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Abstract: We develop a mechanistic model that classifies individuals both in terms of epidemiological
status (SIR) and vaccination attitude (Willing or Unwilling/Unable), with the goal of discovering how
disease spread is influenced by changing opinions about vaccination. Analysis of the model identifies
the existence and stability criteria for both disease-free and endemic disease equilibria. The analytical
results, supported by numerical simulations, show that attitude changes induced by disease prevalence
can destabilize endemic disease equilibria, resulting in limit cycles.
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1. Introduction

Formulating public health policies toward infectious diseases requires the capability to predict how
the infectious population will change over time under various scenarios. Accurate modeling of the
effects of public health measures is essential. During the epidemic phase of a novel infectious disease,
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public health measures typically include basic precautions such as quarantine, masking, and isolation.
These tools become less important after a disease enters the endemic phase, where a large part of
the population is no longer susceptible and infectious populations are a small fraction of the total
population. From then on, vaccination becomes the most important public health tool, particularly for
diseases where immunity wanes over time, provided a vaccine is available.

Compliance with public health measures is not compulsory in most societies; hence, noncompliance
can be a significant factor that reduces the effectiveness of those measures. In 2013, Dubé et al. [1]
used sociological data to study this phenomenon in regard to the increased hesitancy at that time among
parents toward vaccination for the standard childhood diseases. The authors quantified individual
attitudes toward vaccination on a continuum from outright refusal to full acceptance. An individual’s
location within this continuum is informed primarily by their perception of the risk of the disease (and
the vaccine) and the perceived importance of vaccination in mitigating that risk. These perceptions are
based on the individual’s background knowledge, acquired information (accurate or not), and cultural
norms. Acquired information can come from public health announcements, recommendations of health
professionals, communication with acquaintances, journalists, and social media posts.

Dubé’s findings indicate a need for mathematical modelers to incorporate opinion dynamics into
epidemiology models. An early paper on this topic examines the impact of human behavior on a disease
outbreak for which control is limited to the basic mitigation procedures of quarantine and isolation [2].
This paper does not consider these behaviors to be subject to hesitancy, but assumes that the primary
driver of opinion is awareness of the disease outbreak. The model categorizes individuals into groups
based on different awareness levels. An individual’s awareness level can increase through information
transmission via personal communication and fade over time through a natural decay process.

Other approaches to combined epidemiological and opinion dynamics have appeared since the
COVID-19 pandemic highlighted the extent of vaccine noncompliance. In recounting these devel-
opments, we consider only those papers whose models include vaccination. Ali et al. [3] use an
epidemiological model for smallpox as part of a bioterrorism scenario. The vaccination component
categorizes people as cooperative or non-cooperative. Opinion dynamics are driven by encounters
between individuals, with no consideration of public health or social media communication, and are
assumed to result in increased cooperation. A related paper [4] couples a COVID-19 model with an
opinion dynamics model similar to that of Ali et al. [3], but with an additional mechanism for the in-
fluence of public communications. The authors assume that interpersonal and social communications
increase cooperation.

Another trend is to use an opinion dynamics model based on statistical physics; this formulation
treats opinion as a continuous variable that changes through random interactions with other individuals
and stochastic variation [5–9]. With no processes involving public communication or epidemiological
conditions, the result is a model that is mechanistically correct for the random drift process but neglects
processes that are likely to be much more important than random drift. Model outcomes are largely
determined by the initial distribution of opinions.

The papers cited above do not include a mechanism for opinions to respond to the epidemiological
state, which we consider the most quantifiable driver of opinion change. A seminal paper by Bauch [10]
does include such a mechanism by assuming that the fraction of individuals who get vaccinated in a
SIR model where vaccination confers immunity is subject to a dynamic game theoretic model based
on the idea that individuals determine whether to accept vaccination by making a rational choice com-
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paring the perceived benefits of vaccination and non-vaccination. Individuals change their status when
information, tracked using an information index, is exchanged with other individuals, with an overall
increase in vaccination behavior when disease prevalence exceeds a certain threshold. d’Onofrio et
al. [11] extend Bauch’s model with more general functions for the status change dynamics, as well
as functions with a time delay. In a similar model [12], the same authors add public information as a
contributor to the information index.

Models developed by d’Onofrio et al. [13] and Buonomo et al. [14] also use an information index,
but have it directly impacting the vaccination rate rather than changing rates through individuals inter-
acting. d’Onofrio et al. incorporate the information index into a SIR model and Buonomo et al. do so
in an SEIR model, both assuming that vaccination confers lifelong immunity.

