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Abstract: In this work we address the question of existence and non existence of positive solutions to
a class of fractional problems with non local gradient term. More precisely, we consider the problem

(D) = ﬂlxj; +FW@) +pf inQ
u > 0 in Q,
u = 0 in RV \ Q),

where Q ¢ R" is a C!! bounded domain, N > 25,0 > 0,0 <s< 1,1 < p <ooand 0 < A < Ay, the
Hardy constant defined below. We assume that f is a non-negative function with additional hypotheses.
Here F(u) is a nonlocal “gradient” term. In particular, if §(u)(x) = |(=A)2u(x)|, then we are able to
show the existence of a critical exponents p,(4, s) such that: 1) if p > p.(4, s), there is no positive
solution, 2) if p < p.(4, 5), there exists, at least, a positive supersolution solution for suitable data and
o small. Moreover, under additional restriction on p, there exists a solution for general datum f.
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1. Introduction

This work deals with the following problem:

(~A)u = ﬂ|x725+(g(u)(x))p+pf inQ,
u > 0 in Q, (1)
u = 0 in RV \ Q),

where 4 > 0,p > 0, s € (0,1),25s < N, 1 < p < 00, Q C R is a bounded regular domain containing
the origin and f is a measurable non-negative function satisfying suitable hypotheses.
By (—A)® we denote the fractional Laplacian of order 2s introduced by M. Riesz in [39], that is,

(=AY'u(x) := ay, PV. f MO UY) S0, 1),
ey X — )
where Nan
ay, = 227! —%F(T)
’ IC(=s)|”

is the normalizing constant that gives the Fourier multiplier identity
F(=A)’u)(€) = €7 F w)(€), for u € SRY),

See [26] for details. Our goal is to find natural conditions on p and f (related to the value of 1), in
order to get the existence of positive solutions.

If 2 = 0, the problem (1) can be seen as a Kardar-Parisi-Zhang stationary equation with fractional
diffusion and nonlocal gradient term. We refer to [30] for the main model and additional properties of
the local case.

The nonlocal case s € (0, 1), but still with the local gradient term, was used recently in order to
describe the growing surface in the presence of self-similar hopping surface diffusion. We refer the
reader to the papers [29,32,33,35] for a physical rigorous justification.

Existence results for the corresponding problem were obtained in [23] and [11] under suitable
hypotheses on f and p. As it was shown in [11], if p > l%s, then the corresponding problem does not
have positive solutions with global regularity of the gradient, even in the case of regular datum f.
Existence of a solution, in the viscosity sense, is proved in [9, 16, 17] for some particular cases.

The case 4 = 0, under the presence of a nonlocal gradient term, was analyzed recently in [7].
Without any limitation on the value of p and under suitable hypothesis of f, the author proved the
existence of a solution using a priori estimates and fixed point arguments.

The case A > 0 with a local gradient term was considered in [10] and [12]. Here the authors showed
the existence of a critical exponent related to the existence of solutions. Our work can be seen as the
non-local counterpart of [12]. However, the non-local gradient term makes the problem more difficult
and fine analysis is needed to determine the existence or non-existence scheme.

Notice that for 4 > 0, problem (1) is related to the Hardy inequality proved in [28], (see also [18]
and [38] for equivalent forms.) Namely, for ¢ € Cg’ (RY), we have

[ terdrde> av, [ arreax @

R R
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where Y N
[2(N2s)
Ay =27 —2— 3)
PR
is optimal and not attained.
It is clear that )
N-2
limANY s (—) s
s—1 ’ 2

the Hardy constant in the local case.
Inequality (2) can be also formulated in the following way

an,s f ¢(x) = s
RN JRN

¢’ o N
2 |x —_ y|N+23 dXdy 2 AN’S fRN W d-xa V¢ € CO (R )

If 1 > Ay, then we can prove that problem (1) has no positive supersolution. Hence, we assume
throughout this paper that 0 < 4 < Ay.

The presence of the Hardy potential forces the solution to enjoy a singular behavior near the singular
point zero and then a loss of regularity is generated.

The paper is organized as follows. In Section 2 we present the functional setting used in order to
study our problem. More precisely we describe some related spaces, as the Bessel potential space,
and their relationship with the fractional Sobolev space. We introduce also the different forms of
the fractional gradient that will be used throughout the paper. In Subsection 2.1 we recall the global
regularity results for the Poisson fractional problem proved in [6]. This will be the key in order to show
the fractional regularity in our problem.

The analysis of the problem under the presence of the Hardy potential, without the nonlocal gradient
term, is considered in Section 3. More precisely, we will consider the semilinear problem

{ (—Au = 1= +f inQ,
|x|2s
u = 0 inRY\ Q,

where f € L™(Q) with m > 1. Some partial regularity results are known in the case where 1 < J;,, =
Ao

However for J;,, < A4 < Ay, using a different approach based on weighted spaces, we are able to
complete the full picture of regularity. As a consequence, we get a complete classification of the
fractional regularity of the solution to the above problem.

The first analysis of the KPZ problem (1) is done in Section 4. We begin by considering the case
where F(u)(x) = |(-A)2u(x)|. Using suitable radial computations in the whole space, we derive the
existence of a critical exponent p, (4, s) such that if p > p,(4, s), then for all p > 0, the problem (1)
has no positive solution in a weak sense. Some other non existence results are proved for p large under
technical condition on p.

The case p < p.(4, s) is analyzed in Subsection 4.2. Under the hypothesis that f is bounded, we are
able to show the existence of a supersolution for p small. Moreover, for p < %, and for all f € L'(Q)
that satisfy a suitable integral condition near the origin, we are able to show the existence of a weak
solution for p < p*.
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4

In Section 5 we treat the KPZ problem, namely equation (1), under the presence of another version
of the non local gradient.

More precisely, we consider the case where F(u)(x) = (’% fRN '“Iix_;ﬁ?ﬁ' dy) Then, also in this

case, we are able to show the existence of a critical exponent p,(4, s) such that non existence holds
if p > p,(A). The proof of the non existence in this case is more technical and need some additional
estimates.

Finally, at the end of the section we formulate some interesting open problems that may describe a
full picture for the existence in our problem.

2. Regularity results and useful tools

The goal of this section is to establish some useful tools and definitions that will play an important
role in what follows.

Definition 2.1. Let Q ¢ R" be a bounded domain and s € (0, 1). For p € [1, o), the fractional Sobolev
space W*P(Q) is defined by

WSP(Q) 1= {u € LP(Q) : f f ) = UG )y < oo}.
QxQ

_ y|N+sp

W*P(Q) is a Banach space endowed with the norm

. () — uP .\’
”M”WS.P(Q) = ( |u||L/’(Q) ffxg |x y|N+Sp d.Xdy .

The space W,”(Q) is defined as follows:
Wl (Q) = {ue W(R") :u=0in RV \ Q.

This is a Banach space endowed with the norm

u(x) — u(y)|? Vp
|u||W?”(Q) (ff e — y[V+er i, dx d)’) )

=(R"x R")\ (CAXCQ) = (Qx RY)U(CQAX Q).

where

Now, for s € (0, 1) and 1 < p < +o0 we define the Bessel potential space by setting

} ” ”Ls p(RN)

L @®Y) = {ue CTRY))
where
luller@y = 11 = A)2ullpgyy  and (1= A)2u=F ' (1+]-P2IFu), YueCRY).
Let us stress that, in the case where s € (0,1)and 1 < p < +o00,

||u||Ls»ﬁ(RN) = ”u”LP(RN) + ||(—A)7u||LP(RN)
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is an equivalent norm for L**(R") (see e.g., [1, page 5] for a precise explanation of this fact). Let us as
well recall that, forall 0 < e < s < 1 and all 1 < p < +o0, by [13, Theorem 7.63, (g)], we have

LP@RY) € WHPRY) c L (RY).
For ¢ € Cy (R") we define the fractional gradient of order s of ¢ by

¢(x)—d(y) x—y dy

gy lx=yl lx—yllx =y’

Vi(x) := VY xeR". 4)

