Given a spacetime background against which to observe it, a material system in motion can be modeled discretely, as a collection of particles called 'point masses', or continuously, as a dense and deformable object (a body, in the language of continuum mechanics) occupying a region consisting of 'material points'. In that the discrete and continuous descriptions have a common conceptual framework, the scale gap can be got over, provided a coarsening procedure is devised. Here we restrict attention to kinematics, and consider four such bottom-up procedures, two statistical and two deterministic, to derive a macroscopic velocity field from a microscopic one. We show that, to do this, introducing space and time mesoscopic scales is of the essence. We also show under what assumptions a macroscopic motion of the given material system can be associated with a microscopically-informed velocity field. Interestingly, no matter what coarsening procedure one chooses, the points of the resulting continuous description of the system's motion carry intrinsic physical information and may be persistently labelled: we propose to call them body points.
Citation: Antonio DiCarlo, Paolo Podio-Guidugli. From point particles to body points[J]. Mathematics in Engineering, 2022, 4(1): 1-29. doi: 10.3934/mine.2022007
Given a spacetime background against which to observe it, a material system in motion can be modeled discretely, as a collection of particles called 'point masses', or continuously, as a dense and deformable object (a body, in the language of continuum mechanics) occupying a region consisting of 'material points'. In that the discrete and continuous descriptions have a common conceptual framework, the scale gap can be got over, provided a coarsening procedure is devised. Here we restrict attention to kinematics, and consider four such bottom-up procedures, two statistical and two deterministic, to derive a macroscopic velocity field from a microscopic one. We show that, to do this, introducing space and time mesoscopic scales is of the essence. We also show under what assumptions a macroscopic motion of the given material system can be associated with a microscopically-informed velocity field. Interestingly, no matter what coarsening procedure one chooses, the points of the resulting continuous description of the system's motion carry intrinsic physical information and may be persistently labelled: we propose to call them body points.
[1] | S. R. de Groot, P. Mazur, Non-equilibrium thermodynamics, Amsterdam: North-Holland Publishing Company, 1962. |
[2] | A. Einstein, Physics and reality, J. Franklin I., 221 (1936), 349-382. |
[3] | D. Bernoulli, Hydrodynamica, sive de Viribus et Motibus Fluidorum Commentarii. Sectio decima: De Affectionibus atque Motibus Fluidorum Elasticorum, praecipue autem Aëris, Basel: J H Decker, 1738. |
[4] | R. Clausius, Über die mittlere Länge der Wege, welche bei Molekularbewegung gasförmiger Körper von den einzelnen Molekülen zurückgelegt werden, nebst einigen anderen Bemerkungen über die mechanische Wärmetheorie, Ann. Phys., 105 (1858), 239-258. |
[5] | L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, Sitz Ber Akad Wiss Wien (II), 66 (1872), 275-370. |
[6] | K. Huang, Statistical mechanics, 2 Eds., New York: John & Sons, 1987. |
[7] | H. C. Öttinger, Beyond equilibrium thermodynamics, Hoboken: John Wiley & Sons, 2005. |
[8] | Tec-Science, Mean free path & collision frequency. Tec-Science, 2019. Available from: https://www.tec-science.com/thermodynamics/kinetic-theory-of-gases/mean-free-path-collision-frequency/. |
[9] | S. Chapman, T. G. Cowling, The mathematical theory of non-uniform gases, Cambridge: Cambridge University Press, 1990. |
[10] | I. Müller, W. Weiss, Entropy and energy: a universal competition, Heidelberg: Springer, 2005. |
[11] | C. Cercignani, The Boltzmann equation and its applications, Heidelberg: Springer Science+Business Media, LLC, 1988. |