The onset of COVID-19 has influenced the direction of mathematical epidemiology in numerous
ways, including the heightened importance of individual attitudes toward vaccination and the phenom-
ena of imperfect vaccination, in which a vaccine decreases the rate of transmission without conferring
immunity. Buonomo et al. [15] incorporate an information index model into a COVID-19 epidemio-
logical model with imperfect vaccination. The information index changes through a process of linear
decay toward an equilibrium proportional to the infectious population, and the vaccination rate in-
creases monotonically with the current value of the index. The model is shown to have a unique
endemic disease equilibrium when the disease-free equilibrium is unstable, but general stability results
are not established. In another recent paper, Zuo et al. [16] return to the game-theoretic approach of
Bauch et al. [10] and d’Onofrio et al. [11], but with a base epidemiological model that assumes imper-
fect vaccination. There is no existence or stability analysis for endemic disease equilibria performed
in that paper.

Xuan et al. [17] also feature vaccination behavior dependent on disease prevalence. The authors use
an agent-based SIS model with each individual’s avoidance behavior based on their opinion attribute.
Changes in this attribute over time are based in part on infection probability and in part on a process of
consensus-building among agents connected in the social network. Because the disease state is such an
obvious driver of attitude toward vaccination, it is worthwhile to consider models in which this single
driver of opinion dynamics is added to a relatively simple epidemiological model.

All of the papers cited above incorporate vaccination into the model as a single-phase spontaneous
transition from a susceptible class to a recovered class [18–20]. This type of model implicitly assumes
that everyone will be vaccinated unless they are infected first and that there are no limits on vaccine
supply and distribution. In practice, however, a significant fraction of people do not get vaccinated for
a variety of reasons. Some are unable to be vaccinated because of other health conditions, some are
committed opponents of vaccination, some are hesitant because of concerns about safety, efficacy, or
necessity, and others are just insufficiently motivated. This phenomena is sufficiently common that any
model that incorporates vaccination ought to account for it.

Ledder [21] addresses these issues by proposing realistic models for vaccine supply and distribution
in the epidemic phase and by partitioning the susceptible class into Pre-vaccinated and Unprotected
subclasses, the former consisting of people who are willing to be vaccinated but are waiting for vaccine
availability, and the latter for people who are either unwilling or unable to be vaccinated. In the
epidemic phase, when vaccines may not yet be readily available, the presence of a subclass of the
unwilling and unable has only minimal impact due to the existence of a pool of willing individuals
awaiting vaccination. However, the existence of an unprotected subclass is an important driver of the
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long-term disease dynamics.
Ledder’s models [21] assume that the fraction of unwilling/unable individuals is fixed over time.

In reality, attitudes towards vaccination and other public health measures may change in response to
varying circumstances. In this paper, we aim to develop a model that addresses vaccine hesitancy by
partitioning the population into Willing and Unwilling/Unable subclasses, similar to the approach in
Ledder [21]; however, we also include processes whereby individuals can move from one of these
subclasses to the other due to a change in opinion.

Our goal in this paper is not to create a realistic model for any particular disease, but to create a
model that incorporates the most essential features of disease dynamics along with vaccination, grad-
ual loss of immunity, and subdivision into Willing and Unwilling/Unable subclasses with transition
dynamics based on disease prevalence. To that end, we begin with an SIR model in which each of the
three classes is divided into Willing and Unwilling/Unable subclasses. We allow the parameters that
control the attitude-change processes to be nonlinear functions of disease prevalence, giving specific
forms for these functions only when needed for examples. We will see that the nonlinearity in the
functions that determine the attitude-change rate parameters can be sufficient to yield instability.

For simplicity, we assume perfect vaccination in the sense that vaccination confers the same degree
of immunity as recovery and that individuals in the Willing Recovered subclass receive vaccination
updates sufficient to maintain immunity. In addition to omitting more subtle vaccination effects such
as partial effectiveness or partial immunity, we omit disease-induced mortality. While these features
would broaden the applicability of the results, they would also make the model more complicated
without changing the qualitative behavior.

We begin in Section 2 with the development of the model and its reformulation with dimensionless
variables. Section 3 presents the analytical results for the model. Section 4 contains numerical simula-
tions to illustrate the results and a global sensitivity analysis showing the effect of relevant parameters
on long-term prevalence. Finally, we conclude with a discussion of the results and their practical
implications in Section 5.

2. Model development

We begin by presenting an initial model, which we then scale to provide a more convenient version
for analysis. The model also requires two functions to describe how the stance towards vaccination
depends on the infectious population; some example functions are given at the end of this section.
Notation for the model is summarized in Tables 1 and 2. Note that all parameters must be nonnegative
for the model to represent an epidemiological scenario.

