Research article Special Issues

Incorporating changeable attitudes toward vaccination into compartment models for infectious diseases


  • Received: 02 August 2024 Revised: 30 December 2024 Accepted: 03 January 2025 Published: 21 January 2025
  • We develop a mechanistic model that classifies individuals both in terms of epidemiological status (SIR) and vaccination attitude (Willing or Unwilling/Unable), with the goal of discovering how disease spread is influenced by changing opinions about vaccination. Analysis of the model identifies the existence and stability criteria for both disease-free and endemic disease equilibria. The analytical results, supported by numerical simulations, show that attitude changes induced by disease prevalence can destabilize endemic disease equilibria, resulting in limit cycles.

    Citation: Yi Jiang, Kristin M. Kurianski, Jane HyoJin Lee, Yanping Ma, Daniel Cicala, Glenn Ledder. Incorporating changeable attitudes toward vaccination into compartment models for infectious diseases[J]. Mathematical Biosciences and Engineering, 2025, 22(2): 260-289. doi: 10.3934/mbe.2025011

    Related Papers:

  • We develop a mechanistic model that classifies individuals both in terms of epidemiological status (SIR) and vaccination attitude (Willing or Unwilling/Unable), with the goal of discovering how disease spread is influenced by changing opinions about vaccination. Analysis of the model identifies the existence and stability criteria for both disease-free and endemic disease equilibria. The analytical results, supported by numerical simulations, show that attitude changes induced by disease prevalence can destabilize endemic disease equilibria, resulting in limit cycles.