Notice that, as it was proved in [46, Theorem 2] and [42, Theorem 1.7], we have

L?(RY) := {u e LP(RY) such that |V*u| € LP(RN)}

u € LP(RY) such that [(=A)3u| € LP(RN)}

with the equivalent norms

Weelll 5oy = Nutllpoegyy + IV ull oy = el oy + IC=2) 2 ull gy

Another type of “nonlocal gradient” can be defined also by

(s [ lu(x) = u@y)P )%
D = (5 rar )
We refer to [20] and [36] for some motivation of this non local version of the gradient.
In this case one has
fim (1 — SD2(u(x)) = [Vu(x)?, Y ueCy®RY). (6)
Ifp> NZJZS, it was proved in [46] that the Bessel potential space L*”(R") can be defined also as the

set of functions u € LP(R") such that D,(x) € LP(R"). The space L*?(R") can be equipped with the
equivalent norms

el socrvy = Nl oy + D@ Lo gy

The next Sobolev inequality in L*” (RY) is proved in [13], see also [25].
Theorem 2.2. Let 1 < p < oo and s € (0,1) be such that sp < N. Then there exist two positive
constants S := S»(N, p, s) and S, := S (N, p, s) such that for all u € L*?(R") , we have

Sl”””mi(RN) < ”VS’/‘“LI'(RN)’

and
SZHMHLP.’G(RN) < ”(_A)EUHLP(RN)’

PN

with p;; = N
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If Q c RV, we define the space LS 7(Q) as the set of functions u € L*”(R") with u = 0 in RV \Q.
From Lemma 1 in [46], if p > ==~ and Q is a bounded domain, then there exist C; := C (£, N, p, s)
and C; := C,(Q, N, p, s), two posmve constants, such that for all u € L 7(Q)

Cillllll vy < D@l Lorvy < Colllulll s gry-

Notice that if Q is a bounded domain, we can endow LS 7(Q) with the equivalent norms ||V¥u|| lui RY)
or [[(=A)Zul| LrrYy- In the same way, by assuming in addltlon that p > + +2 , then we can equip L;"(Q)
also with the equivalent norms ||D(w)l|,»gv,. We refer to [47] for more details about the properties of
the Bessel potential space and its relation with the fractional Sobolev space.

The next Hardy inequality will be useful in order to prove the non existence result above the critical
exponent. See [7] for the proof.

Proposition 2.3. Let Q c RY be a regular domain with 0 € Q and 0 < s < 1. Suppose that p >
with ps < N and define

N+25

f (Dy(d)(x))dx

L(Q) = inf { & G PECT@\ (01 (7
dx

|x[Ps

Q

Then L(Q) > 0 and L(Q) = L does not depends on Q. Moreover, the weight |x|"P° is optimal in the
sense that, for all € > 0 we have

j; (Ds(@)(x0))"dx
inf |¢(x)|pd o eCy(E)\ {0}, =0.
|x|ps+€
Q

Finally, we recall the next standard result from harmonic analysis. See for instance [45, Theorem I,
Section 1.2, Chapter V].

1 1
Theorem 2.4. Let 0 < v < Nand 1 < p<€<oobesuchthatz+1——+jlv For g € LP(R"), we
p

define
J(g)()—f 8Oy
lx =yl

Then, it follows that:

a) J, is well defined in the sense that the integral converges absolutely for almost all x € R".

b) If p > 1, then ||7,(Dllervy < cpillgllirryy-

Allgllz gy !
&) Ifp =1, then |(x € R [1,()() > )| < (—) |

o
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2.1. Regularity and useful estimates

The goal of this section is to state some well known results about the regularity of the Poisson
equation

{(—A)Su = g inQ, ®)

u = 0 inRV\Q,

where Q is a bounded regular domain of R" and g € L"(Q) with m > 1. We begin by the sense for
which solutions are defined.

Definition 2.5. We define the class of test functions
TQ={p| (=N =¢yinQ, ¢=0InR"\Q, yeCJQ). )

Notice that if v € 77(Q2) then, using the results in [34], v € Hj(£2) N L*(L2). Moreover, according
to the regularity theory developed in [43], if € is smooth enough, there exists a constant 8 > 0 (that
depends only on the structural constants) such that v € C#(Q) (see also [31]).

Definition 2.6. We say that u € L'(Q) is a weak solution to (8) if for g € L'(Q) we have that

f updx = f godx,
Q Q

Recall also the definition of the truncation operator 7T,

for any ¢ € 7 () with ¢ € CJ(Q).

T (o) = max{—k; min{k, o}} and G (o) = o — T (0). (10)

From [2,22,34] we have the next existence result.

Theorem 2.7. Suppose that g € L'(Q), then problem (8) has a unigue weak solution u obtained as the
limit of {u,},en, the sequence of unique solutions to the approximating problems

(_A)Sun = gn(x) in Q,
{ u, = 0 in RM\Q, an
with g, = T,(g). Moreover,
Ti(u,) — Ti(u) strongly in Hy(QY), Vk >0, (12)
WeLNQ),  Vgell—) (13)
N —2s
and N
(A ule L'(@),  Vre[l,—). (14)
N-—s
In addition, if s > 1, then u € Wé’q(Q)for all1<qg< ﬁ and u, — u strongly in Wé’q(Q).
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In what follows we denote G, the Green function associated to the fractional laplacian (-A)®.
Notice that G(x, y) solves the problem

{ (=ARGs(x,y) ox(y) ifyeQ, (15)

Gix,y) = 0 if y € RM\Q,

where x € Q is fixed and ¢, is Dirac’s delta function.
It is clear that if u is the unique weak solution to problem (8), then

u(x) = f G 1)g0)dy.
Q

We collect in the next Proposition some useful properties of the Green function G, (See [21] and [19]
for the proof).

Proposition 2.8. Assume that s € (0, 1). Then, for almost every x, y € Q, we have

1

G(x,y)

I ;w 2s(|55(xy)|s A 1)(|;S —(yy)| M)

(55()6)65@) . 1) (16)
x = VB -y '

1R

In particular, we have

0°(x) 0°'(y)

Gs(x,y) < C; min{ , ,
|x = yIN=257 [x = yIN=s 7 [x — yN=s

}  forae. x,y € Q. (17)

In the case where g € L™(€2), we can improve the regularity results of Theorem 2.7. More precisely
from [11], we have the next theorem.

Theorem 2.9. Assume that g € L"(Q) with m > 1 and let u be the unique solution to problem (8), then
there exists a positive constant C := C(N, s,m, Q) (that can change from a line to another one), such
that

DIl <m< 2 thenue L¥3%(Q), 61 € L% (Q) and

[Jull I o < Cligllzn).

LN- 2/11?(9) 6& LN

2) Ifm= % then u € L'(Q) for all r < oo, (% € LNm—ierw(Q) and

llutllzr) + ||5Y||LN7 < Cligllzm-

3) If% <m< % then u € L*(Q), % e L¥w(Q) and

lletll 02y + ||5S||LN7 < Cligller).-
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4) If m = % then u € L=(Q), % € LP(Q) for all p < oo and

el =) + || “llzr@) < ClIgllme)-

5) Ifm> Y, thenu € L~(Q), (% € L>(Q) and
llutll =) + || ||L°°(Q) < Cliglln)-

Related to the fractional regularity of the solution to problem (8), a global fractional Calderon-
Zygmund regularity result was obtained recently in [6].

Theorem 2.10. Let s € (0,1) and consider u to be the (unique) weak solution to problem (8) with

f € L"(). Then we have

1) Ifm> Y, then forall 1 < p < oo, there exists a positive constant C = C(N, s, p, m, Q) such that

I(=A)2ullp@yy < Cligllime)-

Moreover u € L*?(RN) for all 1 < p < oo and
llutll zsr gy < ClIgllm)-

2)1<m< ¥ then, forall1 < p < A;"N there exists a positive constant C = C(N, s, p,m, Q) such

that

(= A)2u”LI’(RN) Cllgllzme -
Hence u € L*?(R") for all 1 < p < = and
el sr@yy < ClIgllm -

As a direct consequence of the relation between the fractional Sobolev space W*”(R") and the

Bessel potential space L*?(RY), we get the next result.
Corollary 2.11. Let s € (0,1). Consider u to be the unique solution of problem (8) with g € L"™(Q).