2.1. The initial model

Our model extends the PUIRU model presented by Ledder [21] by incorporating additional pro-
cesses that allow individuals to change their status from Willing to Unwilling/Unable and vice versa.
Figure 1 shows a schematic diagram of our model, with definitions of relevant variables and parameters
in Table 1. The model is based on the following assumptions:

1) The population can be divided into compartments representing the Susceptible (S ), Infectious (I),
and Recovered (R) population fractions. Each is divided into two subgroups: a ‘Willing’ subclass
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of people who get a vaccination when it is recommended (subscript W), and a complementary
‘Unwilling/Unable’ subclass for those who are either unwilling or unable to be vaccinated (subscript
U).

2) Susceptible individuals become infectious through contact with infectious individuals with rate con-
stant β.

3) Infectious individuals recover through a single-phase transition process with rate constant γ.

4) Individuals in the Willing Susceptible subclass (S W) move directly to the corresponding Recovered
subclass (RW) upon vaccination, with rate constant ϕ.

5) Individuals can change from Willing to Unwilling/Unable subclasses and vice versa with rate coef-
ficients that are functions of the total Infectious population: Ψ(I) and Ω(I), respectively.

6) Unwilling/Unable Recovered individuals (RU) lose immunity over time, with rate constant θ.

7) Willing Recovered individuals (RW) remain in that subclass because they receive booster vaccination
doses as needed, except for those who switch from Willing to Unwilling/Unable at rate Ψ(I)RW .

8) All newborns are assumed to be Unwilling/Unable Susceptible.

9) There is no mortality caused by the disease, either by direct fatality or indirect reduction of life
expectancy. The natural birth and death rates are assumed to be equal, and the initial population
size is set to ensure that the total population remains constant at a normalized value of 1.

βS W I γIW

µS W µIW µRW

ϕS W

µ

βS U I γIU

µS U µIU µRU

θRU

ΩS UΨS W ΩIU ΨIW ΩRU ΨRW

S U IU RU

S W IW RW

Figure 1. Schematic of model incorporating Willing and Unwilling/Unable subclasses with
transition processes. Relevant variables and parameters are defined in Table 1.

We call particular attention to Assumption 5. By making the rate coefficients functions of the
system’s state, we introduce additional nonlinearity, which could produce features not observed in
standard epidemic models where nonlinearity is limited to the infection process. This assumption adds
a degree of additional realism to the model. The patterns of behavior seen in response to COVID-19
show that a lessening of the disease burden induces people to allow their immunity to lapse.
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Note that individuals who change from Unwilling Recovered to Willing Recovered could in theory
lose immunity before they receive their first vaccination. We neglect this possibility because vaccina-
tion occurs on a time scale of days to weeks, while loss of immunity occurs on a much slower time
scale of months to years.

Table 1. Definitions and dimensions of variables and parameters in the original model. (The
dimension column uses “1” for dimensionless quantities and T for time.)

Quantity Dimension Definition
IW 1 Willing Infectious population fraction
IU 1 Unwilling/Unable Infectious population fraction
I = IW+IU 1 Total Infectious population fraction
RW 1 Willing Recovered population fraction
RU 1 Unwilling/Unable Recovered population fraction
R = RW+RU 1 Total Recovered population fraction
S W 1 Willing Susceptible population fraction
S U 1 Unwilling/Unable Susceptible population fraction
S = S W+S U 1 Total Susceptible population fraction
W = S W+IW+RW 1 Total Willing population fraction
t T Time
β T −1 Rate coefficient for infection
γ T −1 Rate coefficient for recovery
θ T −1 Rate coefficient for immunity loss
µ T −1 Rate coefficient for birth and death
ϕ T −1 Rate coefficient for vaccination
Ψ(I) T −1 Rate coefficient for Willing-to-Unwilling/Unable transition
Ω(I) T −1 Rate coefficient for Unwilling/Unable-to-Willing transition

While it seems natural to write differential equations for each of the compartments in the diagram,
it is more convenient to replace the differential equations for S U , IU , RW , and RU with equations for S ,
I, R, and W (the total population fraction in the Willing subclasses), resulting in the model

dS
dt
= µ − µS − ϕS W + θRU − βS I,

dI
dt
= −(µ + γ)I + βS I,

dR
dt
= γI − µR + ϕS W − θRU ,

dW
dt
= −µW + (1 −W)Ω − ΨW,

dS W

dt
= −(µ + ϕ)S W + ΩS U − ΨS W − βS W I,

dIW

dt
= −(µ + γ)IW + ΩIU − ΨIW + βS W I,

(2.1)
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where S U = S − S W , IU = I − IW , and RU = (1 − W) − (S U + IU). Note that the population size is
conserved with a total population of 1; hence, the population fraction of Unwilling/Unable individuals
appears in the W equation as 1 −W.