    加载中


    [1] E. Dubé, C. Laberge, M. Guay, P. Bramadat, R. Roy, J. Bettinger, Vaccine hesitancy: an overview, Hum. Vaccines Immunother., 9 (2013), 1763–1773. https://doi.org/10.4161/hv.24657 doi: 10.4161/hv.24657
    [2] S. Funk, E. Gilad, C. Watkins, V. A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 6872–6877. https://doi.org/10.1073/pnas.0810762106 doi: 10.1073/pnas.0810762106
    [3] R. N. Ali, H. Rubin, S. Sarkar, Countering the potential re-emergence of a deadly infectious disease—information warfare, identifying strategic threats, launching countermeasures, PLoS One, 16 (2021), e0256014. https://doi.org/10.1371/journal.pone.0256014 doi: 10.1371/journal.pone.0256014
    [4] R. N. Ali, S. Sarkar, Impact of opinion dynamics on the public health damage inflicted by COVID-19 in the presence of societal heterogeneities, Front. Digital Health, 5 (2023), 1146178. https://doi.org/10.3389/fdgth.2023.1146178. doi: 10.3389/fdgth.2023.1146178
    [5] G. Albi, G. Bertaglia, W. Boscheri, G. Dimarco, L. Pareschi, G. Toscani, et al., Kinetic modelling of epidemic dynamics: social contacts, control with uncertain data, and multiscale spatial dynamics, in Predicting Pandemics in a Globally Connected World (eds. N. Bellomo, M. Chaplain), Springer, Berlin, 1 (2022), 43–108.
    [6] G. Bertaglia, W. Boscheri, G. Dimarco, L. Pareschi, Spatial spread of COVID-19 outbreak in Italy using multiscale kinetic transport equations with uncertainty, Math. Biosci. Eng., 18 (2021), 7028–7059. https://doi.org/10.3934/mbe.2021350 doi: 10.3934/mbe.2021350
    [7] R. Della Marca, N. Loy, M. Menale, Intransigent vs. volatile opinions in a kinetic epidemic model with imitation game dynamics, Math. Med. Biol., 40 (2022), 111–140. https://doi.org/10.1093/imammb/dqac018 doi: 10.1093/imammb/dqac018
    [8] G. Dimarco, B. Perthame, G. Toscani, M. Zanella, Kinetic models for epidemic dynamics with social heterogeneity, J. Math. Biol., 83 (2021), 4. https://doi.org/10.1007/s00285-021-01630-1 doi: 10.1007/s00285-021-01630-1
    [9] M. Zanella, Kinetic models for epidemic dynamics in the presence of opinion polarization, Bull. Math. Biol., 85 (2023), 36. https://doi.org/10.1007/s11538-023-01147-2 doi: 10.1007/s11538-023-01147-2
    [10] C. Bauch, Imitation dynamics predict vaccinating behaviour, Proc. R. Soc. B, 272 (2005), 1669–1675. https://doi.org/10.1098/rspb.2005.3153 doi: 10.1098/rspb.2005.3153
    [11] A. d'Onofrio, P. Manfredi, P. Poletti, The impact of vaccine side effects on the natural history of immunization programmes: An imitation-game approach, J. Theor. Biol., 273 (2011), 63–71. https://doi.org/10.1016/j.jtbi.2010.12.029 doi: 10.1016/j.jtbi.2010.12.029
    [12] A. d'Onofrio, P. Manfredi, P. Poletti, The interplay of public intervention and private choices in determining the outcome of vaccination programmes, PLoS One, 7 (2012), e45653, https://doi.org/10.1371/journal.pone.0045653 doi: 10.1371/journal.pone.0045653
    [13] A. d'Onofrio, P. Manfredi, E. Salinelli, Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theor. Popul. Biol., 71 (2007), 301–317. https://doi.org/10.1016/j.tpb.2007.01.001 doi: 10.1016/j.tpb.2007.01.001
    [14] B. Buonomo, A. d'Onofrio, D. Lacitignola, Modeling of pseudo-rational exemption to vaccination for SEIR diseases, J. Math. Anal. Appl., 404 (2013), 385–398. https://doi.org/10.1016/j.jmaa.2013.02.063 doi: 10.1016/j.jmaa.2013.02.063
    [15] B. Buonomo, R. Della Marca, A. d'Onofrio, M. Groppi, A behavioural modelling approach to assess the impact of COVID-19 vaccine hesitancy, J. Theor. Biol., 534, (2022), 110973. https://doi.org/10.1016/j.jtbi.2021.110973 doi: 10.1016/j.jtbi.2021.110973
    [16] C. Zuo, Y. Ling, F. Zhu, X. Ma, G. Xiang, Exploring epidemic voluntary vaccinating behavior based on information-driven decisions and benefit-cost analysis, Appl. Math. Comput., 447 (2023), 127905. https://doi.org/10.1016/j.amc.2023.127905 doi: 10.1016/j.amc.2023.127905
    [17] W. Xuan, R. Ren, P. E. Paré, M. Ye, S. Ruf, J. Liu, On a network SIS model with opinion dynamics, IFAC-PapersOnLine, 53 (2020), 2582–2587. https://doi.org/10.1016/j.ifacol.2020.12.305. doi: 10.1016/j.ifacol.2020.12.305
    [18] F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical Models in Epidemiology, Springer, 2019. https://doi.org/10.1007/978-1-4939-9828-9
    [19] L. M. Cai, Z. Li, X. Song, Global analysis of an epidemic model with vaccination, J. Appl. Math. Comput., 57 (2018), 605–628. https://doi.org/10.1007/s12190-017-1124-1 doi: 10.1007/s12190-017-1124-1
    [20] M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, 2015. https://doi.org/10.1007/978-1-4899-7612-3.
    [21] G. Ledder, Incorporating mass vaccination into compartment models for infectious diseases, Math. Biosci. Eng., 19 (2022), 9457–9480. https://doi.org/10.3934/mbe.2022440 doi: 10.3934/mbe.2022440
    [22] G. Ledder, Using asymptotics for efficient stability determination in epidemiological models, preprint, arXiv: 2310.19171.
    [23] R. Ke, E. Romero-Severson, S. Sanche, N. Hengartner, Estimating the reproductive number $ \mathcal{R}_0$ of SARS-CoV-2 in the United States and eight european countries and implications for vaccination, J. Theor. Biol., 517 (2021), 110621. https://doi.org/10.1016/j.jtbi.2021.110621 doi: 10.1016/j.jtbi.2021.110621
    [24] M. D. Morris, Factorial sampling plans for preliminary computational experiments, Technometrics, 33 (1991), 161–174. https://doi.org/10.1080/00401706.1991.10484804 doi: 10.1080/00401706.1991.10484804
    [25] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2023.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(258) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog