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a class of fractional problems with non local gradient term. More precisely, we consider the problem

(−∆)su = λ
u
|x|2s + (F(u)(x))p + ρ f in Ω,

u > 0 in Ω,

u = 0 in (RN \Ω),

where Ω ⊂ RN is a C1,1 bounded domain, N > 2s, ρ > 0, 0 < s < 1, 1 < p < ∞ and 0 < λ < ΛN,s, the
Hardy constant defined below. We assume that f is a non-negative function with additional hypotheses.
Here F(u) is a nonlocal “gradient” term. In particular, if F(u)(x) = |(−∆)

s
2 u(x)|, then we are able to

show the existence of a critical exponents p+(λ, s) such that: 1) if p > p+(λ, s), there is no positive
solution, 2) if p < p+(λ, s), there exists, at least, a positive supersolution solution for suitable data and
ρ small. Moreover, under additional restriction on p, there exists a solution for general datum f .
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1. Introduction

This work deals with the following problem:
(−∆)su = λ

u
|x|2s + (F(u)(x))p + ρ f in Ω,

u > 0 in Ω,

u = 0 in (RN \Ω),

(1)

where λ > 0, ρ > 0, s ∈ (0, 1), 2s < N, 1 < p < ∞, Ω ⊂ RN is a bounded regular domain containing
the origin and f is a measurable non-negative function satisfying suitable hypotheses.

By (−∆)s we denote the fractional Laplacian of order 2s introduced by M. Riesz in [39], that is,

(−∆)su(x) := aN,s P.V.
∫
RN

u(x) − u(y)
|x − y|N+2s dy, s ∈ (0, 1),

where

aN,s = 22s−1π−
N
2
Γ( N+2s

2 )
|Γ(−s)|

,

is the normalizing constant that gives the Fourier multiplier identity

F ((−∆)su)(ξ) = |ξ|2sF (u)(ξ), for u ∈ S (RN).

See [26] for details. Our goal is to find natural conditions on p and f (related to the value of λ), in
order to get the existence of positive solutions.

If λ = 0, the problem (1) can be seen as a Kardar-Parisi-Zhang stationary equation with fractional
diffusion and nonlocal gradient term. We refer to [30] for the main model and additional properties of
the local case.

The nonlocal case s ∈ (0, 1), but still with the local gradient term, was used recently in order to
describe the growing surface in the presence of self-similar hopping surface diffusion. We refer the
reader to the papers [29, 32, 33, 35] for a physical rigorous justification.

Existence results for the corresponding problem were obtained in [23] and [11] under suitable
hypotheses on f and p. As it was shown in [11], if p > 1

1−s , then the corresponding problem does not
have positive solutions with global regularity of the gradient, even in the case of regular datum f .
Existence of a solution, in the viscosity sense, is proved in [9, 16, 17] for some particular cases.

The case λ = 0, under the presence of a nonlocal gradient term, was analyzed recently in [7].
Without any limitation on the value of p and under suitable hypothesis of f , the author proved the
existence of a solution using a priori estimates and fixed point arguments.

The case λ > 0 with a local gradient term was considered in [10] and [12]. Here the authors showed
the existence of a critical exponent related to the existence of solutions. Our work can be seen as the
non-local counterpart of [12]. However, the non-local gradient term makes the problem more difficult
and fine analysis is needed to determine the existence or non-existence scheme.

Notice that for λ > 0, problem (1) is related to the Hardy inequality proved in [28], (see also [18]
and [38] for equivalent forms.) Namely, for φ ∈ C∞0 (IRN), we have∫

IRN
|ξ|2s|φ̂|2 dξ > ΛN,s

∫
IRN
|x|−2sφ2 dx, (2)
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where

ΛN,s := 22s Γ2( N+2s
4 )

Γ2( N−2s
4 )

(3)

is optimal and not attained.
It is clear that

lim
s→1

ΛN,s =

(
N − 2

2

)2

,

the Hardy constant in the local case.
Inequality (2) can be also formulated in the following way

aN,s

2

∫
IRN

∫
IRN

|φ(x) − φ(y)|2

|x − y|N+2s dx dy > ΛN,s

∫
IRN

φ2

|x|2s dx, ∀φ ∈ C∞0 (IRN).

If λ > ΛN,s, then we can prove that problem (1) has no positive supersolution. Hence, we assume
throughout this paper that 0 < λ < ΛN,s.

The presence of the Hardy potential forces the solution to enjoy a singular behavior near the singular
point zero and then a loss of regularity is generated.

The paper is organized as follows. In Section 2 we present the functional setting used in order to
study our problem. More precisely we describe some related spaces, as the Bessel potential space,
and their relationship with the fractional Sobolev space. We introduce also the different forms of
the fractional gradient that will be used throughout the paper. In Subsection 2.1 we recall the global
regularity results for the Poisson fractional problem proved in [6]. This will be the key in order to show
the fractional regularity in our problem.

The analysis of the problem under the presence of the Hardy potential, without the nonlocal gradient
term, is considered in Section 3. More precisely, we will consider the semilinear problem (−∆)su = λ

u
|x|2s + f in Ω,

u = 0 in RN \Ω,

where f ∈ Lm(Ω) with m > 1. Some partial regularity results are known in the case where λ < Js,m ≡

ΛN,s
4N(m−1)(N−2ms)

m2(N−2s)2 .
However for Js,m 6 λ 6 ΛN,s, using a different approach based on weighted spaces, we are able to

complete the full picture of regularity. As a consequence, we get a complete classification of the
fractional regularity of the solution to the above problem.

The first analysis of the KPZ problem (1) is done in Section 4. We begin by considering the case
where F(u)(x) = |(−∆)

s
2 u(x)|. Using suitable radial computations in the whole space, we derive the

existence of a critical exponent p+(λ, s) such that if p > p+(λ, s), then for all ρ > 0, the problem (1)
has no positive solution in a weak sense. Some other non existence results are proved for ρ large under
technical condition on p.

The case p < p+(λ, s) is analyzed in Subsection 4.2. Under the hypothesis that f is bounded, we are
able to show the existence of a supersolution for ρ small. Moreover, for p < N

N−s , and for all f ∈ L1(Ω)
that satisfy a suitable integral condition near the origin, we are able to show the existence of a weak
solution for ρ < ρ∗.
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In Section 5 we treat the KPZ problem, namely equation (1), under the presence of another version
of the non local gradient.

More precisely, we consider the case where F(u)(x) =

(
aN,s

2

∫
IRN
|u(x)−u(y)|2

|x−y|N+2s dy
) 1

2

. Then, also in this

case, we are able to show the existence of a critical exponent p+(λ, s) such that non existence holds
if p > p+(λ). The proof of the non existence in this case is more technical and need some additional
estimates.

Finally, at the end of the section we formulate some interesting open problems that may describe a
full picture for the existence in our problem.

2. Regularity results and useful tools

The goal of this section is to establish some useful tools and definitions that will play an important
role in what follows.

Definition 2.1. Let Ω ⊂ IRN be a bounded domain and s ∈ (0, 1). For p ∈ [1,∞), the fractional Sobolev
space W s,p(Ω) is defined by

W s,p(Ω) :=
{

u ∈ Lp(Ω) :
"

Ω×Ω

|u(x) − u(y)|p

|x − y|N+sp dxdy < ∞
}
.

W s,p(Ω) is a Banach space endowed with the norm

‖u‖W s,p(Ω) :=
(
‖u‖p

Lp(Ω) +

"
Ω×Ω

|u(x) − u(y)|p

|x − y|N+sp dxdy
) 1

p

.

The space W s,p
0 (Ω) is defined as follows:

W s,p
0 (Ω) :=

{
u ∈ W s,p(IRN) : u = 0 in IRN \Ω

}
.

This is a Banach space endowed with the norm

‖u‖W s,p
0 (Ω) :=

("
DΩ

|u(x) − u(y)|p

|x − y|N+sp dxdy
)1/p

,

where
DΩ := (IRN × IRN) \ (CΩ × CΩ) = (Ω × IRN) ∪ (CΩ ×Ω).

Now, for s ∈ (0, 1) and 1 6 p < +∞ we define the Bessel potential space by setting

Ls,p(RN) :=
{
u ∈ C∞0 (RN)

} ||.||Ls,p(RN )
,

where

||u||Ls,p(RN ) = ‖(1 − ∆)
s
2 u‖Lp(RN ) and (1 − ∆)

s
2 u = F −1((1 + | · |2)

s
2F u), ∀ u ∈ C∞c (RN).

Let us stress that, in the case where s ∈ (0, 1) and 1 < p < +∞,

‖u‖Ls,p(RN ) := ‖u‖Lp(RN ) + ‖(−∆)
s
2 u‖Lp(RN )
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is an equivalent norm for Ls,p(RN) (see e.g., [1, page 5] for a precise explanation of this fact). Let us as
well recall that, for all 0 < ε < s < 1 and all 1 < p < +∞, by [13, Theorem 7.63, (g)], we have

Ls+ε,p(RN) ⊂ W s,p(RN) ⊂ Ls−ε,p(RN).

For φ ∈ C∞0 (IRN) we define the fractional gradient of order s of φ by

∇sφ(x) :=
∫

IRN

φ(x) − φ(y)
|x − y|s

x − y
|x − y|

dy
|x − y|N

, ∀ x ∈ IRN . (4)

Notice that, as it was proved in [46, Theorem 2] and [42, Theorem 1.7], we have

Ls,p(IRN) :=
{
u ∈ Lp(IRN) such that |∇su| ∈ Lp(IRN)

}
=

{
u ∈ Lp(IRN) such that |(−∆)

s
2 u| ∈ Lp(IRN)

}
with the equivalent norms

‖|u‖|Ls,p(IRN ) := ‖u‖Lp(IRN ) + ‖∇su‖Lp(IRN ) ' ‖u‖Lp(IRN ) + ‖(−∆)
s
2 u‖Lp(IRN ).

Another type of “nonlocal gradient” can be defined also by

Ds(u)(x) =

(aN,s

2

∫
IRN

|u(x) − u(y)|2

|x − y|N+2s dy
) 1

2

. (5)

We refer to [20] and [36] for some motivation of this non local version of the gradient.
In this case one has

lim
s→1−

(1 − s)D2
s(u(x)) = |∇u(x)|2, ∀ u ∈ C∞0 (RN). (6)

If p > 2N
N+2s , it was proved in [46] that the Bessel potential space Ls,p(IRN) can be defined also as the

set of functions u ∈ Lp(IRN) such that Ds(u) ∈ Lp(IRN). The space Ls,p(IRN) can be equipped with the
equivalent norms

|||u|||Ls,p(IRN ) = ‖u‖Lp(IRN ) + ‖Ds(u)‖Lp(IRN ).

The next Sobolev inequality in Ls,p(IRN) is proved in [13], see also [25].

Theorem 2.2. Let 1 < p < ∞ and s ∈ (0, 1) be such that sp < N. Then there exist two positive
constants S 1 := S 2(N, p, s) and S 2 := S 1(N, p, s) such that for all u ∈ Ls,p(IRN) , we have

S 1||u||Lp∗s (IRN ) 6 ‖∇
su‖Lp(IRN ),

and
S 2||u||Lp∗s (IRN ) 6 ‖(−∆)

s
2 u‖Lp(IRN ),

with p∗s =
pN

N−ps .
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If Ω ⊂ IRN , we define the space Ls,p
0 (Ω) as the set of functions u ∈ Ls,p(IRN) with u = 0 in IRN\Ω.