2.2. The reformulated model

Stability analysis is easier when models are scaled appropriately. The dependent variables are
already scaled as fractions of the total population. We introduce a dimensionless time T using the
population time scale 1/µ, that is T = µt; hence,

d
dt
= µ

d
dT

.

We also introduce dimensionless parameters

ϵ =
µ

γ + µ
, R0 =

β

γ + µ
, v =

ϕ

γ + µ
, h =

θ

µ
, ω =

Ω

µ
, ψ =

Ψ

µ
(2.2)

and use ′ to denote the derivative with respect to T . The intuitive meanings of all newly-defined
notations here are included in Table 2. The parameter definitions deserve a comment. The parameter ϵ
is the ratio of the demographic rate constant µ to the disease rate constant γ + µ; hence, this parameter
is very small and can be used for asymptotic approximation. The infection and vaccination processes
are assumed to occur on the disease time scale; hence the rate constants β and ϕ are scaled by γ + µ.
The loss of immunity and change of attitude processes are assumed to occur on the demographic scale,
so their rate constants are scaled by µ.

Note that the R equation can be eliminated using S + I + R = 1, and therefore it is decoupled from
the system. We reorder the equations to facilitate the use of the next generation matrix method for the
calculation of the basic reproduction number in the presence of vaccination, Rv. With these changes,
the model becomes

I′ = ϵ−1(R0S − 1)I,
I′W = ϵ

−1(R0S W I − IW) + (I − IW)ω − ψIW ,

S ′ = 1 − S − ϵ−1vS W + hRU − ϵ
−1R0S I,

S ′W = −ϵ
−1vS W − (1 + ψ)S W + (S − S W)ω − ϵ−1R0S W I,

W ′ = −W + (1 −W)ω − ψW,

RU = (1 −W) − (S − S W) − (I − IW).

(2.3)

The system (2.3) incorporates the naive assumption that all dependent variables are O(1) quantities
on the time scale of long-term population dynamics. The resulting system is not correctly scaled
for analysis of long-term behavior, however, as the S W equation would then imply S W = O(ϵ) at
equilibrium, contradicting the inherent assumption that all variables are O(1). With S W = O(ϵ), the
IW equation and S equation then show that IW and I are also O(ϵ). The solution is to build in the
assumption that these three populations are in fact O(ϵ) on this time scale [22]. As noted above, ϵ
represents the ratio of expected time spent in the infectious compartment to mean lifetime. Assuming
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infections last on the order of weeks and a lifetime is roughly 80 years, this parameter is indeed small.
We therefore replace I, IW , and S W by

I = ϵY, IW = ϵZ, S W = ϵP. (2.4)

Table 2. Rescaled model parameters and variables (all dimensionless and non-negative).

Quantity Definition

I, S , W See Table 1
a Exponential parameter in status-change functions ω1, ω2

d Scaling parameter in status-change function ω2

h = θ/µ Expected number of immunity losses in a lifespan
P = ϵ−1S W Rescaled Willing Susceptible population fraction
T = µt Rescaled time
v = ϕ/(γ + µ) Ratio of expected infectious duration to expected time for the initial vaccination
Y = ϵ−1I Rescaled total Infectious population fraction
Z = ϵ−1IW Rescaled Willing Infectious population fraction
R0 = β/(γ + µ) Basic reproduction number in absence of vaccination
ϵ = µ/(γ + µ) Ratio of expected infectious duration to expected lifespan
ω(Y) = Ω/µ Rescaled rate coefficient for Unwilling/Unable-to-Willing transition
ψ(Y) = Ψ/µ Rescaled rate coefficient for Willing-to-Unwilling/Unable transition

At the same time, we introduce some lumped quantities that are convenient now or will become so
later:

1) As needed, a bar over the top of a quantity indicates that quantity plus 1; for example, Σ̄ = Σ + 1.

2) To simplify the equilibrium expressions, we remove a factor of R0 from Y , Z, and P and redefine
these variables accordingly:

y = R0Y, z = R0Z, p = R0P. (2.5)

3) Various sums of parameters arise in the analysis:

Σ = ψ + ω, η = Σ̄ + h, ρ = Σ̄ + R0h. (2.6)

With these changes, we obtain the final form of the system:

ϵY ′ = (R0S − 1)Y,
ϵZ′ = ϵR0PY − Z + ϵω(Y)Y − ϵΣ(Y)Z,
S ′ = h̄ − h̄S − (v − ϵh)P − hW − R0S Y − ϵh(Y − Z),
ϵP′ = ω(Y)S − (v + ϵΣ̄(Y))P − ϵR0PY,

W ′ = ω(Y) − Σ̄(Y)W.

