardy potential: existence and non existence of a solution, Nonlinear Anal., 201 (2020), 111942. https://doi.org/10.1016/j.na.2020.111942 doi: 10.1016/j.na.2020.111942 |
[13] | R. A. Adams, Sobolev spaces, New York: Academic Press, 1975. |
[14] | N. E. Alaa, M. Pierre, Weak solutions of some quasilinear elliptic equations with data measures, SIAM J. Math. Anal., 24 (1993), 23–35. https://doi.org/10.1137/0524002 doi: 10.1137/0524002 |
[15] | W. Ao, A. DelaTorre, M. Del Mar Gonzalez, Symmetry and symmetry breaking for the fractional Caffarelli-Kohn-Nirenberg inequality, J. Funct. Anal., 282 (2022), 109438. https://doi.org/10.1016/j.jfa.2022.109438 doi: 10.1016/j.jfa.2022.109438 |
[16] | B. Barrios, L. M. Del Pezzo, Study of the existence of supersolutions for nonlocal equations with gradient terms, Milan J. Math., 88 (2020), 267–294. https://doi.org/10.1007/s00032-020-00314-7 doi: 10.1007/s00032-020-00314-7 |
[17] | B. Barrios, M. Medina, Equivalence of weak and viscosity solutions in fractional non-homogeneous problems, Math. Ann., 381 (2021), 1979–2012. https://doi.org/10.1007/s00208-020-02119-w doi: 10.1007/s00208-020-02119-w |
[18] | W. Beckner, Pitt's inequality and the uncertainty principle, Proc. Amer. Math. Soc., 123 (1995), 1897–1905. https://doi.org/10.1090/S0002-9939-1995-1254832-9 doi: 10.1090/S0002-9939-1995-1254832-9 |
[19] | K. Bogdan, T. Kulczycki, M. Kwaśnicki, Estimates and structure of a-harmonic functions, Probab. Theory Relat. Fields, 140 (2008), 345–381. https://doi.org/10.1007/s00440-007-0067-0 doi: 10.1007/s00440-007-0067-0 |
[20] | L. Caffarelli, G. Dávila, Interior regularity for fractional systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 165–180. https://doi.org/10.1016/j.anihpc.2018.04.004 doi: 10.1016/j.anihpc.2018.04.004 |
[21] | Z.-Q. Chen, R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312 (1998), 465–501. https://doi.org/10.1007/s002080050232 doi: 10.1007/s002080050232 |
[22] | H. Chen, L. Veron, Semilinear fractional elliptic equations involving measures, J. Differ. Equations, 257 (2014), 1457–1486. https://doi.org/10.1016/j.jde.2014.05.012 doi: 10.1016/j.jde.2014.05.012 |
[23] | H. Chen, L. Veron, Semilinear fractional elliptic equations with gradient nonlinearity involving measures, J. Funct. Anal., 266 (2014), 5467–5492. https://doi.org/10.1016/j.jfa.2013.11.009 doi: 10.1016/j.jfa.2013.11.009 |
[24] | J. Dávila, L. Dupaigne, M. Montenegro, The extremal solution of a boundary reaction problem, Commun. Pure Appl. Anal., 7 (2008), 795–817. https://doi.org/10.3934/cpaa.2008.7.795 doi: 10.3934/cpaa.2008.7.795 |
[25] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[26] | R. L. Frank, E. H. Lieb, R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925–950. https://doi.org/10.1090/S0894-0347-07-00582-6 doi: 10.1090/S0894-0347-07-00582-6 |
[27] | T. Grzywny, M. Ryznar, Estimates of Green functions for some perturbations of fractional Laplacian, Illinois J. Math., 51 (2007), 1409–1438. https://doi.org/10.1215/ijm/1258138552 doi: 10.1215/ijm/1258138552 |
[28] | I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$, Commun. Math. Phys., 53 (1977), 285–294. https://doi.org/10.1007/BF01609852 doi: 10.1007/BF01609852 |
[29] | G. Karch, W. A. Woyczyński, Fractal Hamilton-Jacobi-KPZ equations, Trans. Amer. Math. Soc., 360 (2008), 2423–2442. https://doi.org/10.1090/S0002-9947-07-04389-9 doi: 10.1090/S0002-9947-07-04389-9 |