From Lemma 1 in [46], if p > 2N
N+2s and Ω is a bounded domain, then there exist C1 := C1(Ω,N, p, s)

and C2 := C2(Ω,N, p, s), two positive constants, such that for all u ∈ Ls,p
0 (Ω)

C1‖|u‖|Ls,p(IRN ) 6 ‖Ds(u)‖Lp(IRN ) 6 C2‖|u‖|Ls,p(IRN ).

Notice that if Ω is a bounded domain, we can endow Ls,p
0 (Ω) with the equivalent norms ‖∇su‖Lp(IRN )

or ‖(−∆)
s
2 u‖Lp(IRN ). In the same way, by assuming in addition that p > 2N

N+2s , then we can equip Ls,p
0 (Ω)

also with the equivalent norms ‖Ds(u)‖Lp(IRN ). We refer to [47] for more details about the properties of
the Bessel potential space and its relation with the fractional Sobolev space.

The next Hardy inequality will be useful in order to prove the non existence result above the critical
exponent. See [7] for the proof.

Proposition 2.3. Let Ω ⊂ RN be a regular domain with 0 ∈ Ω and 0 < s < 1. Suppose that p > 2N
N+2s

with ps < N and define

L(Ω) := inf



∫
IRN

(Ds(φ)(x))pdx∫
Ω

|φ(x)|p

|x|ps dx
: φ ∈ C∞0 (Ω) \ {0}


. (7)

Then L(Ω) > 0 and L(Ω) = L does not depends on Ω. Moreover, the weight |x|−ps is optimal in the
sense that, for all ε > 0 we have

inf



∫
IRN

(Ds(φ)(x))pdx∫
Ω

|φ(x)|p

|x|ps+ε dx
: φ ∈ C∞0 (Ω) \ {0}


= 0.

Finally, we recall the next standard result from harmonic analysis. See for instance [45, Theorem I,
Section 1.2, Chapter V].

Theorem 2.4. Let 0 < ν < N and 1 6 p < ` < ∞ be such that
1
`

+ 1 =
1
p

+
ν

N
. For g ∈ Lp(IRN), we

define

Jν(g)(x) =

∫
IRN

g(y)
|x − y|ν

dy.

Then, it follows that:

a) Jν is well defined in the sense that the integral converges absolutely for almost all x ∈ RN .

b) If p > 1, then ‖Jν(g)‖L`(IRN ) 6 cp,l‖g‖Lp(IRN ).

c) If p = 1, then
∣∣∣{x ∈ RN |Jν(g)(x) > σ}

∣∣∣ 6 (
A‖g‖L1(IRN )

σ

)`
.
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2.1. Regularity and useful estimates

The goal of this section is to state some well known results about the regularity of the Poisson
equation {

(−∆)su = g in Ω,

u = 0 in RN \Ω,
(8)

where Ω is a bounded regular domain of IRN and g ∈ Lm(Ω) with m > 1. We begin by the sense for
which solutions are defined.

Definition 2.5. We define the class of test functions

T (Ω) = {φ | (−∆)s(φ) = ψ in Ω, φ = 0 in RN \Ω, ψ ∈ C∞0 (Ω)}. (9)

Notice that if v ∈ T (Ω) then, using the results in [34], v ∈ H s
0(Ω) ∩ L∞(Ω). Moreover, according

to the regularity theory developed in [43], if Ω is smooth enough, there exists a constant β > 0 (that
depends only on the structural constants) such that v ∈ Cβ(Ω) (see also [31]).

Definition 2.6. We say that u ∈ L1(Ω) is a weak solution to (8) if for g ∈ L1(Ω) we have that∫
Ω

uψdx =

∫
Ω

gφdx,

for any φ ∈ T (Ω) with ψ ∈ C∞0 (Ω).

Recall also the definition of the truncation operator Tk,

Tk(σ) = max{−k; min{k, σ}} and Gk(σ) = σ − Tk(σ). (10)

From [2, 22, 34] we have the next existence result.

Theorem 2.7. Suppose that g ∈ L1(Ω), then problem (8) has a unique weak solution u obtained as the
limit of {un}n∈N, the sequence of unique solutions to the approximating problems{

(−∆)sun = gn(x) in Ω,

un = 0 in IRN\Ω,
(11)

with gn = Tn(g). Moreover,

Tk(un)→ Tk(u) strongly in H s
0(Ω), ∀k > 0, (12)

u ∈ Lq(Ω), ∀ q ∈
[
1,

N
N − 2s

)
(13)

and ∣∣∣(−∆)
s
2 u

∣∣∣ ∈ Lr(Ω), ∀ r ∈
[
1,

N
N − s

)
. (14)

In addition, if s > 1
2 , then u ∈ W1,q

0 (Ω) for all 1 6 q < N
N−(2s−1) and un → u strongly in W1,q

0 (Ω).
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In what follows we denote Gs the Green function associated to the fractional laplacian (−∆)s.
Notice that Gs(x, y) solves the problem{

(−∆)s
yGs(x, y) = δx(y) if y ∈ Ω,

Gs(x, y) = 0 if y ∈ IRN\Ω,
(15)

where x ∈ Ω is fixed and δx is Dirac’s delta function.
It is clear that if u is the unique weak solution to problem (8), then

u(x) =

∫
Ω

Gs(x, y)g(y)dy.

We collect in the next Proposition some useful properties of the Green function Gs (See [21] and [19]
for the proof).

Proposition 2.8. Assume that s ∈ (0, 1). Then, for almost every x, y ∈ Ω, we have

Gs(x, y) '
1

|x − y|N−2s

(
δs(x)
|x − y|s

∧ 1
)(

δs(y)
|x − y|s

∧ 1
)

'
1

|x − y|N−2s

(
δs(x)δs(y)
|x − y|2s ∧ 1

)
.

(16)

In particular, we have

Gs(x, y) 6 C1 min{
1

|x − y|N−2s ,
δs(x)
|x − y|N−s ,

δs(y)
|x − y|N−s } for a.e. x, y ∈ Ω. (17)

In the case where g ∈ Lm(Ω), we can improve the regularity results of Theorem 2.7. More precisely
from [11], we have the next theorem.

Theorem 2.9. Assume that g ∈ Lm(Ω) with m > 1 and let u be the unique solution to problem (8), then
there exists a positive constant C := C(N, s,m,Ω) (that can change from a line to another one), such
that

1) If 1 < m < N
2s , then u ∈ L

mN
N−2ms (Ω),

u
δs ∈ L

mN
N−ms (Ω) and

||u||
L

mN
N−2ms (Ω)

+ ||
u
δs ||L

mN
N−ms (Ω)

6 C||g||Lm(Ω).

2) If m = N
2s , then u ∈ Lr(Ω) for all r < ∞,

u
δs ∈ L

mN
N−ms (Ω) and

||u||Lr(Ω) + ||
u
δs ||L

mN
N−ms (Ω)

6 C||g||Lm(Ω).

3) If N
2s < m < N

s , then u ∈ L∞(Ω),
u
δs ∈ L

mN
N−ms (Ω) and

||u||L∞(Ω) + ||
u
δs ||L

mN
N−ms (Ω)

6 C||g||Lm(Ω).
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4) If m = N
s , then u ∈ L∞(Ω),

u
δs ∈ Lp(Ω) for all p < ∞ and

||u||L∞(Ω) + ||
u
δs ||L

p(Ω) 6 C||g||Lm(Ω).

5) If m > N
s , then u ∈ L∞(Ω),

u
δs ∈ L∞(Ω) and

||u||L∞(Ω) + ||
u
δs ||L

∞(Ω) 6 C||g||Lm(Ω).

Related to the fractional regularity of the solution to problem (8), a global fractional Calderon-
Zygmund regularity result was obtained recently in [6].

Theorem 2.10. Let s ∈ (0, 1) and consider u to be the (unique) weak solution to problem (8) with
f ∈ Lm(Ω). Then we have

1) If m > N
s , then for all 1 6 p < ∞, there exists a positive constant C = C(N, s, p,m,Ω) such that

‖(−∆)
s
2 u‖Lp(RN ) 6 C‖g‖Lm(Ω).

Moreover u ∈ Ls,p(RN) for all 1 6 p < ∞ and

‖u‖Ls,p(RN ) 6 C‖g‖Lm(Ω).

2) 1 6 m < N
s , then, for all 1 6 p < mN

N−ms , there exists a positive constant C = C(N, s, p,m,Ω) such
that

‖(−∆)
s
2 u‖Lp(RN ) 6 C ‖g‖Lm(Ω) .

Hence u ∈ Ls,p(RN) for all 1 6 p < mN
N−ms and

‖u‖Ls,p(RN ) 6 C‖g‖Lm(Ω).

As a direct consequence of the relation between the fractional Sobolev space W s,p(RN) and the
Bessel potential space Ls,p(RN), we get the next result.

Corollary 2.11. Let s ∈ (0, 1). Consider u to be the unique solution of problem (8) with g ∈ Lm(Ω).
Then

1) If 1 6 m < N
s ,

we have, for all 1 < p < mN
N−ms , that there exists C = C(N, s,m, p,Ω) such that

‖u‖W s,p(RN ) 6 C‖g‖Lm(Ω).

2) If m > N
s then, for all 1 < p < ∞, there exists C = C(N, s,m, p,Ω) such that

‖u‖W s,p(RN ) 6 C‖g‖Lm(Ω).

Let us recall that another version of the nonlocal gradient is given by

Ds(u)(x) =

(aN,s

2

∫
IRN

|u(x) − u(y)|2

|x − y|N+2s dy
) 1

2

.

Taking into consideration the result of [46], we get the following corollary.
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Corollary 2.12. Assume that the conditions of Theorem 2.10 hold. Then we have

1) If m > N
s , then for all 2N

N+2s < p < ∞, there exists C = C(N, s,m, p,Ω) such that

‖Ds(u)‖Lp(RN ) 6 C‖g‖Lm(Ω).

2) If 2N
N+4s < m 6 N

s , then for all 2N
N+2s < p < mN

N−ms , there exists C = C(N, s,m, p,Ω) such that

‖Ds(u)‖Lp(RN ) 6 C‖g‖Lm(Ω).

3. Regularity results under the presence of the Hardy potential

In this subsection we analyze the question of regularity of the solution to the problem (−∆)su = λ
u
|x|2s + f in Ω,

u = 0 in RN \Ω,
(18)

in Lebesgue spaces and fractional Sobolev spaces according to the regularity of the datum f . Here
Ω ⊂ IRN is a bounded regular domain containing the origin and s ∈ (0, 1). We will suppose that
f ∈ Lm(Ω) with m > 1 and 0 < λ < ΛN,s.

If f = 0, we define the radial potential v±αλ(x) = |x|−
N−2s

2 ±αλ with αλ given by

λ = λ(αλ) = λ(−αλ) =
22s Γ( N+2s+2αλ

4 )Γ( N+2s−2αλ
4 )

Γ( N−2s+2αλ
4 )Γ( N−2s−2αλ

4 )
. (19)

From [8], we obtain that v±αλ solves the homogeneous equation

(−∆)su = λ
u
|x|2s in RN \ {0}. (20)

It is clear that λ(α) = λ(−α) = mαλm−αλ , with mαλ = 2αλ+s
Γ( N+2s+2αλ

4 )

Γ( N−2s−2αλ
4 )

.