Then

Difl<m<?,

we have, for all 1 < p < %=, that there exists C = C(N, s, m, p, <) such that

||M||WAP(RN) C”g”L’”(Q)
2) Ifm> % then, for all 1 < p < oo, there exists C = C(N, s,m, p, Q) such that
[l2¢]yys. PRV S C||g||Lm(Q)
Let us recall that another version of the nonlocal gradient is given by
ans [ lu(x) — u)P )%
D, = : ———dy .
e = (% fR ey

Taking into consideration the result of [46], we get the following corollary.
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Corollary 2.12. Assume that the conditions of Theorem 2.10 hold. Then we have

1) Ifm>~X =, then for all < p < oo, there exists C = C(N, s,m, p, Q) such that

N+2

IDs@lzr@yy < Cligllzm)-

2) IfN+43 = thenfor all < p < 35 there exists C = C(N, s,m, p, Q) such that

N+2

IDs@)lzr@yy < Cllgllzm)-
3. Regularity results under the presence of the Hardy potential

In this subsection we analyze the question of regularity of the solution to the problem

{(—A)Su T |2 +f inQ, as)
u

=0 in RV \ Q,
in Lebesgue spaces and fractional Sobolev spaces according to the regularity of the datum f. Here
Q c R" is a bounded regular domain containing the origin and s € (0,1). We will suppose that

fel™Q)withm>1and 0 <A < Ay
If f = 0, we define the radial potential v, (x) = |x|~ s with @, given by

2s N+2s5+2a; N+2s—2a
2P T(===)0(==1)

A= /l(a/l) = /1(_&/1) = N-25+2«a N-2s5-"2a« (19)
[(——==I(—=")
From [8], we obtain that v.,, solves the homogeneous equation
(=A)u = /IW in RV \ {0}. (20)
(N+ZS+2(1/1 )
It is clear that A(e) = A(-a) = mq,m_,,, with m,, = 2QF(?42“)
4
Notice that N2
0 < ) = A=) < Ay, if and only if 0 < @) < — °
Define N2 N2
() = TS — @, and 7(A) = >+ 1)

2

N_
For 0 < A < Ay, then 0 < p(2) < il < < (N —2s). Since N — 2u(d) — 2s = 2a, > 0 and

N = 2ji(2) = 2s = =2a; < 0, then (=A)*?(|x|™#D) € L*(Q), but (=A)*'?(|x|#?D) does not.
As it was proved in [8], if £ € L'(Q), then the existence of a solution to problem (18) is guaranteed

under the necessary and sufficient condition flxPdx < co. Hence, throughout this section this
B,(0)
condition will be assumed.

The first result concerning the behavior in the neighborhood of zero is given by the next Proposition
proved in [8].
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Proposition 3.1. Letu € L1 (RN) be such that u > 0 in R" and (-A)’u € L}

loc

(Q). Assume that

(A)M//?.WZHQ 0</1<AN,S'

Then, there exists r > 0 and a positive constant C = C(r, N, ) such that
u(x) > Clx| @ = Cla|~" = ** in B,(0) cC Q.

We are now in position to prove the first regularity results, in fractional Sobolev space, to the
solution of problem (18).

Theorem 3.2. Assume that f € L™(Q) with m > 1 satisfying the condition fB © FIx*Vdx < co. Let

u € LY(Q) to be the unique weak solution to (18) with 1 < Ay. Then there exists a positive constant
C =C(N,m,p, s,Q) such that

e L7(Q) forall 1 <

N N
e L’(R )foralll <p< Dt

1) If m > 2s then —— x |2 ;1(/1)+2s

Moreover we have v
(=AY ull gy < Cllflln)-
AN(m — 1)(N — 2ms)

2)If1 <m< Tand A < Jy, = Ay, )
)f s an NsTTR(N = 25)2

€ LP(RY) forall 1 < p <

Moreover we have

N ms*
(= A)Zu”LP(RN) Cllfllem-
Proof. We begin by analyzing the first case. Assume that f € L™(€2) with m > % From Theorem 4.1

. . u
in [8] we obtain that u(x) < C|x|#@yq. Hence —— < C|x|*™P~25y,. As a consequence, we deduce

| x|
that — € L7(Q) forall 1 < o <

| |2 ,u(/l)+25'
Setting g = e + f, it follows that g € L7(Q) for all o < ﬁ Using the regularity result
in Theorem 2.9, we conclude that u € L'(Q) for all r < % Now by Theorem 2.10, it holds that
|(=A)3u| € LP(RY) forall 1 < p < N i and

(= A)ZMHLP(RN) Cllfllm-
Hence we conclude.
AN(m — 1)(N — 2ms)
m2(N — 2s)?
Recall that u solves problem (18). Then by Theorem 4.2 of [8], we get the existence of positive
constant C(N, s, m) such that

We treat now the case 1 <m < £ and 0 < A < J,,, = Ay
2s

» mN
||M||Lm.’;*(g) < Cllfllpny where m™ = m (22)

Since p < N ——, then we get the existence of m; < m such that p < 3= Fixed m; < m, using Holder

inequality we deduce that
u™
f |x|2sml dx<C
Q
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Since m; < m, it follows thatg AL et feLm(Q).

On the other hand m; < m < —S < ; therefore using the regularity result in Theorem 2.10, we deduce
that

s Nm
=) ull oy < Cllgllim o forall p < ———.
—ms
Thus N
(=8l < Cllf e for all p < ———
and the result follows in this case. O

AN(m — 1)(N — 2ms)
m2(N — 2s)?

In order to treat the general case J;,, = Ay < A < Ay, we need to develop a

new approach.
Let u be the unique weak solution to problem (18). Setting v(x) := |x[*“Yu(x), it follows that v solves
the problem

Loy = W Of0) = f(x) inQ, 23
v = 0 inRY\ Q,
with 4
L,y :=ay, PV. f ) = Nv(f) Y (24)
Ry = yINEES X[yl

Since f Flx#Ydx < oo, then f € L'(Q). Thus v can be seen as the unique entropy solution to

problem (23) as defined in [2]. Following closely the argument used in [4], we get the next general
regularity result.

Theorem 3.3. Let s € (0,1) and 0 < A1 < Ay, Assume that ]76 LI(Q, |x]P9Vdx) with g > 1 and
2N” (A) < B < 2(u(A) + 5). Let us denote by C := C(N, B, A, s, q, ) a positive constant that may change
from line to other.

Then if v solves problem (23), we have

1) If B < 2u(d) + 5) and q > 5o5752—, then v € L™(Q). Moreover;

IVl < Cllfllzoapa-van-

2) If B < 2(u(d) + s) and q = % thenv € L"(Q, |x|Pdx), for all 1 < r < +oco. Moreover

7

f M X 7Pdx | < Cllflla@uspavay-

3) Ifeztherﬁ 2 + s)or B<2ud) +s)and 1 < g <

_ (N-p)q
alll <r<r = N Eae B Moreover

__ N8B r 1 -B
2(;1(A)+ 5 then |v|" € L'(Q, |x|Pdx), for

r

f W x| < Cll e o
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Before proving the previous Theorem, we recall the following weighted fractional Caffarelli-Khon-
Nirenberg inequality, whose proof can be found in [3, 15,37].

Theorem 3.4. Assume that s € (0,1) and -2s <y < %% Let 0 € [y, y+ s], then there exists a positive
constant C:=C(N, s ,y, 0), such that for all ¢ € C’g“(RN ), we have

N ) f 6(x) — SO
C f ——dx < dxd s
( R X o Jv T =y

Setting B = 06, we obtain that % <B <2y + s)and

F o\ _ 2
c( f ﬂdx) < LSS . (25)
R

v | R Jrv 1x = YN Xyl

S

2N

with o = N o2

Notice that by substituting the value of 6 in the formula of &, we reach that o = Nz_(zzv(;i).

Proof of Theorem 3.3. Notice that, using the notation of Theorem 3.4, then, in our case, we have
y = 1) € (0,%52),

The main idea of the proof is to use a suitable test function and an approximation argument. To
make the paper self contained as possible, we include here all the details.

Without loss of generality we can assume that g > 1 and ]7; 0. Thus v = 0in R".

Consider the following approximating problem

{Lﬂwvn = fi®) inQ, 26)

ve, = 0 inRV\ Q,

where j‘;(x) = T,,(]T(x)) is the truncation of f,: as defined in (10).
Since v is the unique solution to problem (23), at least in the entropy sense, then

v, Tv ae.in RY andv, 7 v strongly in L' (R").

