We develop a mechanistic model that classifies individuals both in terms of epidemiological status (SIR) and vaccination attitude (Willing or Unwilling/Unable), with the goal of discovering how disease spread is influenced by changing opinions about vaccination. Analysis of the model identifies the existence and stability criteria for both disease-free and endemic disease equilibria. The analytical results, supported by numerical simulations, show that attitude changes induced by disease prevalence can destabilize endemic disease equilibria, resulting in limit cycles.
Citation: Yi Jiang, Kristin M. Kurianski, Jane HyoJin Lee, Yanping Ma, Daniel Cicala, Glenn Ledder. Incorporating changeable attitudes toward vaccination into compartment models for infectious diseases[J]. Mathematical Biosciences and Engineering, 2025, 22(2): 260-289. doi: 10.3934/mbe.2025011
We develop a mechanistic model that classifies individuals both in terms of epidemiological status (SIR) and vaccination attitude (Willing or Unwilling/Unable), with the goal of discovering how disease spread is influenced by changing opinions about vaccination. Analysis of the model identifies the existence and stability criteria for both disease-free and endemic disease equilibria. The analytical results, supported by numerical simulations, show that attitude changes induced by disease prevalence can destabilize endemic disease equilibria, resulting in limit cycles.
[1] |
E. Dubé, C. Laberge, M. Guay, P. Bramadat, R. Roy, J. Bettinger, Vaccine hesitancy: an overview, Hum. Vaccines Immunother., 9 (2013), 1763–1773. https://doi.org/10.4161/hv.24657 doi: 10.4161/hv.24657
![]() |
[2] |
S. Funk, E. Gilad, C. Watkins, V. A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 6872–6877. https://doi.org/10.1073/pnas.0810762106 doi: 10.1073/pnas.0810762106
![]() |
[3] |
R. N. Ali, H. Rubin, S. Sarkar, Countering the potential re-emergence of a deadly infectious disease—information warfare, identifying strategic threats, launching countermeasures, PLoS One, 16 (2021), e0256014. https://doi.org/10.1371/journal.pone.0256014 doi: 10.1371/journal.pone.0256014
![]() |
[4] |
R. N. Ali, S. Sarkar, Impact of opinion dynamics on the public health damage inflicted by COVID-19 in the presence of societal heterogeneities, Front. Digital Health, 5 (2023), 1146178. https://doi.org/10.3389/fdgth.2023.1146178. doi: 10.3389/fdgth.2023.1146178
![]() |
[5] | G. Albi, G. Bertaglia, W. Boscheri, G. Dimarco, L. Pareschi, G. Toscani, et al., Kinetic modelling of epidemic dynamics: social contacts, control with uncertain data, and multiscale spatial dynamics, in Predicting Pandemics in a Globally Connected World (eds. N. Bellomo, M. Chaplain), Springer, Berlin, 1 (2022), 43–108. |
[6] |
G. Bertaglia, W. Boscheri, G. Dimarco, L. Pareschi, Spatial spread of COVID-19 outbreak in Italy using multiscale kinetic transport equations with uncertainty, Math. Biosci. Eng., 18 (2021), 7028–7059. https://doi.org/10.3934/mbe.2021350 doi: 10.3934/mbe.2021350
![]() |
[7] |
R. Della Marca, N. Loy, M. Menale, Intransigent vs. volatile opinions in a kinetic epidemic model with imitation game dynamics, Math. Med. Biol., 40 (2022), 111–140. https://doi.org/10.1093/imammb/dqac018 doi: 10.1093/imammb/dqac018
![]() |
[8] |
G. Dimarco, B. Perthame, G. Toscani, M. Zanella, Kinetic models for epidemic dynamics with social heterogeneity, J. Math. Biol., 83 (2021), 4. https://doi.org/10.1007/s00285-021-01630-1 doi: 10.1007/s00285-021-01630-1
![]() |
[9] |