Notice that
0 < λ(αλ) = λ(−αλ) 6 ΛN,s if and only if 0 6 αλ <

N − 2s
2

.

Define
µ(λ) =

N − 2s
2

− αλ and µ̄(λ) =
N − 2s

2
+ αλ. (21)

For 0 < λ < ΛN,s, then 0 < µ(λ) <
N − 2s

2
< µ̄ < (N − 2s). Since N − 2µ(λ) − 2s = 2αλ > 0 and

N − 2µ̄(λ) − 2s = −2αλ < 0, then (−∆)s/2(|x|−µ(λ)) ∈ L2(Ω), but (−∆)s/2(|x|−µ̄(λ)) does not.
As it was proved in [8], if f ∈ L1(Ω), then the existence of a solution to problem (18) is guaranteed

under the necessary and sufficient condition
∫

Br(0)
f |x|−µ(λ)dx < ∞. Hence, throughout this section this

condition will be assumed.
The first result concerning the behavior in the neighborhood of zero is given by the next Proposition

proved in [8].
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Proposition 3.1. Let u ∈ L1
loc(IR

N) be such that u > 0 in IRN and (−∆)su ∈ L1
loc(Ω). Assume that

(−∆)su > λ
u
|x|2s in Ω, 0 < λ < ΛN,s.

Then, there exists r > 0 and a positive constant C ≡ C(r,N, λ) such that

u(x) > C|x|−µ(λ) = C|x|−
N−2s

2 +αλ in Br(0) ⊂⊂ Ω.

We are now in position to prove the first regularity results, in fractional Sobolev space, to the
solution of problem (18).

Theorem 3.2. Assume that f ∈ Lm(Ω) with m > 1 satisfying the condition
∫

Br(0)
f |x|−µ(λ)dx < ∞. Let

u ∈ L1(Ω) to be the unique weak solution to (18) with λ < ΛN,s. Then there exists a positive constant
C = C(N,m, p, s,Ω) such that

1) If m > N
2s , then

u
|x|2s ∈ Lσ(Ω) for all 1 6 σ < N

µ(λ)+2s and
∣∣∣(−∆)

s
2 u

∣∣∣ ∈ Lp(IRN) for all 1 6 p < N
µ(λ)+s .

Moreover we have
||(−∆)

s
2 u||Lp(IRN ) 6 C|| f ||Lm(Ω).

2) If 1 < m < N
2s and λ < Js,m ≡ ΛN,s

4N(m − 1)(N − 2ms)
m2(N − 2s)2 , then

∣∣∣(−∆)
s
2 u

∣∣∣ ∈ Lp(IRN) for all 1 6 p <
Nm

N−ms . Moreover we have
||(−∆)

s
2 u||Lp(RN ) 6 C|| f ||Lm(Ω).

Proof. We begin by analyzing the first case. Assume that f ∈ Lm(Ω) with m > N
2s . From Theorem 4.1

in [8], we obtain that u(x) 6 C|x|−µ(λ)χΩ. Hence
u
|x|2s 6 C|x|−µ(λ)−2sχΩ. As a consequence, we deduce

that
u
|x|2s ∈ Lσ(Ω) for all 1 6 σ < N

µ(λ)+2s .

Setting g ≡
u
|x|2s + f , it follows that g ∈ Lσ(Ω) for all σ < N

µ(λ)+2s . Using the regularity result

in Theorem 2.9, we conclude that u ∈ Lt(Ω) for all t < N
µ(λ) . Now by Theorem 2.10, it holds that∣∣∣(−∆)

s
2 u

∣∣∣ ∈ Lp(IRN) for all 1 6 p < N
µ(λ)+s and

||(−∆)
s
2 u||Lp(IRN ) 6 C|| f ||Lm(Ω).

Hence we conclude.
We treat now the case 1 < m < N

2s and 0 < λ < Js,m ≡ ΛN,s
4N(m − 1)(N − 2ms)

m2(N − 2s)2 .

Recall that u solves problem (18). Then by Theorem 4.2 of [8], we get the existence of positive
constant C(N, s,m) such that

||u||Lm∗∗s (Ω) 6 C|| f ||Lm(Ω) where m∗∗s =
mN

N − 2sm
. (22)

Since p < Nm
N−ms , then we get the existence of m1 < m such that p < Nm1

N−m1 s . Fixed m1 < m, using Hölder
inequality we deduce that ∫

Ω

um1

|x|2sm1
dx 6 C.
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Since m1 < m, it follows that g ≡ λ u
|x|2s + f ∈ Lm1(Ω).

On the other hand m1 < m < N
2s <

N
s , therefore using the regularity result in Theorem 2.10, we deduce

that
||(−∆)

s
2 u||Lp(IRN ) 6 C||g||Lm1 (Ω) for all p <

Nm1

N − m1s
.

Thus
||(−∆)

s
2 u||Lp(IRN ) 6 C|| f ||Lm(Ω) for all p <

Nm
N − ms

,

and the result follows in this case. �

In order to treat the general case Js,m ≡ ΛN,s
4N(m − 1)(N − 2ms)

m2(N − 2s)2 6 λ < ΛN,s, we need to develop a

new approach.
Let u be the unique weak solution to problem (18). Setting v(x) := |x|µ(λ)u(x), it follows that v solves

the problem {
Lµ(λ)v = |x|−µ(λ) f (x) =: f̃ (x) in Ω,

v = 0 in RN \Ω,
(23)

with
Lγv := aN,s P.V.

∫
RN

v(x) − v(y)
|x − y|N+2s

dy
|x|γ|y|γ

. (24)

Since
∫

Br(0)
f |x|−µ(λ)dx < ∞, then f̃ ∈ L1(Ω). Thus v can be seen as the unique entropy solution to

problem (23) as defined in [2]. Following closely the argument used in [4], we get the next general
regularity result.

Theorem 3.3. Let s ∈ (0, 1) and 0 < λ < ΛN,s. Assume that f̃ ∈ Lq(Ω, |x|β(q−1)dx) with q > 1 and
2Nµ(λ)
N−2s 6 β 6 2(µ(λ) + s). Let us denote by C := C(N, β, λ, s, q,Ω) a positive constant that may change

from line to other.
Then if v solves problem (23), we have

1) If β < 2(µ(λ) + s) and q > (N−β)
2(µ(λ)+s)−β , then v ∈ L∞(Ω). Moreover,

‖v‖L∞(Ω) 6 C‖ f̃ ‖Lq(Ω,|x|β(q−1)dx).

2) If β < 2(µ(λ) + s) and q =
(N−β)

2(µ(λ)+s)−β , then v ∈ Lr(Ω, |x|−βdx), for all 1 6 r < +∞. Moreover
∫
Ω

|v|r |x|−βdx


1
r

6 C‖ f̃ ‖Lq(Ω,|x|β(q−1)dx).

3) If either β = 2(µ(λ) + s) or β < 2(µ(λ) + s) and 1 < q < N−β
2(µ(λ)+s)−β , then |v|r ∈ L1(Ω, |x|−βdx), for

all 1 6 r 6 r∗ =
(N−β)q

N−β−q(2(µ(λ)+s)−β) . Moreover
∫
Ω

|v|r |x|−βdx


1
r

6 C‖ f̃ ‖Lq(Ω,|x|β(q−1)dx).
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Before proving the previous Theorem, we recall the following weighted fractional Caffarelli-Khon-
Nirenberg inequality, whose proof can be found in [3, 15, 37].

Theorem 3.4. Assume that s ∈ (0, 1) and −2s < γ < N−2s
2 . Let θ ∈ [γ, γ+ s], then there exists a positive

constant C:=C(N, s ,γ, θ), such that for all φ ∈ C∞0 (IRN), we have

C
(∫

IRN

|φ|σ̂

|x|σ̂θ
dx

) 2
σ̂

6

∫
IRN

∫
IRN

|φ(x) − φ(y)|2

|x − y|N+2s|x|γ|y|γ
dxdy,

with σ̂ = 2N
N−2s+2(θ−γ) .

Setting β = σ̂θ, we obtain that 2Nγ
N−2s 6 β 6 2(γ + s) and

C
(∫

IRN

|φ|σ̂

|x|β
dx

) 2
σ̂

6

∫
IRN

∫
IRN

|φ(x) − φ(y)|2

|x − y|N+2s|x|γ|y|γ
dxdy. (25)

Notice that by substituting the value of θ in the formula of σ̂, we reach that σ̂ =
2(N−β)

N−2(γ+s) .
Proof of Theorem 3.3. Notice that, using the notation of Theorem 3.4, then, in our case, we have
γ = µ(λ) ∈ (0, N−2s

2 ).
The main idea of the proof is to use a suitable test function and an approximation argument. To

make the paper self contained as possible, we include here all the details.
Without loss of generality we can assume that q > 1 and f̃ 	 0. Thus v 	 0 in IRN .
Consider the following approximating problem{

Lµ(λ)vn = f̃n(x) in Ω,

vn = 0 in RN \Ω,
(26)

where f̃n(x) = Tn( f̃ (x)) is the truncation of f̃n as defined in (10).
Since v is the unique solution to problem (23), at least in the entropy sense, then

vn ↑ v a.e. in IRN and vn ↑ v strongly in L1(IRN).

In the rest of the proof, we denote by C any positive constant that depends only on N, s, q, r,Ω, and is
independent of n, f̃ , v, that may change from line to other.

It is not difficult to show that vn is bounded. Thus, for α > 0 fixed, to be chosen later, using vαn as a
test function in (26), it holds that

1
2

"
DΩ

(vn(x) − vn(y))(vαn (x) − vαn (y))
|x − y|N+2s|x|µ(λ)|y|µ(λ) dxdy =

∫
Ω

f̃nvαn (x) dx.

By the algebraic inequality
(a − b)(aα − bα) > C(a

α+1
2 − b

α+1
2 )2,

we reach that

C
"

DΩ

(v
α+1

2
n (x) − v

α+1
2

n (y))2

|x − y|N+2s|x|µ(λ)|y|µ(λ) dxdy 6
∫
Ω

f̃n(x)vαn (x)dx.
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Using the weighted fractional Caffarelli-Khon-Nirenberg inequality in Theorem 3.4, we get"
DΩ

(v
α+1

2
n (x) − v

α+1
2

n (y))2

|x − y|N+2s|x|µ(λ)|y|µ(λ) dxdy > C
( ∫

Ω

v
(α+1)σ̂

2
n

|x|β
dx

) 2
σ̂

.