(2.7)
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Table 3. Modified and grouped variables and parameters used in analysis.

Variable Definition

Σ = ψ + ω Expected number of opinion changes in lifespan

h̄ = h + 1 Parameters with bars indicate addition by 1
y = R0Y, p = R0P, . . . Lower case model variables corresponding to multiplication of

upper case variables by R0

Rv Basic reproduction number in the presence of vaccination
r = R0 − 1 Parameter grouping defined in Proposition 1
x = y + h̄ Parameter grouping defined in (B.2)
η = Σ̄ + h Parameter grouping defined in (2.6)
ρ = Σ̄ + R0h Parameter grouping defined in (2.6)

Because the equations are now properly scaled, we can identify O(ϵ) terms as being relatively
small compared to O(1) terms. These O(ϵ) terms can be considered as small perturbations for a regular
perturbation analysis, but here we consider only the leading order terms. This decouples the Z equation
in the system (2.7), leaving a four-component system that will be used for analysis:

ϵY ′ = (R0S − 1)Y,
S ′ = h̄ − h̄S − vP − hW − R0S Y,

ϵP′ = ω(Y)S − vP,

W ′ = ω(Y) − Σ̄(Y)W.

(2.8)

2.3. The status-change functions ω and ψ

Regardless of whether the scaled Unwilling/Unable-to-Willing transition rate coefficient ω is in-
creasing or decreasing, it seems reasonable that the scaled Willing-to-Unwilling/Unable transition rate
coefficient ψ should be moving in the opposite direction. While one of these functions might be more
sensitive to the infectious population fraction than the other, there is no way to know which. As a
preliminary approximation, it is reasonable to assume that the sum Σ = ω + ψ remains approximately
constant. To keep the model as simple as possible for the elucidation of general properties, we will
think of Σ as constant whenever we are ready to consider specific examples, specifying ω and replacing
ψ by Σ − ω.

We can identify two different classes of plausible status-change functions ω, given the assumption
of constant Σ. When infection rates are low, ω should be increasing with Y . This is something that
typically occurs with diseases; a lower incidence leads to less strenuous vaccination campaigns, as is
currently done with some vaccinations administered only to people traveling to a country with known
cases. As the infection rate increases, two types of behavior seem possible. Healthcare authorities will
undoubtedly increase the emphasis they put on the need for vaccination, and an informed public that
is trusting of healthcare authorities will be more likely to be vaccinated. On the other hand, public
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skepticism could lead to a situation where some people interpret higher disease burdens as vaccine
failures and become less likely to be vaccinated. Thus, we consider functions that are monotone-
increasing and functions that increase to a local maximum before declining.

To study general behavior, the specific families of functions used for the monotone and non-
monotone cases can be chosen for mathematical convenience. In the sequel, we will use

ω1(Y;Σ, a) = Σ
(
1 − e−aY

)
, a > 0, (2.9)

as a family of monotonic functions and

ω2(Y;Σ, a, d) = ΣdaYe1−aY , a > 0, 0 < d < 1, (2.10)

as a family of non-monotonic functions. The latter family has the simple property that it vanishes to 0
as Y → ∞; this seems reasonable, as having nearly everyone infected would likely make everyone lose
confidence in the vaccine.

2.4. Choice of parameter values

Values for parameters are problematic when a model is intended to be general rather than to match
a specific disease. It is best to defer choosing values until absolutely necessary. In this case, we can
obtain analytical results using only the approximation ϵ → 0, but parameter values are still required
for visualization of results.

All of the dimensionless parameters depend on the principal fast and slow time scales. The value
1/µ is the mean lifespan of the population, which we can safely take to be on the order of 80 years.
The value 1/(γ + µ) ≈ 1/γ is the mean disease duration. While this can vary among diseases, it is
reasonable to take 2 weeks as a typical value. With these choices, we have ϵ = 1/2000, which means
that results for realistic ϵ should be well approximated by results for ϵ → 0.

We consider a reasonable range of values for R0 to be from 2 to 10, with 10 a rough estimate for
measles, and possibly also for current variants of COVID-19.1 We use the intermediate value R0 = 4
for simulations.

The parameter h represents the expected number of times immunity is lost during a normal lifespan.
Actual values of this parameter can range from 0 for diseases like measles, where immunity is generally
permanent, to higher values for diseases like the flu, where immunity wanes quickly. We will generally
use h = 0 and h = 10 (mean immunity of 8 years) as representative of diseases with long and short
immunity durations, respectively. In practice, larger values of h could be justified for diseases like
COVID-19.