[30] | M. Kardar, G. Parisi, Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56 (1986), 889–892. https://doi.org/10.1103/PhysRevLett.56.889 doi: 10.1103/PhysRevLett.56.889 |
[31] | M. Kassmann, A priori estimates for integro-differential operators with measurable kernels, Calc. Var., 34 (2009), 1–21. https://doi.org/10.1007/s00526-008-0173-6 doi: 10.1007/s00526-008-0173-6 |
[32] | E. Katzav, Growing surfaces with anomalous diffusion: Results for the fractal Kardar-Parisi-Zhang equation, Phys. Rev. E, 68 (2003), 031607. https://doi.org/10.1103/PhysRevE.68.031607 doi: 10.1103/PhysRevE.68.031607 |
[33] | G. L. Kellog, Direct observation of substitutional-atom trapping on a metal surface, Phys. Rev. Lett., 72 (1994), 1662–1665. https://doi.org/10.1103/PhysRevLett.72.1662 doi: 10.1103/PhysRevLett.72.1662 |
[34] | T. Leonori, I. Peral, A. Primo, F. Soria, Basic estimates for solutions of elliptic and parabolic equations for a class of nonlocal operators, Discrete Cont. Dyn. Sys., 35 (2015), 6031–6068. https://doi.org/10.3934/dcds.2015.35.6031 doi: 10.3934/dcds.2015.35.6031 |
[35] | J. A. Mann, W. A. Woyczynski, Growing fractal interfaces in the presence of self-similar hopping surface diffusion, Physica A, 291 (2001), 159–183. https://doi.org/10.1016/S0378-4371(00)00467-2 doi: 10.1016/S0378-4371(00)00467-2 |
[36] | V. Millot, Y. Sire, On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres, Arch. Rational Mech. Anal., 215 (2015), 125–210. https://doi.org/10.1007/s00205-014-0776-3 doi: 10.1007/s00205-014-0776-3 |
[37] | H. M. Nguyen, M. Squassina, Fractional Caffarelli-Kohn-Nirenberg inequalities, J. Funct. Anal., 274 (2018), 2661–2672. https://doi.org/10.1016/j.jfa.2017.07.007 doi: 10.1016/j.jfa.2017.07.007 |
[38] | I. Peral, F. Soria, Elliptic and parabolic equations involving the Hardy-Leray potential, De Gruyter, 2021. https://doi.org/10.1515/9783110606270 |
[39] | M. Riesz, Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math. Szeged., 9 (1938), 1–42. |
[40] | X. Ros-Oton, J. Serra, The extremal solution for the fractional Laplacian, Calc. Var., 50 (2014), 723–750. https://doi.org/10.1007/s00526-013-0653-1 doi: 10.1007/s00526-013-0653-1 |
[41] | X. Ros-Oton, J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pure. Appl., 101 (2014), 275–302. https://doi.org/10.1016/j.matpur.2013.06.003 doi: 10.1016/j.matpur.2013.06.003 |
[42] | T. T. Shieh, D. Spector, On a new class of fractional partial differential equations, Adv. Calc. Var., 8 (2014), 321–336. https://doi.org/10.1515/acv-2014-0009 doi: 10.1515/acv-2014-0009 |
[43] | L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67–112. https://doi.org/10.1002/cpa.20153 doi: 10.1002/cpa.20153 |
[44] | G. Stampacchia, Equations elliptiques du second ordre a coefficients discontinus, Montréal: Les Presses de l'Universite de Montréal, 1966. |
[45] | E. M. Stein, Singular integrals and differentiability properties of functions, Princeton, N.J.: Princeton University Press, 1970. https://doi.org/10.1515/9781400883882 |
[46] | E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc., 67 (1961), 102–104. https://doi.org/10.1090/s0002-9904-1961-10517-x doi: 10.1090/s0002-9904-1961-10517-x |
[47] | E. M. Stein, G. Weiss, Fractional integrals on $n-$dimensional Euclidean space, Indiana Univ. Math. J., 7 (1958), 503–514. https://doi.org/10.1512/IUMJ.1958.7.57030 doi: 10.1512/IUMJ.1958.7.57030 |