Now by using Hölder’s inequality, it holds that∫
Ω

f̃nvαn (x)dx 6
( ∫

Ω

f̃ q
n (x) |x|β(q−1)dx

) 1
q
( ∫

Ω

vαq′
n (x)
|x|β

dx
) 1

q′

. (27)

Hence

C
( ∫

Ω

(vn(x))
(α+1)σ̂

2

|x|β
dx

) 2
σ̂

6
( ∫

Ω

f̃ q
n (x)|x|β(q−1)(x)dx

) 1
q
( ∫

Ω

vαq′
n (x)
|x|β

dx
) 1

q′

. (28)

• If β < 2(µ(λ)+ s) and σ̂
2 > q′, namely q > N−β

2(µ(λ)+s)−β , in this case we can prove that v ∈ L∞(Ω). The
proof follows using the classical Stampacchia argument as in [44]. Let us give some details. Using
Gk(vn) as a test function (26), it follows that

1
2

"
DΩ

(vn(x) − vn(y))(Gk(vn(x)) −Gk(vn(y)))
|x − y|N+2s|x|µ(λ)|y|µ(λ) dxdy =

∫
Ω

f̃n(x)Gk(vn(x)) dx.

Since σ̂
2 > q′, then 1

σ̂
+ 1

q < 1 − 1
2q′ . Thus Using the Hölder inequality, we get

C
"

DΩ

(Gk(vn(x)) −Gk(vn(y)))2

|x − y|N+2s|x|µ(λ)|y|µ(λ) dxdy

6
( ∫

Ω

f̃ q(x) |x|β(q−1)dx
) 1

q
( ∫

Ω

(Gk(vn(x)))σ̂

|x|β
dx

) 1
σ̂ ∣∣∣{x ∈ Ω : Gk(vn(x)) > 0}

∣∣∣1− 1
σ̂
− 1

q

|x|−βdx .

Now, by the Caffarelli-Kohn-Nirenberg inequality in (25), we deduce that( ∫
Ω

(Gk(vn(x)))σ̂

|x|β
dx

) 1
σ̂

6
( ∫

Ω

f̃ q
n (x) |x|β(q−1)dx

) 1
q ∣∣∣{x ∈ Ω : Gk(vn(x)) > 0}

∣∣∣1− 1
σ̂
− 1

q

|x|−βdx .

Hence ∣∣∣{x ∈ Ω : vn(x) > k}
∣∣∣ 1
σ̂

|x|−βdx
6 C

∣∣∣{x ∈ Ω : vn(x) > k}
∣∣∣1− 1

σ̂
− 1

q

|x|−βdx .

Thus using the standard Stampacchia argument, see [44], we get the existence of k0 > 0, independents
of n such that ∣∣∣{x ∈ Ω : vn(x) > k0}

∣∣∣ = 0 for all n.

Hence
∣∣∣{x ∈ Ω : v(x) > k0}

∣∣∣ and then v ∈ L∞(Ω).

• If β < 2(µ(λ) + s) and σ̂
2 = q′, since (28) holds for all α > 1, then using Hölder’s inequality, we

reach that for all n > 1, vr
n|x|
−β ∈ L1(Ω), for all r < ∞ and
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∫
Ω

vr
n |x|

−βdx


1
r

6 C‖ f̃n‖Lq(Ω,|x|β(q−1)dx), for all 1 6 r < +∞.

Now using Fatou’s Lemma we deduce that
∫
Ω

vr |x|−βdx


1
r

6 C‖ f̃ ‖Lq(Ω,|x|β(q−1)dx), for all 1 6 r < +∞

as requested.
• Now, if β < 2(µ(λ) + s) and σ̂

2 < q′, that is q < N−β
2(µ+s)−β , and choosing α = σ̂

2q′−σ̂ , then (α+1)σ̂
2 =

qσ̂
2q−(q−1)σ̂ =

q(N−β)
N−β−q(2(s+µ(λ))−β) := r∗. Going back to (28), it follows that, for all n > 1, vr∗

n |x|
−β ∈ L1(Ω) and

∫
Ω

vr∗
n |x|

−βdx


1
r∗

6 C‖ f̃n‖Lq(Ω,|x|β(q−1)dx).

As above, using Fatou’s lemma, we get
∫
Ω

vr∗ |x|−βdx


1
r∗

6 C‖ f̃ ‖Lq(Ω,|x|β(q−1)dx).

• If β = 2(µ(λ) + s), then σ̂ = 2. Again from (28) and choosing α = 1
q′−1 , it follows that r∗ = q and

vr∗
n |x|

−β ∈ L1(Ω) for all n > 1 with
∫
Ω

vq
n |x|

−βdx


1
q

6 C‖ f̃n‖Lq(Ω,|x|β(q−1)dx).

Thus 
∫
Ω

vq |x|−βdx


1
q

6 C‖ f̃ ‖Lq(Ω,|x|β(q−1)dx).

As a consequence, we get the next corollary that improves the regularity results obtained in [8].

Corollary 3.5. Let s ∈ (0, 1), 0 < λ < λN,s and u be the unique weak solution to problem (18) with
f |x|−µ(λ) ∈ L1(Ω). Suppose in addition that f |x|β−µ(λ) ∈ Lq(Ω, |x|−βdx) where q > 1 and 2Nµ(λ)

N−2s 6 β 6
2(µ(λ) + s). Then

1) If β < 2(µ(λ) + s) and q > (N−β)
2(µ(λ)+s)−β , then u|x|µ(λ) ∈ L∞(Ω). Moreover, there exists a positive

constant C := C(N, β, λ, s, q,Ω) such that

‖u|x|µ(λ)‖L∞(Ω) 6 C‖ f |x|β−µ(λ)‖Lq(Ω,|x|−βdx).
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2) If β < 2(µ(λ) + s) and q =
(N−β)

2(µ(λ)+s)−β , then u|x|µ(λ) ∈ Lr(Ω, |x|−βdx), for all 1 6 r < +∞. Moreover,
there exists a positive constant C := C(N, β, λ, s, q, r,Ω) such that

∫
Ω

ur|x|rµ(λ)−βdx


1
r

6 C‖ f |x|β−µ(λ)‖Lq(Ω,|x|−βdx).

3) If either β = 2(µ(λ) + s) or β < 2(µ(λ) + s) and 1 < q < N−β
2(µ(λ)+s)−β , then

u|x|µ(λ) ∈ Lr∗(Ω, |x|−βdx) with r∗ =
(N−β)q

N−β−q(2(µ(λ)+s)−β) . Moreover, there exists a positive constant
C := C(N, β, λ, s, q,Ω) such that

∫
Ω

ur∗ |x|r
∗µ(λ)−βdx


1
r∗

6 C‖ f |x|β−µ(λ)‖Lq(Ω,|x|−βdx).

As a consequence we get the next fractional regularity.

Theorem 3.6. Suppose that f satisfies the same condition as in Corollary 3.5. Let u ∈ L1(Ω) be the
unique weak solution to (18) with λ < ΛN,s. Then

1) If β < 2(µ(λ) + s) and q > (N−β)
2(µ(λ)+s)−β , then

∣∣∣(−∆)
s
2 u

∣∣∣ ∈ Lp(IRN) for all 1 6 p < N
µ(λ)+s . In particular,

there exists a positive constant C := C(N, β, λ, s, q, p,Ω) such that

||(−∆)
s
2 u||Lp(IRN ) 6 C‖ f |x|β−µ(λ)‖Lq(Ω,|x|−βdx).

2) If β < 2(µ(λ) + s) and q =
(N−β)

2(µ(λ)+s)−β , then
∣∣∣(−∆)

s
2 u

∣∣∣ ∈ Lp(IRN) for all 1 6 p < N
µ(λ)+s . In particular,

there exists a positive constant C := C(N, β, λ, s, q, p,Ω) such that

||(−∆)
s
2 u||Lp(IRN ) 6 C‖ f |x|β−µ(λ)‖Lq(Ω,|x|−βdx).

3) If either β = 2(µ(λ) + s) or β < 2(µ(λ) + s) and β

β−µ(λ) 6 q < N−β
2(µ(λ)+s)−β , then

∣∣∣(−∆)
s
2 u

∣∣∣ ∈ Lp(IRN) for
all 1 6 p < qN

N−β−q(µ+s−β) . In particular, there exists a positive constant C := C(N, β, λ, s, q, p,Ω)
such that

||(−∆)
s
2 u||Lp(IRN ) 6 C‖ f |x|β−µ(λ)‖Lq(Ω,|x|−βdx).

4) If either β = 2(µ(λ) + s) or β < 2(µ(λ) + s) and 1 < q 6 β

β−µ(λ) , then
∣∣∣(−∆)

s
2 u

∣∣∣ ∈ Lp(IRN) for all
1 6 p < qN

N−qs . In particular, there exists a positive constant C := C(N, β, λ, s, q, p,Ω) such that

||(−∆)
s
2 u||Lp(IRN ) 6 C‖ f |x|β−µ(λ)‖Lq(Ω,|x|−βdx).

Proof. We start with the first case. Since β < 2(µ(λ) + s) and q > (N−β)
2(µ(λ)+s)−β , then by Corollary 3.5, we

obtain that u(x) 6 C|x|−µ(λ).
Hence u

|x|2s 6 C|x|−µ(λ)−2s ∈ Lσ(Ω) for all 1 6 σ < N
µ(λ)+2s . Since q > (N−β)

2(µ(λ)+s)−β , then using Hölder

inequality we can show the existence of a > N
µ(λ)+2s such that f ∈ La(Ω). Thus g :=

u
|x|2s + f ∈ Lσ(Ω) for

all 1 6 σ < N
µ(λ)+2s . Using now the regularity result in Theorem 2.10, it holds that

∣∣∣(−∆)
s
2 u

∣∣∣ ∈ Lp(IRN)
for all 1 6 p < N

µ(λ)+s and
||(−∆)

s
2 u||Lp(IRN ) 6 C‖ f |x|β−µ(λ)‖Lq(Ω,|x|−βdx).
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The second case follows as the first case using the fact that u|x|µ(λ) ∈ Lr(Ω, |x|−βdx), for all 1 6 r < +∞.
We consider the third case which is more involved. Assume that β < 2(µ(λ) + s) and 1 6 q <
N−β

2(µ(λ)+s)−β , then by Corollary 3.5, we reach that u|x|µ(λ) ∈ Lr∗(Ω, |x|−βdx) with r∗ =
(N−β)q

N−β−q(2(µ(λ)+s)−β) . We

claim that
u
|x|2s ∈ Lθ(Ω) for all 1 6 θ < qN

N+q(β−µ(λ))−β . To see this we will use Hölder’s inequality. More

precisely, for 1 6 θ < r∗, we have∫
Ω

( u
|x|2s

)θ
dx =

∫
Ω

(u|x|µ(λ))θ(|x|β−θ(µ(λ)+2s))|x|−βdx

6
( ∫

Ω

(u|x|µ(λ))r∗ |x|−βdx
) θ

r∗
( ∫

Ω

(|x|β−θ(µ(λ)+2s))
r∗

r∗−θ |x|−βdx
) r∗−θ

r∗

6 C(Ω)‖ f |x|β−µ(λ)‖θLq(Ω,|x|−βdx)

( ∫
Ω

(|x|β−θ(µ(λ)+2s))
r∗

r∗−θ |x|−βdx
) r∗−θ

r∗

.

The last integral is finite if and only if (β − θ(µ(λ) + 2s)) r∗
r∗−θ − β > −N. This is equivalent to the fact

that θ < qN
N+q(β−µ(λ))−β . Notice that in this case we have qN

N+q(β−µ(λ))−β < r∗. Then the claim follows.
In the same way and taking into consideration that qN

N+q(β−µ(λ))−β < q, we can prove that f ∈ Lθ(Ω)

for all 1 6 θ < qN
N+q(β−µ(λ))−β . As in the previous cases, setting g :=

u
|x|2s + f , then g ∈ Lθ(Ω) for all

1 6 θ < qN
N+q(β−µ(λ))−β . Thus by the regularity result in Theorem 2.10, we obtain that

∣∣∣(−∆)
s
2 u

∣∣∣ ∈ Lp(IRN)
for all 1 6 p < θN

N−θs . Hence
∣∣∣(−∆)

s
2 u

∣∣∣ ∈ Lp(IRN) for all 1 6 p < qN
N−β−q(µ+s−β) and

||(−∆)
s
2 u||Lp(IRN ) 6 C‖ f |x|β−µ(λ)‖Lq(Ω,|x|−βdx).

Finally, the fourth case follows easily, using the approach of the previous case. �

To end this section we give the next weighted estimate for the fractional gradient if additional
assumptions on f are satisfied. This will be used in order to show the existence of a solution to
problem (1).

Suppose that f ∈ L1(|x|−µ(λ)−a0dx,Ω) for some a0 > 0. Hence there exists λ1 ∈ (λ,ΛN,s) such that
µ(λ1) = µ(λ) + a0. Define ψ to be the unique solution to problem (−∆)sψ = λ1

ψ

|x|2s + 1 in Ω,

ψ = 0 in RN \Ω,
(29)

then ψ ' |x|−µ(λ)−a0 near the origin. It is clear also that ψ ∈ L∞(Ω\Br(0)).
Using ψ as a test function in problem (18), it holds that

(λ1 − λ)
∫
Ω

uψ
|x|2s dx 6

∫
Ω

fψdx.

Hence ∫
Ω

u
|x|2s+µ(λ) dx 6 C(Ω λ, a0)|| f ||L1(|x|−µ(λ)−a0 dx,Ω). (30)
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The next proposition will be the crucial key in order to show a priori estimates when dealing with
problem (1) with general datum f .

Proposition 3.7. Assume that f ∈ L1(|x|−µ(λ)−a0dx,Ω) for some a0 > 0. Let v be the unique weak
solution to problem (18), then∥∥∥∥∥(−∆)

s
2 u

∥∥∥∥∥
Lα(|x|−µ(λ)dx,Ω)

6 C(Ω, λ, a0)|| f ||L1(|x|−µ(λ)−a0 dx,Ω) for all 1 6 α <
N

N − s
. (31)

To prove Proposition 3.7, we need the following lemma proved in [27].

Lemma 3.8. Let N > 1, R > 0 and α, β ∈ (−∞,N). There exists C := C(N,R, α, β) > 0 such that:

• If (N − α − β) , 0, then∫
BR(0)

dz
|x − z|α|y − z|β

6 C
(
1 + |x − y|N−α−β

)
, for all x, y ∈ BR(0) with x , y.

• If (N − α − β) = 0, then∫
BR(0)

dz
|x − z|α|y − z|β

6 C
(
1 +

∣∣∣ ln |x − y|
∣∣∣), for all x, y ∈ BR(0) with x , y.

Proof of Proposition 3.7. Since
∫
Ω

f |x|−µ(λ)dx < ∞, then by Theorem 2.10, we know that

∥∥∥∥∥(−∆)
s
2 u

∥∥∥∥∥
Lα(Ω)
6 C(Ω, λ, a0)|| f ||L1(|x|−µ(λ)−a0 dx,Ω) for all 1 6 α <

N
N − s

.

Thus, to prove the claim we just need to show that∫
Br(0)
|(−∆)

s
2 u|α|x|−µ(λ)dx 6 C(Ω, λ, a0)|| f ||αL1(|x|−µ(λ)−a0 dx,Ω) for all 1 6 α <

N
N − s

,

where Br(0) ⊂⊂ Ω.
We set g(x) := λ

u
|x|2s + µ f , then u(x) =

∫
Ω

Gs(x, y)g(y)dy. Hence, for a.e. x ∈ Br(0),

|(−∆)
s
2 u(x)| 6

∫
Ω

|(−∆)
s
2Gs(x, y)|g(y)dy. (32)

Notice that from [6], we know that∣∣∣(−∆)
s
2
x Gs(x, y)

∣∣∣ 6 C
|x − y|N−s

(∣∣∣∣∣ ln 1
|x − y|

∣∣∣∣∣ + ln
( 1
δ(x)

))
, for a.e. x, y ∈ Ω. (33)

Since Br(0) ⊂⊂ Ω, one has∣∣∣(−∆)
s
2
x Gs(x, y)

∣∣∣ 6 C
|x − y|N−s ln

( C
|x − y|

)
, for a.e. (x, y) ∈ Br(0) ×Ω. (34)
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For the remaining part of this proof, we will use systematically this estimate for a.e. (x, y) ∈ Br(0)×Ω.
Thus we conclude that∣∣∣(−∆)

s
2
x Gs(x, y)

∣∣∣ 6 Gs(x, y)h(x, y), for a.e. (x, y) ∈ Br(0) ×Ω, (35)

with

h(x, y) =


1
|x−y|s ln

(
C
|x−y|

)
if |x − y| < δ(y)

1
δs(y) ln

(
C
|x−y|

)
if |x − y| > δ(y).

Fix 1 < α < p∗ = N
N−s . Going back to (32), we deduce that, for a.e. x ∈ Br(0), we have

|(−∆)
s
2 u(x)| 6

∫
Ω

|(−∆)
s
2Gs(x, y)|g(y)dy 6 λ

∫
Ω

|(−∆)
s
2Gs(x, y)|

u(y)
|y|2s dy +

∫
Ω

|(−∆)
s
2Gs(x, y)| f (y)dy.

Hence

|(−∆)
s
2 u(x)||x|−

µ(λ)
α 6 λ|x|−

µ(λ)
α

∫
Ω

|(−∆)
s
2Gs(x, y)|

u(y)
|y|2s dy + |x|−

µ(λ)
α

∫
Ω

|(−∆)
s
2Gs(x, y)| f (y)dy.

We set
K1(x) =

∫
Ω

|(−∆)
s
2Gs(x, y)|

u(y)
|y|2s dy

and
K2(x) =

∫
Ω

|(−∆)
s
2Gs(x, y)| f (y)dy.

We begin estimating K1. We have

Kα
1 (x) 6


∫
Ω

|(−∆)
s
2Gs(x, y)|

u(y)
|y|2s dy


α

6


∫
Ω

h(x, y)Gs(x, y)
u(y)
|y|2s dy


α

6


∫
Ω

(h(x, y))αGs(x, y)
u(y)
|y|2s dy



∫
Ω

Gs(x, y)g(y)dy


α−1

6

∫
Ω

(
hα(x, y)Gs(x, y)

u(y)
|y|2s dy

)
uα−1(x).

Thus, using Fubini’s theorem, it holds that∫
Br(0)

Kα
1 (x)|x|−µ(λ)dx 6 λ

∫
Ω

u(y)
|y|2s

(∫
Br(0)

hα(x, y)Gs(x, y)uα−1(x)|x|−µ(λ)dx
)

dy.

Recall that, by (30), we have ∫
Ω

u(y)
|y|2s+µ(λ) dy 6 C

∫
Ω

f (y)
|y|µ(λ)+a0

dy.
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Therefore we obtain that∫
Br(0)

Kα
1 (x)|x|−µ(λ)dx 6 C2

∫
Ω

u(y)
|y|2s

(∫
Br(0)∩{|x−y|<δ(y)}

uα−1(x)Gs(x, y)
|x|µ(λ)

1
|x − y|sα

ln
(

C
|x − y|

)α
dx

)
dy

+ C2

∫
Ω

u(y)
|y|2sδsα(y)

(∫
Br(0)∩{|x−y|>δ(y)}

uα−1(x)Gs(x, y)
|x|µ(λ) ln

(
C
|x − y|

)α
dx

)
dy

= J1 + J2.

Respect to J1, using the fact that for all η > 0,

1
|x − y|sα

ln
(

C
|x − y|

)α
6
α

η

Cη

|x − y|sα+η
,

and by Proposition 2.8, we reach that

J1 6 C2

∫
Ω

u(y)
|y|2s

(∫
Br(0)

uα−1(x)
|x|µ(λ)|x − y|N−(2s−sα−η) dx

)
dy

6 C
∫
Ω

u(y)
|y|2s

∫
Br(0)∩{|x|> 1

2 |y|}

uα−1(x)
|x|µ(λ)|x − y|N−(2s−sα−η) dx

 dy

+ C
∫
Ω

u(y)
|y|2s

∫
Br(0)∩{|x|< 1

2 |y|}

uα−1(x)
|x|µ(λ)|x − y|N−(2s−sα−η) dx

 dy

6 I1 + I2.

To estimate I1, we observe that

I1 6 C
∫
Ω

u(y)
|y|2s+µ(λ)

(∫
Br(0)

uα−1(x)
|x − y|N−(2s−sα−η) dx

)
dy.

Recall that u ∈ Lσ(Ω) for all σ < N
N−2s . Since α < N

N−s , fixing σ0 <
N

N−2s and using Hölder inequality,
we get ∫

Br(0)

uα−1(x)
|x − y|N−(2s−sα−η) dx 6

( ∫
Br(0)

uσ0dx
) α−1
σ0

( ∫
Br(0)

1

|x − y|
(N−(2s−sα−η))σ0

σ0−(α−1)

dx
)σ0−(α−1)

σ0
.

Since α < N
N−s , then we can chose σ0 close to N

N−2s and η small enough such that (N−(2s−sα−η))σ0
σ0−(α−1) < N.

Thus ∫
Br(0)

1

|x − y|
(N−(2s−sα−η))σ0

σ0−(α−1)

dx 6 C(r,Ω),

and then

I1 6 C
( ∫

Br(0)
uσ0dx

) α−1
σ0

( ∫
Ω

u(y)
|y|2s+µ(λ) dy

)
6 C

( ∫
Ω

f (y)
|y|µ(λ)+a0

dy
)α
. (36)
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We deal now with I2. Notice that {|x| 6 1
2 |y|} ⊂ {|x − y| > 1

2 |y|}. Thus

I2 6 C
∫
Ω

u(y)
|y|µ(λ)+2s

(∫
Br(0)

uα−1(x)
|x|µ(λ)|x − y|N−(2s+µ(λ)−sα−η) dx

)
dy.

As in the estimate of I1, setting θ =
σ0

σ0 − (α − 1)
, we get

∫
Br(0)

uα−1(x)
|x|µ(λ)|x − y|N−(2s+µ(λ)−sα−η) dx

6
( ∫

Br(0)
uσ0dx

) α−1
σ0

( ∫
Br(0)

1
|x|µ(λ)θ|x − y|(N−(2s+µ(λ)−sα−η))θ dx

) 1
θ

.

For α < N
N−s fixed, we can chose η small enough and σ0 close to p2 such that

N − (N − (2s + µ(λ) − sα − η))θ − µ(λ)θ < N.

Hence using Lemma 3.8, it holds that∫
Br(0)

1
|x|µ(λ)θ|x − y|(N−(2s+µ(λ)−sα−η))θ dx 6 C(r0).