While the parameter Σ = ω + ψ is variable in the general case, we consider it reasonable to treat
it in practice as a fixed measure of community opinion flexibility. Individuals in a population vary
in their willingness to reconsider their opinions, but we can take Σ as a mean rate in the same way
that other parameters are mean rates for incubation or disease duration. We use Σ = 20 as a practical
upper bound; this value represents a population in which opinions change approximately 20 times per
lifespan, or about every 4 years.

The parameter v is the ratio of time spent in the infectious compartment to the time required for
newly willing people to be vaccinated. The value v = 0.5 corresponds to a 4-week delay. The parameter

1The original strain had R0 ≈ 5.7 [23], and more recent variants are surely higher.
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a from the nonlinear functions for ω indicates the sensitivity of opinion to disease prevalence. There is
no data for this empirical parameter, but we will see that a full range of interesting results is possible
without taking a value larger than 5. The parameter d from the non-monotonic function forω represents
how close ω comes to its maximum Σ. A value of 0.9 serves as a reasonable upper bound.

Table 4. Assumed ranges and simulation values for parameters.

Parameter Ranges Values for simulations
R0 [2, 10] 4
v [0.2, 0.5] 0.5
h [0, 80] 10
Σ [0, 20] 3, 10
a [0, 5] 2 (ω1), 0.64 (ω2)
d [0, 0.9] 0.65, 0.8
ϵ → 0 0.0005

3. Analysis and results

We begin with the disease-free equilibrium (DFE), continue with general results for the endemic
disease equilibrium (EDE), and then examine results for some specific attitude-change functions ψ and
ω. Because this model is intended to study general features of epidemics, rather than reproducing data
or making predictions for a specific disease, our primary interest is in qualitative results rather than
quantitative details. For this reason, it makes sense to make use of ϵ → 0 asymptotics for the endemic
disease equilibrium analysis.2 Hence, terms in a sum that are O(ϵ) compared to the leading order term
will be discarded. New O(ϵ) terms will also emerge in the stability analysis, where we will discard
those that are directly comparable to higher-order terms.

3.1. The disease-free equilibrium and vaccine-reduced reproduction number

Computation of the vaccine-reduced reproduction number and identification of the stability require-
ment for the disease-free equilibrium are accomplished by standard methods. We present the result here
and give details in Appendix A.

Proposition 1. The vaccine-reduced reproduction number for the model (2.8) is

Rv =
Σ̄h̄ − hω
Σ̄h̄ + Σ̄ω

R0. (3.1)

The disease-free equilibrium is stable if and only if Rv < 1; equivalently, there is a minimum value of
ω needed for stability:

ω(0) > ωcr ≡
Σ̄rh̄
ρ
, (3.2)

where ρ(Y) = Σ̄(Y) + R0h.
2Analysis of the disease-free equilibrium does not require asymptotic approximation.
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Figure 2. Stability boundaries for the disease-free equilibrium (DFE), with h = 0, 2, 5, 10
(bottom to top) and R0 = 4; the DFE is stable if the point in the ψω-plane is above the
boundary curve for given h.

Figure 2 illustrates the stability requirement for the DFE. Larger ψ requires larger ω to achieve
stability, and larger h increases the ω requirement. As a practical matter, we should expect that this
stability requirement cannot be achieved, as this would require a significant effort to vaccinate young
children in spite of having no active disease in the population.

3.2. The endemic-disease equilibrium

The parameters ω and ψ, and the quantities derived from them, are functions of Y . Thus, when
we solve the equilibrium system for y, the implicit result that we get will be an equation that contains
unknown values for ω and ψ as well as y. This equation can be solved for y only after the functions
ω(Y) and ψ(Y) have been defined. Given this context and the frequent occurrence of the combination
Σ = ω+ψ, it is practical to consider the equilibrium relation as defining a “target” ω value, which must
be met at a specific positive value of y to maintain equilibrium, considering the known values of Σ, R0,
and h.

In the asymptotic limit ϵ → 0, with Y > 0, the system (2.8) yields an equilibrium system in which
the Y , W, and P equations reduce to

R0S = 1, Σ̄W = ω, vp = ω.

Substituting for W and p in terms of ω, the S equation becomes

ω + R0h
ω

Σ̄
= (R0 − 1)h̄ − y,

which we can recast in terms of ω as

ω =
Σ̄(rh̄ − y)

ρ
.

This result serves to provide a condition for finding equilibria—the value of ω prescribed by the model
must match the value of ω that yields an equilibrium.
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Proposition 2. For any given values of the parameters Σ, R0, v, and h, endemic disease equilibria
occur when

ω(Y) = ω∗(R0Y), (3.3)

where

ω∗(y) =
Σ̄(rh̄ − y)

ρ
, (3.4)

with r = R0 − 1, h̄ = h + 1, and ρ = Σ̄ + R0h.

Proof. Note that endemic disease equilibria must have y < rh̄, or

Y∗ < Ymax =
(
1 − R−1

0

)
h̄. (3.5)

The graph of ω∗ is decreasing and reaches 0 at finite Y . Thus, monotone increasing functions for ω
will have a unique EDE if and only if the disease-free equilibrium is unstable, that is, ω(0) < ωcr. □

3.2.1. Endemic disease equilibrium stability

While it is not normally possible to obtain analytical stability criteria for a 5-component system,
such as (2.7), with unspecified parameter values, the 4-component system obtained with asymptotic
approximation can be fully analyzed in the asymptotic limit (see Ledder [22] for a description of the
method), which simplifies the criteria in addition to reducing the problem to four components. We
summarize the results here, leaving details for Appendix B.

Proposition 3. Let Y > 0 be an equilibrium point for the system. Given the values of ω, ψ, and their
derivatives at the equilibrium point, the stability requirements for the endemic disease equilibrium in
the asymptotic limit ϵ → 0 reduce to

ω′ > −R0, (3.6)

ρω′ + R0Σ̄ > R0hWΣ′, (3.7)

(1 + R−1
0 ω

′)(vQ − Yω′) > vh(ω′ −WΣ′), (3.8)

where

Q = h̄ + R0Y + ω. (3.9)

For the simplified case where Σ is independent of Y, these conditions reduce to

R0ω
∗′(R0Y) < ω′(Y) < R0Υ(R0Y), (3.10)

where

Υ(y) =

√
b2 + 4yc − b

2y
, b = y + v(rh − ȳ − ω), c = v(h̄ + y + ω). (3.11)
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Figure 3. Stability boundaries with R0 = 4, v = 0.5; h = 0, 2, 10 (left to right); solid: Σ = 20,
dashed: Σ = 5. Values of ω′ between the curves correspond to stable EDE condition (3.10).

Figure 3 illustrates the stability requirements for ω′ in terms of Y , with R0 = 4, v = 0.5, h = 0, 2, 10
(left to right) and Σ = 20 (solid) and Σ = 5 (dashed). The constant ω case corresponds to a model with
no dependence of rates on disease level, for which the (unique by Proposition 2) EDE will always be
stable. Instability results from greater sensitivity of ω to Y .

3.3. Results for some specific status-change functions

We now consider results for some specific status change functions, all assuming Σ is constant.

3.3.1. Monotone functions

We begin with the broad class of monotone increasing functions for ω(Y). If ω(0) > ωcr, then the
equilibrium condition ω(Y) = ω∗(R0Y) will never be achieved, and the disease-free equilibrium will be
stable. Instead, we assume ω(0) < ωcr. In this case, the combination of properties ω′ > 0, ω(0) < ωcr,
and ω∗(rh̄) = 0 guarantees that there will be a unique endemic disease equilibrium Y > 0, and that it
will be stable if and only if

ω′(Y) < R0Υ(R0Y), (3.12)

with Υ given in (3.11).

As a simple example of this class, we consider the one-parameter family given in (2.9). Several
functions in this family are shown in Figure 4, along with the curve ω∗(R0Y) with R0 = 4, v = 0.5,
Σ = 10, and either h = 0 or h = 10. The unique equilibrium for each curve is marked according to its
stability result.

A broader summary of the h = 0 and h = 10 cases, with R0 = 4 and v = 0.5, appears in Figure 5,
which shows level curves of Y in the Σa-plane along with the stability boundary. The stability boundary
curves move to the left as a increases; thus, larger a is always destabilizing.
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Figure 4. Examples of functions ω = Σ
(
1 − e−aY

)
(solid) along with ω∗ (dashed); parameters

are R0 = 4, Σ = 10, v = 0.5, with h = 0 (left) and h = 10 (right). Equilibria are marked as
stable (solid disks) or unstable (open circles). Red circles mark the stability boundary.
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Figure 5. Level curves of Y in the Σa-plane for ω = Σ
(
1 − e−aY

)
, along with the stability

boundary (blue), with R0 = 4, v = 0.5; h = 0 (left), h = 10 (right). The level curves are solid
when the equilibrium is stable and dotted when the equilibrium is unstable. The open circles
mark the parameter sets used for Figure 9.