[12] | J. H. Irving, J. G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys., 18 (1950), 817-829. doi: 10.1063/1.1747782 |
[13] | J. G. Kirkwood, The statistical mechanical theory of transport processes. I. General theory, J. Chem. Phys., 14 (1946), 180-201. doi: 10.1063/1.1724117 |
[14] | W. Noll, Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der Statistischen Mechanik, Indiana U. Math. J., 4 (1955), 627-646. doi: 10.1512/iumj.1955.4.54022 |
[15] | R. B. Lehoucq, A. Von Lilienfeld-Toal, Translation of Walter Noll's "Derivation of the fundamental equations of continuum thermodynamics from statistical mechanics", J. Elast., 100 (2010), 5-24. doi: 10.1007/s10659-010-9246-9 |
[16] | A. I. Murdoch, D. Bedeaux, On the physical interpretation of fields in continuum mechanics, Int. J. Eng. Sci., 31 (1993), 1345-1373. doi: 10.1016/0020-7225(93)90002-C |
[17] | M. Pitteri, Continuum equations of balance in classical statistical mechanics, Arch. Ration. Mech. Anal., 94 (1986), 291-305. doi: 10.1007/BF00280907 |
[18] | M. Pitteri, Correction of an error in my paper: "Continuum equations of balance in classical statistical mechanics", Arch. Ration. Mech. Anal., 100 (1988), 315-316. doi: 10.1007/BF00251520 |
[19] | A. I. Murdoch, The motivation of continuum concepts and relations from discrete considerations, Q. J. Mech. Appl. Math., 36 (1983), 163-187. doi: 10.1093/qjmam/36.2.163 |
[20] | A. I. Murdoch, A corpuscular approach to continuum mechanics: basic considerations, Arch. Ration. Mech. Anal., 88 (1985), 291-321. doi: 10.1007/BF00250868 |
[21] | A. I. Murdoch, A. Morro, On the continuum theory of mixtures: motivation from discrete considerations, Int. J. Eng. Sci., 25 (1987), 9-25. doi: 10.1016/0020-7225(87)90131-5 |
[22] | A. I. Murdoch, On the relationship between balance relations for generalized continua and molecular behaviour, Int. J. Eng. Sci., 25 (1987), 883-914. doi: 10.1016/0020-7225(87)90123-6 |
[23] | A. I. Murdoch, The balance equations of continuum mechanics from a corpuscular view point, In: Continuum models of discrete systems, Rotterdam: Balkema, 1987, 35-38. |
[24] | A. I. Murdoch, On the physical interpretation of fluid interfacial concepts and fields, In: Modelling macroscopic phenomena at liquid boundaries, Wien: Springer-Verlag, 1991, 5-63. |
[25] | A. I. Murdoch, S. J. Kowalski, On fluid-fluid coupling within porous media: a mixture theoretic approach based upon molecular considerations, Transport Porous Med., 8 (1991), 47-70. |
[26] | R. J. Hardy, Formulas for determining local properties in molecular-dynamics simulations: shock waves, J. Chem. Phys., 76 (1982), 622-628. doi: 10.1063/1.442714 |
[27] | A. I. Murdoch, D. Bedeaux, Continuum equations of balance via weighted averages of microscopic quantities, P. R. Soc. Lond. A, 445 (1994), 157-179. doi: 10.1098/rspa.1994.0054 |
[28] | A. I. Murdoch, A scale-dependent model of the boundary of a solid body, Int. J. Eng. Sci., 33 (1995), 803-813. doi: 10.1016/0020-7225(94)00102-P |
[29] | A. I. Murdoch, On effecting averages and changes of scale via weighting functions, Arch. Mech., 50 (1998), 531-539. |
[30] | A. I. Murdoch, On time-dependent material systems, Int. J. Eng. Sci., 38 (2000), 429-452. doi: 10.1016/S0020-7225(99)00035-X |
[31] | A. I. Murdoch, On the microscopic interpretation of stress and couple stress, J. Elast., 71 (2003), 105-131. doi: 10.1023/B:ELAS.0000005552.04968.08 |
[32] | A. I. Murdoch, Some primitive concepts in continuum mechanics regarded in terms of objective space-time molecular averaging: the key rôle played by inertial observers, J. Elast., 84 (2006), 69-97. doi: 10.1007/s10659-005-9048-7 |
[33] | A. I. Murdoch, A critique of atomistic definitions of the stress tensor, J. Elast., 88 (2007), 113-140. doi: 10.1007/s10659-007-9121-5 |
[34] | A. I. Murdoch, On molecular modelling and continuum concepts, J. Elast., 100 (2010), 33-61. doi: 10.1007/s10659-010-9248-7 |