In the rest of the proof, we denote by C any positive constant that depends only on N, s, g, 1, 2, and is
independent of n, f: v, that may change from line to other.

It is not difficult to show that v, is bounded. Thus, for & > 0 fixed, to be chosen later, using v as a
test function in (26), it holds that

% f f (Va(x) = va()(v; (x) — v, () dxdy = f T () do.
Dq
Q

Jox = YV Dy

By the algebraic inequality

(@a-b)a®*-b")>Ca> —b72 ),

we reach that

x = YN Oy

gl a5 —
Dq
Q
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Using the weighted fractional Caffarelli-Khon-Nirenberg inequality in Theorem 3.4, we get

(ar+ 1o

+1 +1
Wk () = v () 2
.II;Ix ﬂNﬂWﬂM@wwufidy2’C( o dx)'

Q

SV

Now by using Holder’s inequality, it holds that
— — 7 ad a
f fnv:(x)dx<( f Fi(x) |x|ﬁ<q-”dx)”( f | |;x) x) . 27)
X
Q Q Q

(zr+ o 2
A,_

(va(2) T i) fﬂ@ 7
c( s f FIOPD (x)dx )( 7 dx) . (28)

Q Q

Hence

o If B < 2(u(d)+s)and % > ¢', namely g > va)%, in this case we can prove that v € L*(Q). The
proof follows using the classical Stampacchia argument as in [44]. Let us give some details. Using

Gi(v,) as a test function (26), it follows that

lf (a(X) = va G a(X)) = Gr(a (1))
2 JJb, |x — YIN+28| x| D]y |

dMW=L[ﬁK@GAw@Ddx
Q

Since % > ¢, then El; -+ é <l- zlq,. Thus Using the Holder inequality, we get

c f f (G (va(x) = Ge(v,())? dxdy
Dg

|ox — VRS Oy

G |\ :
\fﬂmuW”d)( LﬁﬁwLx)heQ Gilv(x) > O} 7.
Q

Now, by the Caffarelli-Kohn-Nirenberg inequality in (25), we deduce that

Gn"%
( Lﬂ%%m_ ‘fﬂunwwmh)hfﬂ @WWW>Oh%§
Q

Hence L

|{X €Q: Vn(x) > k}lirﬁd = C| X €Q: V"('x) > k} || ﬁdx

Thus using the standard Stampacchia argument, see [44], we get the existence of ky > 0, independents

of n such that
|{x € Q2 v,(x) > ko}| = 0 for all n.

Hence |{x € Q : v(x) > ko}| and then v € L*(Q).

o If B < 2(u(A) + s) and ‘T = ¢’, since (28) holds for all @ > 1, then using Holder’s inequality, we
reach that for all n > 1, v/ |x| P € L'(Q), for all r < co and
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1

fV; |X|_de < C”ﬁrl”Lfl(QJxlﬁ(q-l)dx), forall 1 < r < +co.
Q

Now using Fatou’s Lemma we deduce that

1

r

fvr Ix|Pdx| < C”ﬁqu(QJxlﬁ(q—])dx), forall 1 <r < +o0
Q
as requested.

e Now, if 8 < 2(u(12) + s) and % < ¢, thatis g < %, and choosing a = qu?_,&, then (‘”21)3 -
90 _ g(N-p) N : : 1 1-B 1
vl vy ey A Going back to (28), it follows that, for alln > 1, v}, |x|” € L' (€2) and

1

=

f@nw%x < Clf o va.

Q

As above, using Fatou’s lemma, we get

*

fvr* I Pdx| < C”ﬂlL‘i(Q,lxlﬁ(‘?*”dx)-
Q
o If B = 2(u(A) + s), then o = 2. Again from (28) and choosing a = q,%l, it follows that r* = ¢ and
V' |x ™ € LY(Q) for all n > 1 with

fVZ I Pdx| < Cll fall Lo ixpavar)-
Q

<

Thus

1

IWWWX<CMMwWMy

Q
|

As a consequence, we get the next corollary that improves the regularity results obtained in [8].

Corollary 3.5. Let s € (0,1), 0 < A < Ay, and u be the unique weak solution to problem (18) with

_ . . _ _ 2Np(A)
flx[Y e LY(Q). Suppose in addition that f|xP*V € LUQ,|x|Pdx) where g > 1 and NfZS <P <
2(u(d) + ). Then

1) If B < 2(u(d) + s) and q > %, then u|x'V € L*(Q). Moreover, there exists a positive

constant C := C(N, B, 4, s, q, ) such that

A —u(d
llx Pl < CIFXP Pl Lai-pa-
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2) If B < 2(u(d) + s) and q = % then ulx*V € L'(Q, |x|Pdx), for all 1 < r < +co. Moreover,
there exists a positive constant C := C(N, B, A, s, q, r, Q) such that

1

r

- (1
fur|x|r“( Bax| < ClAF N La-ean-
Q

3) If either B = 2(u(A) + 5) or B < 2(u(A) + s) and 1 < q < 55—, then
UxXFD e L7 (Q, |x|Pdx) with r* = ——8P9___ " Moreover, there exists a positive constant

N=B—qQ2u(D)+s)-p)
C :=C(N,B, A4, s,q,Q) such that

1

=

. L
fur I O Pdx| < C||f|x|’8 H )||Lq(9,|x|-ﬁdx)-
Q

As a consequence we get the next fractional regularity.

Theorem 3.6. Suppose that f satisfies the same condition as in Corollary 3.5. Let u € L'(Q) be the
unique weak solution to (18) with A < Ay Then

1) If B < 2(u(d) + s) and g > %, then |(—A)%u| € LP(R) forall 1 < p < # In particular,

there exists a positive constant C := C(N, 3, 4, s, q, p, L) such that
3 —u(d
(=AY ull gy < CIFIXP Pl a£ar)-

2) If B < 2(u(Ad) + s)and g = % then |(—A)%u| € LP(RY) forall1 < p < # In particular,

there exists a positive constant C := C(N, B, A, s, q, p, Q) such that

=22 ull vy < CIFF Pl gpsan-
3) If either B = 2(,u(/l) +5)or B < 2(u(d) + s) and ——

all 1< p < i
such that

N
o S 4 < sas g then |(=A)2u| € LP(RY) for
In particular, there exists a positive constant C := C(N, S, A, s, q, p, )

I=8) 2l ey < Cllflxlﬁ‘““)llm(g b
4) If either B = 2(u(d) + 5) or B < 2u() + s) and 1 < q < 5% W then |(—A)3u| € LP(RY) for all
I<p< NqTA;S. In particular, there exists a positive constant C := C(N, 3, A, s, q, p, Q) such that

(= A)zu”LP(RN) C||f|x|ﬁ Rl )”L‘I(Q x| Bdx)-

Proof. We start with the first case. Since 8 < 2(u(A) + s) and g > % then by Corollary 3.5, we
obtain that u(x) < C|x|W,
Hence & < Clx| -2 ¢ 1o(Q) forall 1 < o < ——. Since g > 2P then using Holder
_N
u()+2s

WD)+2s 2uD)+5)-p> »
inequality we can show the existence of a > 5 - such that f € L*(Q). Thus g := X |2 —+ f e L7(Q) for

al 1 <o < Using now the regulanty result in Theorem 2.10, it holds that € LP(RY)

(/1)+2
forall 1 < p and

(/l)+s
s —u(d
I(=A)2 ull gy < CIFIF PNl g
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The second case follows as the first case using the fact that u|x|*Y € L"(Q, |x|Pdx), forall 1 < r < +o0.
We consider the third case which is more involved. Assume that 8 < 2(u(d) + s) and 1 < g <

__NB () " -8 _ %

TE B thzn by Corollary 3.5, we reach that u|x|*" € L™ (Q, |x|*dx) with r* = N 2O B We
. 0 N . . . 5 . .

claim that R e L°/(Q)forall 1 <0< —N+q(ﬁ B To see this we will use Holder’s inequality. More

precisely, for 1 < 8 < r*, we have

f (|xL|tZS )de

Q

f (ue]“O) (| x P HH D29y x| B x

Y

9

=

N

( f (u|x|““))’*|x|*ﬁdx f (P29 25 ﬁdx)
Q

r*-6
=

C(Q)“flxlﬁ ,U(/l)”Lq(Q |x| ﬁdx) f(lxlﬁ—g(,u(ﬂ)+25))r:_g|x|—,3dx)

N

—N. This is equivalent to the fact

. . . qN £3 :
that 6 < —N+ B Notice that in this case we have NraBa g < Then the claim follows.

In the same way and taking into consideration that m < g, we can prove that f € LY(Q)
u

forall 1 <6 < W[/z(ﬂ))—ﬁ' As in the previous cases, setting g := P + f, then g € LYQ) for all
1<6< ]sz)ﬁ Thus by the regularity result in Theorem 2.10, we obtain that e L”(R")
forall 1 < p < 2. Hence |(-A)2u| € LP(RY) for all 1 < p < g-2o—— and

I=A)2ull gy < CUAREHPllLaagsan-
Finally, the fourth case follows easily, using the approach of the previous case. O

To end this section we give the next weighted estimate for the fractional gradient if additional
assumptions on f are satisfied. This will be used in order to show the existence of a solution to
problem (1).

Suppose that f € L!(|xV~%dx, Q) for some ay > 0. Hence there exists A; € (1, Ay) such that
u(dy) = u(Ad) + ap. Define ¢ to be the unique solution to problem

(=AW Feal in Q, 29

v = 0 inRV\ Q,

|
Kt

then i ~ |x|#V=% near the origin. It is clear also that ¢ € L*(Q\B,(0)).
Using ¢ as a test function in problem (18), it holds that

(/11—/1)f%dx<ff¢/dx.
Q Q

u
f |x|25+ﬂ(/l) dx < C(Q /l’ aO)”f”Ll(|x|*l1(/1)*a()dx’g). (30)

Hence
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The next proposition will be the crucial key in order to show a priori estimates when dealing with
problem (1) with general datum f.

Proposition 3.7. Assume that f € L'(|x|*Y~%dx, Q) for some ay > 0. Let v be the unique weak
solution to problem (18), then

N
< C(Q, /1, ao)'|f||L1(|x|—y(/l)—u0dx’Q) fOr all 1 <a<
L (X # D dx,0) N-s

H(—A)éu 31)

To prove Proposition 3.7, we need the following lemma proved in [27].
Lemma3.8. Let N > 1, R > 0 and o, € (—oo, N). There exists C := C(N,R, a,3) > 0 such that:
o If(N—a—-p)#0, then

d
f <1+ =" F),  forall x,y € By(0) with x # .
B0y [X = 2%y — 2

e [f(N—a—-p) =0, then

dz
— < C(1+|Injx—y|
fm(o) lx — z|2ly — 2P ( | Y

). forall x,y € Bp(0) with x # y.

Proof of Proposition 3.7. Since f flx[#Wdx < oo, then by Theorem 2.10, we know that
Q

< C(Q, /l, aO)”f”Ll(|x|‘“<’“‘”0dx,9) fOI‘ all 1 < a < .
LY(Q) - S

o

Thus, to prove the claim we just need to show that

o) a N
f (A3 Vdx < O A, Ay PPl T € @ <
B,(0)
where B,(0) cc Q.
We set g(x) := /l% + uf, then u(x) = fgs(x, v)g(y)dy. Hence, for a.e. x € B,(0),
x|=S a
0%l < [ 16860 le0dy (32)
Q
Notice that from [6], we know that
s C 1 1
(=N);Gy(x,y)| < ( In ‘ +1In(— ), fora.e. x,y € Q. (33)
| < e [ e+ o) ’
Since B,(0) cc Q, one has
s C C
MG € (=] forae. (6y) € BO)x (34)
lx = yI¥= \x =yl
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For the remaining part of this proof, we will use systematically this estimate for a.e. (x,y) € B,(0) X Q.
Thus we conclude that

|(—A)§Gs(x, y)| < Gy(x,y)h(x,y), fora.e. (x,y) € B,(0) X Q, (35)

with

e In (555) if br =1 < 60)
h(x,y) =

55 10 (55) if [x =y > 6().

Fixl<a<p,= % Going back to (32), we deduce that, for a.e. x € B,(0), we have

(=M u(x)| < jWeAﬁgxnw@@my<AJ]«Aﬁgxmynﬁﬁdy fW(A)gcxwv@wy
Q Q

Hence
|«Aﬁmmm”?<Mﬁ%{fmﬂﬁgxum§¥@+uﬁ?j%em%m%wvwwy
5
We set
Ki(x) = < (ly)
and

&m:fwmwmwmww
Q

We begin estimating K;. We have

KD < fKM@umﬂf]%fmw@ l?]

Q

a—1
< f (h(x,y))"Qs(x,y)luy(lﬁdy]( f gs(x,y)g(y)dy]
Q Q

<f@wwmﬁ$ﬂww)
Q

Thus, using Fubini’s theorem, it holds that

f KY(0)I™#Pdx < A M(Q ( f h (x,y)Gs(x, y)u“_l(x)lxl_““)dx) dy.
B,(0) J I \Js,0
Recall that, by (30), we have
u(y) J»)
s @ <C [y +a
Q Q
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Therefore we obtain that

a—1 @
K@ dx < ¢, |4 ( f 06y ln( < ) dx) dy
B,(0) J V1% \JB.o)ni1x=yi<sm) | x| lx — y|s@ |x =yl
LG f u(y) ( f u* 1 (0)G,(x,y) ln( C )a a’x) dy
9 P65 (¥) \J,0)nt1x-yiz60) | lx — yl
= Ji+J,.

Respect to J;, using the fact that for all > 0,

1 ( C )“ a C7
In <——
lx =yl \lx =yl nlx =y

and by Proposition 2.8, we reach that

l/l(y) u(l—l (x)
s G EE dx|d
1 ’ g lyl*s (fB,(O) | x| x — y|N-2s=sa=n) y

/

a—1
u u®(x
< (f) ( f o ﬁ,_)(z — )dx) dy
e WP NI B, Ly O Lx — yF=tEsmsemn
u(y) ( f w1 () )
- dx|dy
o VP \J o< PFOLx — y¥-Gs=se=n
< LT + 1.

To estimate I, we observe that

a—1
_uy) wew dy.
|y|2v+/1(/l) B,(0) |X _ y|N—(2x—saf—n)
Recall that u € L7(€) for all o < . Since a < 5=, fixing 09 < =5 and using Holder inequality,
we get
U~ (x) 0 1 e
dx < (f u‘T‘)dx) (f ——— dx)
fBr(m Jox — y|V@smoamn) B,(0) BO) [y — y| o
Since @ < -, then we can chose o close to - and 1 small enough such that W < N.
Thus
1
f (N=(Q2s=sa-n))o( dx < C(r’ Q)’
B, (0) |X _ yl oo—(@-1
and then
L<C u‘”’d 1) SO, (36)
B, (0) |y|2”“ (/l) ly |“(/D+“0
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We deal now with I,. Notice that {|x| < 3[yl}  {Ix — y| > 1[yl}. Thus

u(y) ' (x)
L < C | —— dx|dy.
2 J D ( fB,.«» D] — yV-Cstu=sa=n | 4

As in the estimate of [, setting 6 = we get

oo—(a—1)

ua—l (X)
z N—(2s+u(A dx
B,(0) X W] x — y|N-Cstud)=sa=m)

< 7o g ! d %
S B(O)” * 5.(0) PV — y|B-Cst-sa-)0 *) -

For a < % fixed, we can chose i small enough and o close to p, such that

N—(N—-Q2s+ u(l) — sa—n))d — u(1)d < N.