Therefore we conclude that

I2 6 C
∫
Ω

u(y)
|y|µ(λ)+2s

( ∫
Br(0)

uσ0dx
) α−1
σ0
6 C

( ∫
Ω

f (y)
|y|µ(λ)+a0

dy
)α
. (37)

As a consequence, we have

J1 6 C
( ∫

Ω

f (y)
|y|µ(λ)+a0

dy
)α
. (38)

We deal now with J2. Let c1 > 0 be a positive constant to be chosen later, then

J2 6

∫
Ω

u(y)
|y|2sδsα(y)

(∫
Br(0)∩{|x−y|>δ(y)}

uα−1(x)Gs(x, y)
|x|µ(λ) ln

(
C
|x − y|

)α
dx

)
dy

6

∫
Ω∩{δ(y)>c1}

u(y)
|y|2sδsα(y)

(∫
Br(0)∩{|x−y|>δ(y)}

uα−1(x)Gs(x, y)
|x|µ(λ) ln

(
C
|x − y|

)α
dx

)
dy

+

∫
Ω∩{δ(y)<c1}

u(y)
|y|2sδsα(y)

(∫
Br(0)∩{|x−y|>δ(y)}

uα−1(x)Gs(x, y)
|x|µ(λ) ln

(
C
|x − y|

)α
dx

)
dy

6 C1J1 +

∫
Ω∩{δ(y)<c1}

u(y)
|y|2sδsα(y)

(∫
Br(0)∩{|x−y|>δ(y)}

uα−1(x)Gs(x, y)
|x|µ(λ) ln

(
C
|x − y|

)α
dx

)
dy.

We set

A =

∫
Ω∩{δ(y)<c1}

u(y)
|y|2sδsα(y)

(∫
Br(0)∩{|x−y|>δ(y)}

uα−1(x)Gs(x, y)
|x|µ(λ) ln

(
C
|x − y|

)α
dx

)
dy.
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Choosing c1 small, we get the existence of a positive constant c2 such that for δ(y) < c1 and x ∈ Br(0),
we have |x − y| > c2 > 0. Hence using again Proposition 2.8, we deduce that

A 6
∫

Ω∩{δ(y)<c1}

u(y)
δs(α−1)(y)

(∫
Br(0)∩{|x−y|>δ(y)}

uα−1(x)
|x|µ(λ) dx

)
dy.

As above, for α0 <
N

N−2s , we have∫
Br(0)

uα−1(x)
|x|µ(λ) dx 6

( ∫
Br(0)

uσ0dx
) α−1
σ0

( ∫
Br(0)

1
|x|µ(λ)θ dx

) 1
θ

6 C
( ∫

Br(0)
uσ0dx

) α−1
σ0
6 C

( ∫
Ω

f (y)
|y|µ(λ)+a0

dy
)α−1

.

On the other hand, we have∫
Ω∩{δ(y)<c2}

u(y)
δs(α−1)(y)

dy 6 C
∫

Ω

u(y)
δs(y)

dy 6 C
∫
Ω

f (y)
|y|µ(λ)+a0

dy.

Hence
J2 6 C

( ∫
Ω

f (y)
|y|µ(λ)+a0

dy
)α
.

As a consequence we deduce that∫
Br(0)

Kα
1 (x)|x|−µ(λ)dx 6 C

( ∫
Ω

f (y)
|y|µ(λ)+a0

dy
)α
.

We treat now the term K2. Recall that

K2(x) =

∫
Ω

|(−∆)
s
2Gs(x, y)| f (y)dy.

Notice that for η > 0, small enough, to be chosen later, we have

|(−∆)
s
2Gs(x, y)| 6

C
|x − y|N−s ln(

C
|x − y|

) 6
C

|x − y|N−(s−η) for a.e. (x, y) ∈ Br(0) ×Ω.

Thus

K2(x)|x|−
µ(λ)
α 6

C

|x|
µ(λ)
α

∫
Ω

f (y)
|x − y|N−(s−η) dy

6
C

|x|
µ(λ)
α

∫
Ω∩{|y|64|x|}

f (y)
|x − y|N−(s−η) dy +

C

|x|
µ(λ)
α

∫
Ω∩{|y|>4|x|}

f (y)
|x − y|N−(s−η) dy

6 C
∫

Ω∩{|y|64|x|}

f (y)
|y|µ(λ)

1
|x − y|N−(s−η) dy +

C

|x|
µ(λ)
α

∫
Ω∩{|y|>4|x|}

f (y)
|x − y|N−(s−η) dy

= L1(x) + L2(x).
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We start with the estimate of term L1. Since
f (y)
|y|µ(λ)∈ L1(Ω), then by Theorem 2.4, we deduce that

L1 ∈ Lσ(Br(0)) for all 1 6 σ < N
N−(s−η) . Thus L1 ∈ Lα(Ω) and∫

Br(0)
Lα1 (x)dx 6 C

( ∫
Ω

f (y)
|y|µ(λ)+a0

dy
)α
.

We consider now L2. Since |y| > 4|x|, then |x − y| > 3
4 |y| and |x − y|> 3|x|. Hence

L2(x) 6
C

|x|
µ(λ)
α +N−(µ(λ)+s+a0−η)

∫
Ω

f (y)
|y|µ(λ)+a0

dy.

Since (µ(λ)
α

+ N − (µ(λ) + s + a0 − η))α < N, then we conclude that I2 ∈ Lα(Br(0)) and∫
Br(0)

Lα2 (x)dx 6 C
( ∫

Ω

f (y)
|y|µ(λ)+a0

dy
)α
.

As a consequence, we have proved that∫
Br(0)

Kα
2 (x)|x|−µ(λ)dx 6 C

( ∫
Ω

f (y)
|y|µ(λ)+a0

dy
)α
.

Therefore we conclude that∫
Br(0)
|(−∆

s
2 )u|α|x|−µ(λ)dx 6 C

( ∫
Ω

f (y)
|y|µ(λ)+a0

dy
)α
.

Hence the main estimate follows and this finishes the proof of our proposition. �

4. Existence and non existence results for the KPZ problem: the case F(u) ≡ |(−∆)
s
2 u|

In this section we consider the question of existence and non existence of a positive solution to
problem (1) with F(u) ≡ |(−∆)

s
2 u|. Namely we will treat the problem

(−∆)su = λ
u
|x|2s + |(−∆)

s
2 u|p + ρ f in Ω,

u > 0 in Ω,

u = 0 in (IRN \Ω),

(39)

where Ω ⊂ IRN is a bounded regular domain containing the origin, s ∈ (0, 1), λ 6 ΛN,s, ρ > 0,
1 < p < ∞ and f is positive measurable function satisfies some hypothesis that will be precised later.

Let us begin with the next definition.

Definition 4.1. Assume that f ∈ L1(Ω) is a nonnegative function. We say that u is a weak solution to
problem (39) if |(−∆)

s
2 u|p ∈ L1(Ω),

u
|x|2s ∈ L1(Ω) and, setting g ≡ λ

u
|x|2s + |(−∆)

s
2 u|p + ρ f , then u is a

weak solution to problem (8) in the sense of Definition 2.6.

The existence of a solution in the case λ = 0 was proved in [7] without any limitation on p under
suitable hypotheses on f . However, if λ > 0, taking into consideration the singularity generated by
the Hardy potential, it is possible to show a non existence result for p large. In the next computation
we will find the exact critical exponent for the non existence.
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4.1. Non existence result: the existence of the critical exponent

Recall that we are considering the case F(u)(x) = |(−∆)
s
2 u(x)|. We begin by analyzing the radial

case in the whole space as in [8]. Consider the equation

(−∆)sw − λ
w
|x|2s = |(−∆)

s
2 w|p in IRN , (40)

then we search radial positive solution in the form w = A|x|β−
N−2s

2 , with A > 0. By a direct computation,
it follows that

Aγβ,s|x|−2s− N−2s
2 +β − λA|x|β−2s− N−2s

2 =
Ap|γβ, s

2
|p

|x|(
N−2s

2 −β+s)p
,

with

γβ,t := γ−β,t :=
22tΓ( N+2t+2β

4 )Γ( N+2t−2β
4 )

Γ( N−2t−2β
4 )Γ( N−2t+2β

4 )
(41)

and t ∈ { s
2 , s}.

Hence, by homogeneity, we need to have

p =

N−2s
2 − β + 2s

N−2s
2 − β + s

,

which means that β = N−2s
2 +

ps
p−1 −

2s
p−1 . Hence the constant A satisfies

γβ,s − λ = Ap−1|γβ, s
2
|p.

Using the fact that A > 0, it holds that γβ − λ > 0. Define the application

Υ : (−N−2s
2 , N−2s

2 ) 7→ (0,ΛN,s)
β 7→ γβ

Then Υ is even and the restriction of Υ to the set [0, N−2s
2 ) is decreasing, see [24] and [26]. So there

exists a unique αλ ∈ (0,ΛN,s] such that γαλ = γ−αλ = λ.
Let β0 = −β1 = αλ. Setting

p+(λ, s) :=
N−2s

2 − β0 + 2s
N−2s

2 − β0 + s
=

N + 2s − 2αλ
N − 2αλ

, (42)

and

p−(λ, s) :=
N−2s

2 − β1 + 2s
N−2s

2 − β1 + s
=

N + 2s + 2αλ
N + 2αλ

, (43)

it holds that p−(λ, s) < p+(λ, s) and γβ − λ > 0 if and only if

p−(λ, s) < p < p+(λ, s).

It is easy to check that p+(λ, s) and p−(λ, s) are respectively an increasing and a decreasing function in
αλ and, therefore, are respectively a decreasing and an increasing function in the variable λ. Thus

N
N − s

< p−(λ, s) <
N + 2s

N
< p+(λ, s) < 2, for 0 < λ < ΛN,s.
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Notice that

p+(λ, s) =
µ(λ) + 2s
µ(λ) + s

and p−(λ, s) =
µ̄(λ) + 2s
µ̄(λ) + s

,

where µ(λ) and µ̄(λ) are defined by (21).
Hence, for p−(λ, s) < p < p+(λ, s) fixed, using the fact that Ω ⊂ BR(0) for R large, we get the

existence of a positive constant C1 > 0 such that w(x) = C1|x|β−
N−2s

2 is a radial supersolution for the
Dirichlet problem (39) if f (x) 6 1

|x|
N−2s

2 +2s−β
with ρ small.

To show that p+(λ, s) is critical, we prove the next non existence result.

Theorem 4.2. Let s ∈ (0, 1) and suppose that p > p+(λ, s). Then for all ρ > 0, problem (39) has no
positive weak solution u in the sense of Definition 4.1.

Proof. We argue by contradiction. Assume that problem (39) has a positive solution u in the sense of
Definition 4.1, then (−∆)

s
2 u ∈ Lp(Ω) and

u
|x|2s ∈ L1(Ω). By Lemma 3.1, it follows that

u(x) > C|x|−µ(λ) in Br(0) ⊂⊂ Ω.