[35] | A. I. Murdoch, On the identification of continuum concepts and fields with molecular variables, Continuum Mech. Therm., 23 (2011), 1-26. doi: 10.1007/s00161-010-0146-9 |
[36] | A. I. Murdoch, Physical foundations of continuum mechanics, Cambridge: Cambridge University Press, 2012. |
[37] | A. Rahman, Correlation in the motion of atoms in liquid argon, Phys. Rev. A, 2 (1964), 405-411. |
[38] | D. Levesque, J. P. Hansen, The origin of computational statistical mechanics in France, Eur. Phys. J. H, 44 (2019), 37-46. doi: 10.1140/epjh/e2018-90041-y |
[39] | H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys., 72 (1980), 2384-2393. doi: 10.1063/1.439486 |
[40] | M. Parrinello, A. Rahman, Crystal structure and pair potentials: a molecular-dynamics study, Phys. Rev. Lett., 45 (1980), 1196-1199. doi: 10.1103/PhysRevLett.45.1196 |
[41] | M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys., 52 (1981), 7182-7190. doi: 10.1063/1.328693 |
[42] | M. Parrinello, A. Rahman, Strain fluctuations and elastic constants, J. Chem. Phys., 76 (1982), 2662-2666. doi: 10.1063/1.443248 |
[43] | J. R. Ray, Molecular dynamics equations of motion for systems varying in shape and size, J. Chem. Phys., 79 (1983), 5128-5130. doi: 10.1063/1.445636 |
[44] | J. R. Ray, A. Rahman, Statistical ensembles and molecular dynamics studies of anisotropic solids, J. Chem. Phys., 80 (1984), 4423-4428. doi: 10.1063/1.447221 |
[45] | C. L. Cleveland, New equations of motion for molecular dynamics systems that change shape, J. Chem. Phys., 89 (1988), 4987-4993. doi: 10.1063/1.455642 |
[46] | R. M. Wentzcovitch, Invariant molecular-dynamics approach to structural phase transitions, Phys. Rev. B, 44 (1991), 2358-2361. doi: 10.1103/PhysRevB.44.2358 |
[47] | G. Battimelli, G. Ciccotti, P. Greco, Computer meets theoretical physics: the new frontier of molecular simulation, Cham: Springer, 2020. |
[48] | P. Podio-Guidugli, On (Andersen-)Parrinello-Rahman molecular dynamics, the related metadynamics, and the use of the Cauchy-Born rule, J. Elast., 100 (2010), 145-153. doi: 10.1007/s10659-010-9250-0 |
[49] | A. DiCarlo, A major serendipitous contribution to continuum mechanics, Mech. Res. Commun., 93 (2018), 41-46. doi: 10.1016/j.mechrescom.2017.10.002 |
[50] | A. DiCarlo, Continuum mechanics as a computable coarse-grained picture of molecular dynamics, J. Elast., 135 (2019), 183-235. doi: 10.1007/s10659-019-09734-y |
[51] | T. Einwohner, B. J. Alder, Molecular dynamics. VI. Free-path distributions and collision rates for hard-sphere and square-well molecules, J. Chem. Phys., 49 (1968), 1458-1473. doi: 10.1063/1.1670266 |
[52] | P. Natha, S. Ganguly, J. Horbach, P. Sollich, S. Karmakara, S. Sengupta, On the existence of thermodynamically stable rigid solids, P. Natl. Acad. Sci. USA, 115 (2018), E4322-E4329. doi: 10.1073/pnas.1800837115 |
[53] | D. Capecchi, G. Ruta, P. Trovalusci, From classical to Voigt's molecular models in elasticity, Arch. Hist. Exact Sci., 64 (2010), 525-559. doi: 10.1007/s00407-010-0065-y |
[54] | R. Fitzpatrick, Euclid's elements of geometry, Morrisville, NC: Lulu Press, 2007. |
[55] | C. Truesdell, A first course in rational continuum mechanics, 2 Eds., San Diego: Academic Press, 1991. |
[56] | C. Truesdell, R. A. Toupin, The classical field theories, In: Handbuch der Physik, Berlin: Springer-Verlag, 1960,226-902. |
[57] | M. E. Gurtin, E. Fried, L. Anand, The mechanics and thermodynamics of continua, Cambridge: Cambridge University Press, 2010. |
[58] | E. Hellinger, Die allgemeinen Ansätze der Mechanik der Kontinua, In: Enzyclopädie der Mathematischen Wissenschaften, Leipzig: Teubner, 1914,602-694. |
[59] | G. Capriz, P. Podio-Guidugli, Whence the boundary conditions in modern continuum physics?, In: Whence the boundary conditions in modern continuum physics?, Roma: Accademia dei Lincei, 2004, 19-42. |