Hence using Lemma 3.8, it holds that

1
dx< C 1"0).
L,(O) | x| DO 5 — yl(N—(Zsﬂt(/l)—sa/—n))a < C(

Therefore we conclude that

a-1

L < C &(f u“odx)ﬁ<C( ﬂdy)a.
B(0)

|y|/1(/l)+2s |y|l1(/l)+ao
Q Q

As a consequence, we have
J) )"

N s C( |y +ao

Q
We deal now with J,. Let c; > 0 be a positive constant to be chosen later, then

u(y) U (0)G,(x,y) c \
Jr < f—Zsésa (f D In — dx|dy
o Iyl » B (0)N{|x—y[>6(»)} | x| lx =yl

a—1 J(x, C @
f ZM(Y) ( f u (X)QA (x,y) ln( ) dx) dy
antesery V70 \J B, 0)nfix-yi=o00) |V lx =yl

a—1 C a
f ZM(Y) ( f u (X)g(;)(x’y) ln( ) dx) dy
antso)<er) V10D \J B.o)niie—yizo0) | lx =yl

N

+

N

We set

a—1 ) C a
A= f —;lq]) (f “ (x)g;(x, Y) ln( ) dx) dy.
ants)<er) V10 \J B.o)nile—yizo0) | lx =yl

a—1 S(x, C 4
CJ, + f ;‘A (f u (x)gu)(x y) ln( ) dx) dy.
antso)<er) V120 \J B.o)niie—yizo0) | lx =yl

(37

(38)
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Choosing c; small, we get the existence of a positive constant ¢, such that for 6(y) < ¢; and x € B,(0),
we have |x — y| > ¢, > 0. Hence using again Proposition 2.8, we deduce that

u u*(x
A< f - (y)) ( f %dx)dy.
antso<er) OV \ B oniroyisony X

As above, for ag < we have

N2’

a-1 1

u(x o 1 g
[0« ([ ([ e
B X B,(0) B,0) |X#

"‘r—’l a—1
< C(f u"odx) ’ SC( &dy) .
B,(0) |y[p(D+ao

Q

On the other hand, we have

f My <c f O gy < [ LY _gy
Qnist)<ea) O » o 0°(y) o |y(b+ao

f(y) “

|y|#(/1)+ao

Hence

Q
As a consequence we deduce that

Kol dx < C( &dy) .
B,(0) g |yjpd+ao

We treat now the term K,. Recall that

Ko(x) = f (—A)IG, (e WL F )y

Notice that for > 0, small enough, to be chosen later, we have

C C C

I(=A)2G,(x, y)| < In( <
lx =y = yl7 e = yINO

for a.e. (x,y) € B,(0) X Q.

Thus

_u fo)
K@ < f dy
lxlxM) |x le (s—m)

f 10w [ o,
|x|“ aniyl<ap 1X = N6 |x| Ayl 1X = N

) 1 c f
¢ %) N—(s— )dy 4 N—(s— )dy
aniii<ai) Y 1x =yl g |x| e Janiy=4x) ) 1=yl 7

= Li(x)+ Ly(x).

N

N
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|f|%))€ L'(Q), then by Theorem 2.4, we deduce that
y

=tz Thus Ly € L*(€2) and

f Lidx < € &dy) .
B,(0) 9 |ylpcbrao

We consider now L,. Since [y| > 4|x|, then |x — yl > §|y| and |x — y|> 3|x|. Hence

O,
Ix |““)+N ((D+s+ag— n) |y|#(/l>+ao

We start with the estimate of term L;. Since

Ly e L?(B(0)) foralll <o <

Ly(x) <

Since (’% + N — (u(d) + s + ap — n))a < N, then we conclude that I, € L*(B,(0)) and

f I3(0dx < € &dy) .
B,(0) o [yfp+ao

As a consequence, we have proved that

f Kol Pdx < c(
B, (0)

Q
Therefore we conclude that

f |(—A%)u|“|x|_”“)dx<C( ﬂdy)a.
B,(0)

|y|ﬂ(/1)+ao

[0

[y[D+a0

Q
Hence the main estimate follows and this finishes the proof of our proposition. O

4. Existence and non existence results for the KPZ problem: the case (u) = [(—A)3u

In this section we consider the question of existence and non existence of a positive solution to
problem (1) with F(u) = [(=A)2ul. Namely we will treat the problem

(—A)Yu = o in Q.
u > 0 in Q. (39)
u = 0 in (RV \ Q),

where Q c RY is a bounded regular domain containing the origin, s € (0,1), 4 < Ay, p > 0,
1 < p < oo and f is positive measurable function satisfies some hypothesis that will be precised later.
Let us begin with the next definition.

Definition 4.1. Assume that f € L' (Q) is a nonnegative function. We say that u is a weak solution to
problem (39) if |(=A)2ul? € L'(Q), — | B € L'(Q) and, setting g =

weak solution to problem (8) in the sense of Definition 2.6.

P

The existence of a solution in the case 4 = 0 was proved in [7] without any limitation on p under
suitable hypotheses on f. However, if 4 > 0, taking into consideration the singularity generated by
the Hardy potential, it is possible to show a non existence result for p large. In the next computation
we will find the exact critical exponent for the non existence.
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4.1. Non existence result: the existence of the critical exponent

Recall that we are considering the case F(u)(x) = |(=A)>u(x)|. We begin by analyzing the radial

case in the whole space as in [8]. Consider the equation
(—AYWM—A“E,:K—AﬁwVinRN, (40)
X S

N-2

then we search radial positive solution in the form w = A|x{’~"2 , with A > 0. By a direct computation,
it follows that
APlyg s

|x|(42B+op ’

N-2s N-2s
Ayp x| — QAP =

with

N—21—2B 1~y N—21+28
[(=Z=)I(=—)

YBr = Y-Br = (41)

and 7 € {3, s}
Hence, by homogeneity, we need to have

EX B +2s
- N;ZS_IB_'_S’

which means that § = %532 + 2 — % Hence the constant A satisfies

2 p—1
Yo — A= A" yp P
Using the fact that A > 0, it holds that yg — A > 0. Define the application

T (-2 B2 s (0,Awy)
B =

N-2s
2

Then 7 is even and the restriction of Y to the set [0,
exists a unique a, € (0, Ay,] such thaty,, = y_,, = 4.
Let 8y = =B = a,. Setting

) 1s decreasing, see [24] and [26]. So there

B2 —Bo+2s  N+2s-2a

A,8) = = , 42
p+(4,5) " gt N2, 42)
and Vo
== -=pi+2s N+2s+2a
p-(,8) = 5= - - 43)

= =B+  N+2a,
it holds that p_(4, s) < p.(4, s) and yz — A > 0 if and only if
p-(1,8) < p < pi(4,s).

It is easy to check that p,(4, s) and p_(4, s) are respectively an increasing and a decreasing function in
a, and, therefore, are respectively a decreasing and an increasing function in the variable A. Thus

N+2
<p(ds) < a

< p+(d,8) <2, for0 < A < Ay
)
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Notice that D+ 2 D+ 2
H(d) +2s m) +2s
/L I e— d - /L T ——
p+(4,5) D)+ s and p_(4, 5) )+ s
where u(A) and fi(2) are defined by (21).
Hence, for p_(4,s) < p < p.(4,s) fixed, using the fact that Q c Bg(0) for R large, we get the
existence of a positive constant C; > 0 such that w(x) = C 1|x|ﬂ‘% is a radial supersolution for the

Dirichlet problem (39) if f(x) < ——=—— with p small.
|x

| N2 425

To show that p, (4, s) is critical, we prove the next non existence result.

Theorem 4.2. Let s € (0, 1) and suppose that p > p.(A, s). Then for all p > 0, problem (39) has no
positive weak solution u in the sense of Definition 4.1.

Proof. We argue by contradiction. Assume that problem (39) has a positive solution « in the sense of
Definition 4.1, then (—A)}u € LP(Q) and % € L'(Q). By Lemma 3.1, it follows that
X N

u(x) > Clx|™? in B,(0) cc Q.
Since [(—A)3ul? + 1——
P>
(—A):u e L'(RV) forall 1 <1< -,
Let 8 € L™(Q) be a nonnegative function such that Supp 6 cc B%(O) C B,(0) cc Q and define
¢ € H3(Q) N L*(Q) to be the unique solution of the problem

+pf € L'(Q), then from the regularity result in Theorem 2.10, we deduce that

(44)

(D) gy =0, inQ,
pe=0, inRV\Q.

From [40], it holds that ¢ ~ 5> near the boundary of Q. Using ¢, as test function in (39), we get

/lfu¢2gst+f|(—A)£M|p¢edX+pff¢9:fu(—A)s¢edx:f (_A)%M(—A)%‘ﬁedx
o Xl Q Y Q RY

= fg (—A) 2 u (=A)2pgdx + f (=A)2u(=A)2 ¢y dx.