Since |(−∆)
s
2 u|p + λ

u
|x|2s + ρ f ∈ L1(Ω), then from the regularity result in Theorem 2.10, we deduce that

(−∆)
s
2 u ∈ Lt(IRN) for all 1 6 t < N

N−s .
Let θ ∈ L∞(Ω) be a nonnegative function such that Supp θ ⊂⊂ B r

2
(0) ⊂ Br(0) ⊂⊂ Ω and define

φθ ∈ H s
0(Ω) ∩ L∞(Ω) to be the unique solution of the problem(−∆)

s
2φθ = θ , in Ω ,

φθ = 0 , in IRN \Ω.
(44)

From [40], it holds that φθ ' δ
s
2 near the boundary of Ω. Using φθ as test function in (39), we get

λ

∫
Ω

uφθ
|x|2s dx +

∫
Ω

|(−∆)
s
2 u|pφθ dx + ρ

∫
Ω

fφθ =

∫
Ω

u(−∆)s φθ dx =

∫
IRN

(−∆)
s
2 u (−∆)

s
2φθ dx

=

∫
Ω

(−∆)
s
2 u (−∆)

s
2φθ dx +

∫
IRN\Ω

(−∆)
s
2 u (−∆)

s
2φθ dx.

(45)
We treat separately each term in the right hand of the above identity.

Since Supp θ ⊂⊂ Br(0) ⊂⊂ Ω, using the fact that φθ > 0 in Ω and then Hölder inequality, we reach
that

|

∫
Ω

(−∆)
s
2 u (−∆)

s
2φθ dx| = |

∫
Ω

(−∆)
s
2 u θ dx|

6

∫
Ω

|(−∆)
s
2 u|φθ

θ

φθ
dx.

(46)

Next, applying Young’s inequality, it holds that

|

∫
Ω

(−∆)
s
2 u (−∆)

s
2φθ dx| 6 ε

∫
Ω

|(−∆)
s
2 u|pφθ dx + C(ε)

∫
Ω

θp′

φ
p′−1
θ

dx, (47)
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where ε > 0 will be chosen later.
Now we deal with the term

∫
IRN\Ω

(−∆)
s
2 u (−∆)

s
2φθ dx.

Since x ∈ IRN\Ω, using again Hölder inequality, it follows that

|

∫
IRN\Ω

(−∆)
s
2 u (−∆)

s
2φθ dx| 6 ||(−∆)

s
2 u||Lt(IRN\Ω)||(−∆)

s
2φθ||Lt′ (IRN\Ω)

with t < N
N−s . By hypothesis ||(−∆)

s
2 u||Lt(IRN\Ω) < ∞. Now respect to ||(−∆)

s
2φθ||Lt′ (IRN\Ω), we have

||(−∆)
s
2φθ||

t′

Lt′ (IRN\Ω) =

∫
IRN\Ω

( ∫
Ω

φθ(y)
|y − x|N+s dy

)t′

dx

=

∫
IRN\Ω

( ∫
Br(0)

φθ(y)
|y − x|N+s dy

)t′

dx +

∫
IRN\Ω

( ∫
Ω\Br(0)

φθ(y)
|y − x|N+s dy

)t′

dx.

Recalling that Supp θ ⊂ B r
2
(0) ⊂ Br(0) ⊂⊂ Ω, then we can prove that

||φθ||L∞(Ω\Br(0)) 6 C||θ||L1(Br(0)),

where C depends only on the N, s. Thus∫
IRN\Ω

( ∫
Ω\Br(0)

φθ(y)
|y − x|N+s dy

)t′

dx 6 C
∫

IRN\Ω

( ∫
Ω\Br(0)

1
|y − x|N+s dy

)t′

dx 6 C(r,Ω, s,N, t).

Now, choosing r small enough, we obtain that, for x ∈ IRN\Ω and y ∈ Br(0), |x − y| > c(|x| + 1). Hence∫
IRN\Ω

( ∫
Br(0)

φθ(y)
|y − x|N+s dy

)t′

dx 6
∫

IRN\Ω

C
(|x| + 1)t′(N+s)

( ∫
Br(0)

φθ(y)dy
)t′

dx 6 C||φθ||t
′

L1(Ω).

Now, going back to (45), choosing ε << 1 in estimate (47), we obtain that

λ

∫
Ω

uφθ
|x|2s dx 6 C(ε)

∫
Ω

θp′

φ
p′−1
θ

dx + C||φθ||t
′

L1(Ω) + C||(−∆)
s
2 u||Lt(IRN ) + C. (48)

Recall that p > p+(λ, s) =
2s+µ(λ)
s+µ(λ) , hence p′ < 2s+µ(λ)

s . Using an approximating argument we can take
θ = 1

|x|βχB r
4

(0) with N − (µ(λ) + s) 6 β < N − (p′ − 1)s. In this case φθ w 1
|x|β−s near the origin and

φθ ∈ L∞(B\Br(0). Therefore φ ∈ L1(Ω). From (48), it holds that

C
∫

B r
4

1
|x|β+µ+s dx 6 C(ε)

∫
Ω

θp′

φ
p′−1
θ

dx + C||φθ||t
′

L1(Ω) + C||(−∆)
s
2 u||Lt(IRN ) + C.

Since (β+µ+ s) > N, then in order to conclude we have just to show that
∫
Ω

θp′

φ
p′−1
θ

dx < ∞. Notice that

∫
Ω

θp′

φ
p′−1
θ

dx 6
∫

B r
4

(0)

1
|x|p′β−(p′−1)(β−s) dx =

∫
B r

4
(0)

1
|x|(p′−1)s+βdx.

Taking into consideration that p′ < 2s+µ(λ)
s , it follows that (p′ − 1)s + β < N and so we are done. �
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Remarks 4.3. Following the same arguments as above, we can prove that problem (39) has no positive
supersolutions u in the following sense: u = 0 a.e in IRN \ Ω,

∣∣∣(−∆)
s
2 u

∣∣∣ ∈ Lr(IRN) for some r > 1,

g := |(−∆)
s
2 u|p + λ

u
|x|2s + ρ f ∈ L1(Ω) and for all nonnegative φ ∈ T (defined in (9)), we have∫

IRN
(−∆)

s
2 u(−∆)

s
2φ dx >

∫
Ω

gφ dx.

For ρ large, we are also able to prove another non existence result.

Theorem 4.4. Assume that f 	 0 and p > 2s+2
s+2 , then there exists ρ∗ > 0 such that problem (39) has

non positive solution for ρ > ρ∗.

Proof. Without loss of generality we assume that f ∈ L∞(Ω).
Assume that u is a positive solution to problem (39). For θ ∈ C∞0 (Ω) with θ 	 0, we define φθ to be the
unique solution to the problem (−∆)sφθ = θ , in Ω,

φθ = 0 , in IRN \Ω.

Notice that φθ ' δs(x) where δ(x) ≡ dist(x, ∂Ω), see for instance [41].
Using φθ as a test function in (39), it holds that∫

Ω

(−∆)sφθ udx >
∫
Ω

|(−∆)
s
2 u|pφθdx + ρ

∫
Ω

fφθdx.

Hence ∫
Ω

θ u dx >
∫
Ω

|(−∆)
s
2 u|pφθdx + ρ

∫
Ω

fφθ dx. (49)

Let ψθ to be the unique solution to the problem(−∆)
s
2ψθ = θ , in Ω,

ψθ = 0 , in IRN \Ω.

Thus ∫
Ω

(−∆)
s
2ψθ u dx >

∫
Ω

|(−∆)
s
2 u|pφθ dx + ρ

∫
Ω

fφθ dx.

Then ∫
Ω

(−∆)
s
2 uψθ dx >

∫
Ω

|(−∆)
s
2 u|pφθ dx + ρ

∫
Ω

fφθ dx.

Notice that ∫
Ω

(−∆)
s
2 uψθ dx 6

∫
Ω

|(−∆)
s
2 u|φθ

ψθ
φθ

dx.

Hence, using Young’s inequality, for any ε > 0, we get the existence of a positive constant C(ε) such
that ∫

Ω

(−∆)
s
2 uψθ dx 6 ε

∫
Ω

|(−∆)
s
2 u|pφθ dx + C(ε)

∫
Ω

φθ

(
ψθ
φθ

)p′

dx.
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Since θ is bounded, according with [40], then ψθ w δ
s
2 and φθ w δs, it follows that

∫
Ω

φθ

(
ψθ
φθ

)p′

dx < ∞

if, p > 2s+2
s+2 . Therefore, in this case, we deduce that

ρ

∫
Ω

f φ dx 6 C(ε)
∫
Ω

φθ

(
ψθ
φθ

)p′

dx,

which implies that

ρ 6

C(ε)
∫
Ω

φθ

(
ψθ
φθ

)p′

dx

∫
Ω

f φθ dx
=: ρ∗.

Hence the result follows in this case.
�

Remarks 4.5. The condition p > 2s+2
s+2 in Theorem 4.4 seems to be technical. We conjecture that the

non existence result in Theorem 4.4 holds for all p > 1. However the above arguments does not hold
if p 6 2s+2

s+2 .

4.2. Existence result

To show the optimality of the exponent p+(λ, s), we show the existence of a supersolution to
problem (39). Notice that, in some cases, under suitable conditions on the datum f and the exponent
p, we are able to prove the existence of a weak solution to problem (39).

Fix p−(λ, s) < p < p+(λ, s) < 2 and let w1(x) =
A
|x|θ0

, with θ0 = N−2s
2 − β, be the solution to the

Eq (40) obtained in the previous section. Recall that

(−∆)sw1(x) − λ
w1

|x|2s =
A(γβ,s − λ)
|x|θ0+2s

=
Ap|γβ, s

2
|p

|x|(θ0+s)p = |(−∆)
s
2 w1|

p.

Taking into consideration the definition of γβ,t given in (41) (with t ∈ { s
2 , s}), it holds that (γβ,t − λ) > 0

if and only if θ0 ∈ (µ(λ), µ̄(λ)). Now, if f 6
1

|x|2s+θ0
, using the fact that Ω is bounded, we can choose

C1 > 0 such that ŵ1 = C1w is a supersolution to problem (39) for ρ < ρ∗. In this way we have obtained
the following result.

Theorem 4.6. Let Ω be a bounded domain containing the origin. Suppose that

p−(λ, s) < p < p+(λ, s). If f 6
1
|x|2s+θ , with θ given as above, then problem (39) has a supersolution w

such that w,
w
|x|2s , |(−∆)

s
2 w1|

p ∈ L1(Ω).
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Notice that in order to show the existence of a solution under the presence of a supersolution, we
need a comparison principle in the spirit of the work of [14] for the fractional gradient. This is missing
at the present time but will be investigated in a forthcoming paper. However, using the compactness
approach developed in [7] we are able to show the existence of a solution in some particular cases.
More precisely, we have:

Theorem 4.7. Let s ∈ (0, 1), 0 < λ < ΛN,s and f ∈ L1(Ω) be a nonnegative function such that∫
Ω

f |x|−µ(λ)−a0 dx < ∞, for some a0 > 0. Assume that 1 < p < p∗ = N
N−s . Then, there exists

ρ∗:= ρ∗(N, p, s, f , λ,Ω) > 0 such that if ρ < ρ∗, problem (39) has a solution u ∈ Ls,σ
0 (Ω), for all

1 < σ < N
N−s . Moreover

∫
IRN |(−∆)

s
2 u|p|x|−µ(λ)dx < ∞.

Proof. We follow again the arguments used in [11]. Fix 1 < p < p∗ and let f ∈ L1(Ω) be a nonnegative
function with

∫
Ω

f |x|−µ(λ)−a0 dx < ∞.