M. Zanella, Kinetic models for epidemic dynamics in the presence of opinion polarization, Bull. Math. Biol., 85 (2023), 36. https://doi.org/10.1007/s11538-023-01147-2 doi: 10.1007/s11538-023-01147-2
![]() |
[10] |
C. Bauch, Imitation dynamics predict vaccinating behaviour, Proc. R. Soc. B, 272 (2005), 1669–1675. https://doi.org/10.1098/rspb.2005.3153 doi: 10.1098/rspb.2005.3153
![]() |
[11] |
A. d'Onofrio, P. Manfredi, P. Poletti, The impact of vaccine side effects on the natural history of immunization programmes: An imitation-game approach, J. Theor. Biol., 273 (2011), 63–71. https://doi.org/10.1016/j.jtbi.2010.12.029 doi: 10.1016/j.jtbi.2010.12.029
![]() |
[12] |
A. d'Onofrio, P. Manfredi, P. Poletti, The interplay of public intervention and private choices in determining the outcome of vaccination programmes, PLoS One, 7 (2012), e45653, https://doi.org/10.1371/journal.pone.0045653 doi: 10.1371/journal.pone.0045653
![]() |
[13] |
A. d'Onofrio, P. Manfredi, E. Salinelli, Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theor. Popul. Biol., 71 (2007), 301–317. https://doi.org/10.1016/j.tpb.2007.01.001 doi: 10.1016/j.tpb.2007.01.001
![]() |
[14] |
B. Buonomo, A. d'Onofrio, D. Lacitignola, Modeling of pseudo-rational exemption to vaccination for SEIR diseases, J. Math. Anal. Appl., 404 (2013), 385–398. https://doi.org/10.1016/j.jmaa.2013.02.063 doi: 10.1016/j.jmaa.2013.02.063
![]() |
[15] |
B. Buonomo, R. Della Marca, A. d'Onofrio, M. Groppi, A behavioural modelling approach to assess the impact of COVID-19 vaccine hesitancy, J. Theor. Biol., 534, (2022), 110973. https://doi.org/10.1016/j.jtbi.2021.110973 doi: 10.1016/j.jtbi.2021.110973
![]() |
[16] |
C. Zuo, Y. Ling, F. Zhu, X. Ma, G. Xiang, Exploring epidemic voluntary vaccinating behavior based on information-driven decisions and benefit-cost analysis, Appl. Math. Comput., 447 (2023), 127905. https://doi.org/10.1016/j.amc.2023.127905 doi: 10.1016/j.amc.2023.127905
![]() |
[17] |
W. Xuan, R. Ren, P. E. Paré, M. Ye, S. Ruf, J. Liu, On a network SIS model with opinion dynamics, IFAC-PapersOnLine, 53 (2020), 2582–2587. https://doi.org/10.1016/j.ifacol.2020.12.305. doi: 10.1016/j.ifacol.2020.12.305
![]() |
[18] | F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical Models in Epidemiology, Springer, 2019. https://doi.org/10.1007/978-1-4939-9828-9 |
[19] |
L. M. Cai, Z. Li, X. Song, Global analysis of an epidemic model with vaccination, J. Appl. Math. Comput., 57 (2018), 605–628. https://doi.org/10.1007/s12190-017-1124-1 doi: 10.1007/s12190-017-1124-1
![]() |
[20] | M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, 2015. https://doi.org/10.1007/978-1-4899-7612-3. |
[21] |
G. Ledder, Incorporating mass vaccination into compartment models for infectious diseases, Math. Biosci. Eng., 19 (2022), 9457–9480. https://doi.org/10.3934/mbe.2022440 doi: 10.3934/mbe.2022440
![]() |
[22] | G. Ledder, Using asymptotics for efficient stability determination in epidemiological models, preprint, arXiv: 2310.19171. |
[23] |
R. Ke, E. Romero-Severson, S. Sanche, N. Hengartner, Estimating the reproductive number $ \mathcal{R}_0$ of SARS-CoV-2 in the United States and eight european countries and implications for vaccination, J. Theor. Biol., 517 (2021), 110621. https://doi.org/10.1016/j.jtbi.2021.110621 doi: 10.1016/j.jtbi.2021.110621
![]() |
[24] |
M. D. Morris, Factorial sampling plans for preliminary computational experiments, Technometrics, 33 (1991), 161–174. https://doi.org/10.1080/00401706.1991.10484804 doi: 10.1080/00401706.1991.10484804
![]() |
[25] | C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2023. |