RN\Q

(45)
We treat separately each term in the right hand of the above identity.
Since Supp 8 ccC B,(0) cc €, using the fact that ¢ > 0 in Q and then Holder inequality, we reach

that
|f(—A)5u9dx|
SO (46)
[(=A)2ulpg —dx.
by

| fg (—A)2u (=A)2 ¢y dx|

N

Q

Next, applying Young’s inequality, it holds that

s S S ep,
[ emtuenroan<e [ oo ce [ 2ax 1)
Q Q S ¢9
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where € > 0 will be chosen later.
Now we deal with the term fRN\Q(—A)%u (=A)2 ¢y dx.
Since x € RV\Q, using again Holder inequality, it follows that

| (=A)2u (=A)2 gy dx| < (=) 2 ull e l(=A) 2 Gl rivy

RN\Q
with # < 2= By hypothesis [|(=A)2ull:gv\q) < ©0. Now respect to [|(—A)2 @yl g o), We have

s / ¢9(y) ’
14 —
||(_A)2¢9||Lt’(RN\Q) - fRN\Q(Q |y—x|N+de) dx

4 t
f ( f —¢9(y2] dy) dx + f ( f —¢90}Z, dy) dx.
’Ma Vg0 [y — Vs rMa \Jas,o) [y — 2V

Recalling that Supp 6 C B%(O) C B,(0) cc Q, then we can prove that

lPallz=\B,0)) < ClOllL1(B,0))>

where C depends only on the N, s. Thus

Po(¥) J g J 1 v
——ndy| dx<C ————dy) dx < C(r,Q,s,N,1).
RM\Q \ JO\B,(0) [y — x| RM\Q \ JO\B(0) ly — x|

Now, choosing r small enough, we obtain that, for x € R¥\Q and y € B,(0), |x — y| > c(|x| + 1). Hence

[ ([ ) avs [ o[ ama) av< i,
rMa \Jg) [y — XV rna (X + DYV g )

Now, going back to (45), choosing € << 1 in estimate (47), we obtain that

de < C(s)f

Recall that p > p,(4,s) = 2:&%)’

0 = #XB%(O) with N — (u(d) +5) < B < N = (p' = 1)s. In this case ¢y = = near the origin and
¢g € L*(B\B,(0). Therefore ¢ € L'(Q). From (48), it holds that

dx + Cllggll’, ) + ClI(=A) 2 ull s e, + C. (48)

LY(Q)

, 2stpd) . Lo
hence p’ < == Using an approximating argument we can take

+ CIl(=A) 2 ull vy + C.

| |ﬂ+;1+ c Ll Q)

’

P
Since (8+u+ s) = N, then in order to conclude we have just to show that f —dx < oo. Notice that
v %
o 1 1
——dx < f ————dx = f —————dx

f p-1 B:(0) | x|? B—(p'=1)(B-s) B (0) |x|(1J -Ds+p

Q 0 i 7
Taking into consideration that p’ < M, it follows that (p” — 1)s + 8 < N and so we are done. O
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Remarks 4.3. Following the same arguments as above, we can prove that problem (39) has no positive
supersolutions u in the following sense: u = 0 a.ein RV \ Q, |(—A)5u| e L'(R") for some r > 1,

g:=|(=A):ulf + /lL +pf € L'(Q) and for all nonnegative ¢ € 7~ (defined in (9)), we have

|112S
f (-A)2u(-A)2pdx > f g dx.
RY Q

For p large, we are also able to prove another non existence result.

25+2

Theorem 4.4. Assume that f 2 0 and p > =5,

non positive solution for p > p*.

then there exists p* > 0 such that problem (39) has

Proof. Without loss of generality we assume that f € L*(Q).
Assume that u is a positive solution to problem (39). For 6 € C;°(Q2) with 6 2 0, we define ¢ to be the
unique solution to the problem

9 =0, in RV \ Q.

Notice that ¢y ~ 6°(x) where 6(x) = dist(x, dQ), see for instance [41].
Using ¢y as a test function in (39), it holds that

{(—A)S% =4, inQ,

f(—A)S¢eudx> fl(—A)3u|p¢9dx +Pff¢9dx-
Q Q

Q

Hence

f Qudx > f (=) ulP podx + p f fodx. (49)
Q Q Q
Let ¢4 to be the unique solution to the problem

(=A)2yy =6, in Q,
Wy =0, in RV \ Q.

Thus
f (=D Ypudx > f (=A)ul g dx + p f foodx.
Q Q Q

Then
f (A uypydx > f (=A): ul g dx + p f foodx.
Q Q Q

Notice that

[enrtupdr < [i-mtias ax
Q Q ’
Hence, using Young’s inequality, for any € > 0, we get the existence of a positive constant C(g) such

that
3 SIP Yo\
(A):uygdx < e | |(=A)2ul’¢gdx + C(e) ¢9(¢—) dx.
9
Q Ie) o
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, P
Since 6 is bounded, according with [40], then iy = 67 and ¢y = &%, it follows that f ¢9(%) dx < o
0
Q
if, p > 2;22. Therefore, in this case, we deduce that
Yo\
p | fodx<C(e) | ¢o & dx,
Q Q ‘
which implies that
p/
c@ [ %) ax
9 b0
p < =p".
f S podx
Q
Hence the result follows in this case.
O
Remarks 4.5. The condition p > % in Theorem 4.4 seems to be technical. We conjecture that the

non existence result in Theorem 4.4 holds for all p > 1. However the above arguments does not hold

: 2542
lfp < s+2 ¢

4.2. Existence result

To show the optimality of the exponent p,(4,s), we show the existence of a supersolution to
problem (39). Notice that, in some cases, under suitable conditions on the datum f and the exponent
p, we are able to prove the existence of a weak solution to problem (39).

A
Fix p_(4,5) < p < pi(4,s) < 2 and let wi(x) = —, with 6y = N‘Tzs — 3, be the solution to the

|1l
Eq (40) obtained in the previous section. Recall that
K wi _ A(fyﬁ,s - /l)
(=A)'wi(x) = /1|x|25 - |x|fo+2s
APlyg s|P s
WTXZ)[, = [(=A)2wi|”.

Taking into consideration the definition of yg, given in (41) (with ¢ € {7, s}), it holds that (yz, — 1) > 0
1
if and only if 6y € (u(1), i(1)). Now, if f < |—
X

T using the fact that € is bounded, we can choose

C; > 0 such that w; = Cw is a supersolution to problem (39) for p < p*. In this way we have obtained
the following result.

Theorem 4.6. Let Q be a bounded domain containing the origin. Suppose  that
1

p-(A,8) < p<ps(s) If f< ||2—+9, with 6 given as above, then problem (39) has a supersolution w
X )

such that w, % (=A) S wyl? € L' (Q).
x S
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Notice that in order to show the existence of a solution under the presence of a supersolution, we
need a comparison principle in the spirit of the work of [14] for the fractional gradient. This is missing
at the present time but will be investigated in a forthcoming paper. However, using the compactness
approach developed in [7] we are able to show the existence of a solution in some particular cases.
More precisely, we have:

Theorem 4.7. Let s € (0,1), 0 < A < Ay, and f € L' (Q) be a nonnegative function such that

f flxl#D=0 dy < oo, for some ay > 0. Assume that 1 < p < p. = 2. Then, there exists

Q
p i=p*(N,p,s, [,A,) > 0 such that if p < p*, problem (39) has a solution u € Ly’ (Q), for all

N s _
l<o< NS Moreover fRN [(=A)2ul?|x| 1Dy < oo.

Proof. We follow again the arguments used in [11]. Fix 1 < p < p, and let f € L'(Q) be a nonnegative

function with [ flx{7#=% dx < co.
Q
Fix r > 1 be fixed such that 1 < p < r < p.. Then, we get the existence of p* > 0 such that for some

[ > 0, we have
* 1
Co(l + P f1l L uev-a0ax.2)) = 17

where Cy is a positive constant depending only on Q, A and the regularity constant in Theorems (2.10).
Let p < p* be fixed and define the set

E={veL(Q):ve L (x*Vdx,Q) and [[(=A)} il svanay < 7). (50)
It is clear that E is a closed convex set of Lg’l(Q). Consider the operator

T:E — LY(Q)
v - TW)=u,

where u is the unique solution to problem

(-AYu = a|?.+K—Aﬁwp+pf inQ,
x A
w = 0 inRV\ Q, G
u > 0 in Q.