Fix r > 1 be fixed such that 1 < p < r < p∗. Then, we get the existence of ρ∗ > 0 such that for some
l > 0, we have

C0(l + ρ∗|| f ||L1(|x|−µ(λ)−a0 dx,Ω)) = l
1
p ,

where C0 is a positive constant depending only on Ω, λ and the regularity constant in Theorems (2.10).
Let ρ < ρ∗ be fixed and define the set

E = {v ∈ Ls,1
0 (Ω) : v ∈ Ls,r

0 (|x|−µ(λ)dx,Ω) and ||(−∆)
s
2 v||Lr(|x|−µ(λ)dx,Ω) 6 l

1
p }. (50)

It is clear that E is a closed convex set of Ls,1
0 (Ω). Consider the operator

T : E → Ls,1
0 (Ω)

v → T (v) = u,

where u is the unique solution to problem
(−∆)su = λ

u
|x|2s + |(−∆)

s
2 v|p + ρ f in Ω,

u = 0 in RN \Ω,

u > 0 in Ω.

(51)

Setting
g(x) = |(−∆)

s
2 v|p + γ f ,

then taking into consideration the definition of E, it holds that g ∈ L1(|x|−µ(λ)dx,Ω). Hence the existence
and the uniqueness of u follows using the result of [8] with u ∈ Ls,σ

0 (Ω) for all 1 < σ < N
N−s . Thus T is

well defined.
We claim that T (E) ⊂ E. Since r > p, using Hölder inequality we get the existence of â0 > 0 such

that ∫
Ω

|(−∆)
s
2 v|p|x|−µ(λ)−â0dx 6 C(Ω)

( ∫
Ω

|(−∆)
s
2 v|r|x|−µ(λ)dx

) p
r

< ∞.
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Setting ā0 = min{a0, â0}, it holds that g ∈ L1(|x|−µ(λ)−ādx,Ω). Thus by Proposition 3.7, we reach that,
for all 1 6 σ < N

N−s ,

( ∫
Ω

|(−∆)
s
2 u|σ|x|−µ(λ)dx

) 1
σ

6 C(N, p, ā)
∥∥∥∥∥|(−∆)

s
2 v|p + ρ f

∥∥∥∥∥
L1(|x|−µ(λ)−ādx,Ω)

.

Since v ∈ E, we conclude that( ∫
Ω

|(−∆)
s
2 u|σ|x|−µ(λ)dx

) 1
σ

6 C(N, p, ā)
(( ∫

Ω

|(−∆)
s
2 v|r|x|−µ(λ)dx

) p
r

+ ρ|| f ||L1(|x|−µ(λ)−a0 dx,Ω)

)
6 C(l + ρ∗|| f ||L1(|x|−µ(λ)−a0 dx,Ω)) 6 l.

Choosing σ = r, it holds that u ∈ E.
The continuity and the compactness of T follow using closely the same arguments as in [11].
As a conclusion and using the Schauder Fixed Point Theorem as in [11], there exists u ∈ E such

that T (u) = u, u ∈ Ls,p
0 (Ω) and

||(−∆)
s
2 u||Lr(|x|−µ(λ)dx,Ω) 6 C.

Therefore, u solves (39). �

5. Some extensions and further results

Let us consider now the case where F(u) ≡ (Ds(u)). Then problem (1) takes the form
(−∆)su = λ

u
|x|2s + (Ds(u))p + ρ f in Ω,

u > 0 in Ω,

u = 0 in (RN \Ω).

(52)

Recall that Ds(u)(x) =

(aN,s

2

∫
IRN

|u(x) − u(y)|2

|x − y|N+2s dy
) 1

2

. If we consider the equation

(−∆)sw − λ
w
|x|2s = (Ds(w))p in IRN , (53)

then, using the same radial computation as in the previous section, searching for a radial solution in the

form w = A|x|β−
N−2s

2 , one sees that we need p =

N−2s
2 − β + 2s

N−2s
2 − β + s

, which means that β = N−2s
2 +

ps
p−1 −

2s
p−1 .

Hence, as in the previous case, we obtain that w is a solution to (53) if p−(λ, s) < p < p+(λ, s) where
p−(λ, s), p+(λ, s) are defined by (42) and (43) respectively.

Notice that if f 6
1
|x|2s+θ with θ = N−2s

2 −β, then we can chose C1 > 0 such that C1w is a supersolution

to problem (52) for ρ small enough.
Let us show that p+(λ, s) is the critical exponent for the existence of a weak solution. More precisely

we have the next non existence result.
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Theorem 5.1. Assume that s ∈ (0, 1) and p > p+(λ, s). For λ > 0, problem (52) has no positive
solution u in the sense of Definition 4.1.

Proof. We follow closely the arguments in [5]. Without loss of generality we assume that f ∈ L∞(Ω).
According to the value of p, we will divide the proof in two parts.
The case p+(λ, s) < p < 2∗s. In this case p′ > 2N

N+2s . Assume by contradiction that problem (52) has
a weak positive u. Let φ ∈ C∞0 (Ω) be a nonnegative function such that Supp ⊂ B r

2
(0) ⊂ Br(0) ⊂⊂ Ω to

be chosen later. Using φp′ as test function in (52), it holds that∫
Ω

(−∆)su φp′(x)dx >
∫

Ω

(Ds(u)(x))pφp′(x)dx + λ

∫
Ω

uφp′

|x|2s dx + ρ

∫
Ω

f (x)φq′(x)dx. (54)

Using the algebraic inequality, for a, b > 0,m > 1,

(am − bm) ' (a − b)(am−1 + bm−1),

it holds that ∫
Ω

(−∆)su φp′(x)dx =

"
DΩ

(u(x) − u(y))(φp′(x) − φp′(y))
|x − y|N+2s dydx

6 C
"

DΩ

|u(x) − u(y)||φ(x) − φ(y)|(φp′−1(x) + φp′−1(y))
|x − y|N+2s dydx

6 C
"

DΩ

|u(x) − u(y)||φ(x) − φ(y)|
|x − y|N+2s φp′−1(x)dydx

+ C
"

DΩ

|u(x) − u(y)||φ(x) − φ(y)|
|x − y|N+2s φp′−1(y)dydx

6 2C
"

DΩ

|u(x) − u(y)||φ(x) − φ(y)|
|x − y|N+2s φp′−1(x)dydx

6 C
∫

IRN

( ∫
IRN

|u(x) − u(y)|2

|x − y|N+2s dy
) 1

2
( ∫

IRN

|φ(x) − φ(y)|2

|x − y|N+2s dy
) 1

2

φp′−1(x)dx

6 C
∫
Ω

Ds(u)Ds(φ)φp′−1(x)dx.

Therefore, using Young’s inequality, we deduce that for any ε > 0, we get the existence of a positive
constant C(ε) such that∫

Ω

(−∆)su φp′(x)dx 6 ε

∫
Ω

(Ds(u))pφp′(x)dx + C(ε)
∫
Ω

(Ds(φ))p′(x)dx.

Choosing ε small enough and going back to (54), we get

(1 − ε)
∫

Ω

(Ds(u)(x))pφp′(x)dx + λ

∫
Ω

uφp′

|x|2s dx + ρ

∫
Ω

f (x)φq′(x)dx 6 C(ε)
∫
Ω

(Ds(φ)(x))p′dx. (55)
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Recall that u(x) > C|x|−µ(λ) in Br(0) ⊂⊂ Ω. Hence fixed φ ∈ C∞0 (B r
2
(0)), we have that

λC
∫

B r
2

(0)

φp′

|x|2s+µ(λ) dx 6 C(ε)
∫
Ω

(Ds(φ)(x))p′dx.

Replacing φ by |φ| in the above estimate, we deduce that

λC
∫

B r
2

(0)

|φ|p
′

|x|2s+µ(λ) dx 6 C(ε)
∫
Ω

(Ds(φ)(x))p′dx 6 C(ε)
∫

IRN
(Ds(φ)(x))p′dx. (56)

Since p > p+(λ, s), then sp′ < 2s + µ(λ). Recall that p′ > 2N
N+2s . Hence (56) is in contradiction with

the Hardy inequality in Proposition 2.3. Thus we conclude.
The case p > 2∗s > p+(λ, s). Notice that for all λ < ΛN,s, we have p+(λ, s) < 2 < 2∗s. By a continuity

argument we get the existence of λ1 < λ and p1 < 2∗s such that p1 > p+(λ1, s). Assume that u is a weak
solution to problem (52), then

(−∆)su > λ
u
|x|2s + (Ds(u))p1 −C(p1) in Br(0).

Notice that u(x) > C1|x|−µ(λ) in Br(0). Hence

(−∆)su > λ1
u
|x|2s + (Ds(u))p1 +

C
|x|2s+µ(λ) −C(p1) in Br(0).

Choosing r small, it holds that

(−∆)su > λ1
u
|x|2s + (Ds(u))p1 in Br(0).

Since p+(λ1, s) < p1 < 2N
N+2s , repeating the same argument as in the first case, we reach the same

contradiction. Hence we conclude. �

Taking advantage of the previous estimate, we can show that the problem (52) has no solution for
large value of ρ.

Theorem 5.2. Assume that f 	 0 and p > 1, then there exists ρ∗ > 0 such that problem (52) does not
have a positive solution for ρ > ρ∗.

Proof. Suppose that u is a nonnegative weak solution to problem (52). Let φ ∈ C∞0 (Ω) be a nonnegative
function such that ∫

Ω

f (x)φq′(x)dx > 0.

From estimate (55), fixing ε ∈ (0, 1), we obtain that

ρ

∫
Ω

f (x)φq′(x)dx 6 C(ε)
∫
Ω

(Ds(φ)(x))p′dx.
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In particular

ρ 6 inf
{φ∈C∞(Ω),φ	0}

C(ε)
∫
Ω

(Ds(φ))p′(x)dx

∫
Ω

f (x)φq′(x)dx
:= ρ∗,

and this is in contradiction with our initial assumption. �

Remarks 5.3. 1) As in Theorem 4.6, if 1 < p < p+(λ, s) and f 6
1
|x|2s+θ , with θ given as above, then

problem (39) has a supersolution w such that w,
w
|x|2s ,Ds(u) ∈ Lp(Ω).

2) Using the same compactness approach, we can also treat the case (F(u)(x)) = |∇su(x)|, where
∇su(x) is defined in (4).

5.1. Some new perspectives and an open problem

1) In the local case s = 1 or in the nonlocal case under the existence of a local gradient term, an
interesting maximum principle is obtained in the sense that if w ∈ W s,1

0 (Ω) is a subsolution to the
problem {

(−∆)sw = a(x)|∇w| in Ω,

w = 0 in (RN \Ω),
(57)

with a ∈ Lσ(Ω), σ > N
s , then w 6 0 in Ω (see for instance [14] and [11]). It would be very

interesting to get a similar result replacing the gradient term |∇w| by the nonlocal fractional
gradient |(−∆)

s
2 w|, namely for the problem{

(−∆)sw = a(x)|(−∆)
s
2 w| in Ω,

w = 0 in (RN \Ω).
(58)

2) Since non comparison principle is known for problem (58), then to get general existence result to
problem (1), under natural integrability conditions for f , it is necessary to prove a new class of
weighted CKN inequalities as in [3], using the norm ‖|(−∆)

s
2 u||x|β‖Lp(RN ). This will be considered

in a forthcoming work.
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