Setting
g(X) = [(=A)2vP + yf,

then taking into consideration the definition of E, it holds that g € L'(|x|*Ydx, ). Hence the existence
and the uniqueness of u follows using the result of [8] with u € L(S)"T(Q) foralll <o < % Thus T is
well defined.

We claim that T(E) C E. Since r > p, using Holder inequality we get the existence of @, > 0 such
that

f [(=A)2v|P | V80 g x < C(Q)( f |(—A)%v|’|x|—ﬂ“>dx)' < oo,
Q Q
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Setting @, = min{ay, 4o}, it holds that g € L!(|x|#“Y~4dx, Q). Thus by Proposition 3.7, we reach that,
forall 1 <o < -,

1

(fNAﬁWMWWMy<CWmﬁHGM%Wﬂﬁ
Q

LI (x#-adx,Q)

Since v € E, we conclude that

1

( f |(—A)5u|“|x|—ﬂ<ﬂ)dx)” < CW, p,a)(( f |(—A)%v|’|x|"‘“>dx)r +pl|f||L1<|x|—w>-aodx,m)
Q Q

< Cd +p*||f||L1(\x|‘/’(’l>_“0dx,9)) <L

Choosing o = r, it holds that u € E.
The continuity and the compactness of T follow using closely the same arguments as in [11].
As a conclusion and using the Schauder Fixed Point Theorem as in [11], there exists u € E such
that T(u) = u, u € L;"(Q) and
=22l s vy < C-

Therefore, u solves (39). |
5. Some extensions and further results

Let us consider now the case where §(«) = (Dy(u)). Then problem (1) takes the form

u

(-A)’u = /l|x|2“‘ + (Dy(w))? + pf inQ,
u > 0 in Q, (52)
u = 0 in (R \ Q).
_ 2
Recall that D(u)(x) = (ag a f %d}) )2. If we consider the equation
RV X =yt
w .
(=A)'w — /l|x|2s = (D,(w))? in RY, (53)

then, using the same radial computation as in the previous section, searching for a radial solution in the

N-2s N;zs _ﬁ + 2S

form w = A|x{’~"2 , one sees that we need p = NQ_ZS

N-2s
2

2s

, which means that 8 = + -
P p—

+ 5
Hence, as in the previous case, we obtain that w is a solution to (53) if p_(4,s) < p < p.+(4, s) where

p-(4, ), p+(4, s) are defined by (42) and (43) respectively.

Notice thatif f < — withg = X ‘225 —f3, then we can chose C; > 0 such that C;w is a supersolution
X

to problem (52) for p small enough.
Let us show that p. (4, s) is the critical exponent for the existence of a weak solution. More precisely
we have the next non existence result.

Mathematics in Engineering Volume 5, Issue 2, 1-36.



31

Theorem 5.1. Assume that s € (0,1) and p > p.(A,s). For A > 0, problem (52) has no positive
solution u in the sense of Definition 4.1.

Proof. We follow closely the arguments in [S]. Without loss of generality we assume that f € L*(Q).
According to the value of p, we will divide the proof in two parts.

The case p.(4,s) < p < 2}. In this case p’ > Nzﬁs. Assume by contradiction that problem (52) has

a weak positive u. Let ¢ € C7(Q) be a nonnegative function such that Supp c B:(0) ¢ B,(0) cc Q to

be chosen later. Using ¢”" as test function in (52), it holds that

f (—A) ' u¢” (x)dx > f (D))" (x)dx + A ﬁdx+p f F0)$7 (x)dx. (54)
Q Q Q

|x|2s
Q

Using the algebraic inequality, for a,b > 0,m > 1,

(am _ bm) ~ (a _ b)(am—l + bm_l),

it holds that
f(_A)su ¢p/(x)dx — f (M(X) - u(y))(¢p ()C) - ¢p ()’))dydx
Q Do |x — y|V+2s
_ _ /1 '~

< C f u(x) — u()|lp(x) — pWI(P” ™" (x) + ¢” () dydx

Do |X _ y|N+23
< Cf |u(x) — M(y)||</>(X)v— ¢(y)|¢pf_1(x)dydx

Do |x _ y|N+2_s
N Cf |u(x) — u(y)llp(x) — ¢(y)|¢pf_1(y)dydx

Do |X _ y|N+2s
< 2Cf |M(.X) - ”(Y)||¢(x) - ¢(y)|¢p’—l(x)dydx

Do |x _ y|N+25
) = uP (1) = e\

< CfR( o o ) () ¢ o
<c f DD, (#)¢" ! (x)dx.

Q

Therefore, using Young’s inequality, we deduce that for any € > 0, we get the existence of a positive
constant C(g) such that

f (-D'ug”(ndx < & f D)y ¢” (x)dx + C(e) f Dy(@)” (dx.
< Q Q
Choosing € small enough and going back to (54), we get

(1-2) [ @uwere wavea [ v [ swel i< ce [y 63)
Q Q
Q Q
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Recall that u(x) > Clx|™? in B,(0) cC Q. Hence fixed ¢ € C3'(B;(0)), we have that

”
AC f o lei —=dx < C(e) f (Dy($)(x))" dx.

Replacing ¢ by |¢| in the above estimate, we deduce that

|p1” :
ac f v < Ce) f Dy(@ ) dx < C(e) f (Dy($) () dx. (56)
B, () X5 RY
Since p > p,(4,s), then sp’ < 2s + u(1). Recall that p’ > % Hence (56) is in contradiction with

the Hardy inequality in Proposition 2.3. Thus we conclude.

The case p > 2] > p.(4, s). Notice that for all 1 < Ay, we have p.(4, s) < 2 < 2}. By a continuity
argument we get the existence of 4; < A and p; < 2} such that p; > p.(4;, s). Assume that u is a weak
solution to problem (52), then

(-A)’u > 2

lxbl; J)"" ~ C(py) in B,(0).

Notice that u(x) > C|x|™% in B,(0). Hence

=A)’u> A

C .
r | s + W - C(py) in B.(0).

Choosing r small, it holds that

u )

(=A)’uz> 24 P + (D;(u))”" in B,(0).
Since p,(d;,5) < p; < N2+2 , repeating the same argument as in the first case, we reach the same
contradiction. Hence we conclude. O

Taking advantage of the previous estimate, we can show that the problem (52) has no solution for
large value of p.

Theorem 5.2. Assume that f = 0 and p > 1, then there exists p* > 0 such that problem (52) does not
have a positive solution for p > p*.

Proof. Suppose that u is a nonnegative weak solution to problem (52). Let ¢ € C;(£2) be a nonnegative
function such that

f F(x)¢? (x)dx > 0.
Q

From estimate (55), fixing € € (0, 1), we obtain that

p fQ f0¢7 (0dx < C(e) f (Dy($)(x)) dx.
Q
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In particular
C(e) f (Dy())” (x)dx
Q *

< inf =p,

B[ e o
Q

and this is in contradiction with our initial assumption. O

Remarks 5.3. 1) AsinTheorem4.6,if 1 < p < p,(4,s)and f < | with 6 given as above, then

x|2s+€ ’
problem (39) has a supersolution w such that w, Dy(u) € LP(Q).

2) Using the same compactness approach, we can also treat the case (F(u)(x)) = |V'u(x)|, where
Viu(x) is defined in (4).

|x|25 ’

5.1. Some new perspectives and an open problem

1) In the local case s = 1 or in the nonlocal case under the existence of a local gradient term, an
interesting maximum principle is obtained in the sense that if w € WS’I(Q) is a subsolution to the
problem

{(—A)SW a(x)|Vwl in Q, (57)

w =0 in (RV \ Q),

with a € L7 (Q), 0 > %, then w < 0 in Q (see for instance [14] and [11]). It would be very
interesting to get a similar result replacing the gradient term |[Vw| by the nonlocal fractional
gradient |(—A)>w|, namely for the problem

(58)

(=A)'w a(0)l(=A)iw| in Q,
w o= 0 in RV \ Q).

2) Since non comparison principle is known for problem (58), then to get general existence result to
problem (1), under natural integrability conditions for f, it is necessary to prove a new class of
weighted CKN inequalities as in [3], using the norm 1(—=A) 2 ul|x?|| rr@yy- This will be considered
in a forthcoming work.
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