3.3.2. Functions with a local maximum

We now turn to the broad class of functions for ω(Y) that increase to a maximum at a point
Ym < Ymax, and then decrease as Y increases further.

When a specific example is required for illustration, we consider the family (2.10), which increases
to a maximum value of Σd occurring at aY = 1. The requirement ψ ≥ 0 translates into a parameter
restriction d ≤ 1. A sampling of this family is illustrated in Figure 6. The dashed curve is the equilib-
rium condition ω(Y) = ω∗(R0Y), with Σ = 10, h = 10, and R0 = 4. All curves for ω have a = 0.62. The
three curves have d values of 0.5, 0.7, and 0.9, from bottom to top. The first of these has one (stable)
equilibrium, with a value of Y that is close to Ymax, where ω∗(R0Y) is 0. The last has one (unstable)
equilibrium, but this time with a small value of Y . The intermediate curve has three equilibria. As
d increases from 0.7 to 0.9, the second and third equilibria converge to a point and then disappear.
Similarly, as d is decreased from 0.7, the first and second equilibria converge and then disappear.
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Figure 6. ω(Y) = ΣdaYe1−aY , along with ω∗(R0Y) (dashed), with Σ = 8, a = 0.62, h = 10,
R0 = 4, and d = 0.5, 0.7, 0.9 (bottom to top); equilibria are disks (circles) if stable (unstable)
with v = 0.5.

In general, suppose ω(Y) increases from an initial value ω(0) < ωcr to a maximum at Ym and subse-
quently decreases, maintainingω(Y∗) > 0 throughout. Then the equilibrium conditionω(Y) = ω∗(R0Y)
will necessarily be achieved at least once, but may be achieved multiple times, with bifurcation points
separating curves in the family that have different numbers of equilibria. The ω functions that mark
bifurcations satisfy the requirement that the ω(Y) and ω∗(R0Y) curves are tangent at a point, that is

ω(Y) = ω∗(R0Y), ω′(Y) = R0ω
∗′(R0Y). (3.13)

Because ω∗′ < 0, bifurcation points can only occur in the domain where ω is decreasing, that is, when
Y > Ym; hence, each bifurcation point in the ad-plane corresponds to a unique Y value in the interval
(Ym,Ymax), where Ymax is defined in (3.5). The function ω2 in (2.10) has two bifurcation points for any
given value of a. For example, for a = 0.62, the bifurcations occur at d ≈ 0.5507 and d ≈ 0.7923.

Comparison with earlier results discloses an interesting synergy, which holds for any function with
the properties given above:

Proposition 4. Suppose ω(Y) increases to a maximum at a value Ym, and then decreases, with
ω(0) < ωcr and ω(Ymax) > 0. Then for the region of solutions Y > Ym, the stability boundary (3.10)
coincides with the bifurcation curve (3.13).

Proof. The proposition follows immediately from the fact that ω′ < 0 < R0Υ(R0Y) when Y > Ym, thus
automatically satisfying the upper bound criterion for stability. □

Figure 7 illustrates the behavior of the system. Panel a shows the bifurcation curves (black), along
with the stability boundary curve for positive ω′ (blue), given by

ω′(Y) = R0Υ(R0Y).

For points above this stability curve, the smallest Y value (the unique Y outside of the region of multiple
solutions) is unstable. When there are multiple solutions, the one with largest Y is stable and the one
with intermediate Y is unstable, from Proposition 4. The regions are labeled with their stability pattern
from low Y to high, with the slender unlabeled region in the middle as SUS, that is, three equilibria
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that are stable, unstable, and stable, from smallest to largest. Panel b shows the solution curve in the
dY-plane corresponding to a = 0.64. The d axis is partitioned into four regions corresponding to the
four stability patterns that occur for a values in region 3 of panel a.
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Figure 7. Properties of the system with ω(Y) = ΣdaYe1−aY , with Σ = 10, h = 10, R0 = 4,
v = 0.5. a: Bifurcation curve (black) and stability boundary (blue); regions are labeled as
stable or unstable where there is a unique solution, UUS where only the largest of three
solutions is stable, and SUS where both the smallest and largest are stable; dotted lines mark
the a values that delineate the four patterns for stability with increasing d. b: Solution curve
for a = 0.64 (dotted where unstable); the vertical lines mark the boundaries between the
indicated stability patterns (these points are also marked with open circles in panel a); the
open circles mark the parameter sets used for Figure 10.

3.4. Mean prevalence

In judging the public health impact of a disease, it is the long-term average prevalence Ȳ that matters
when the equilibrium solution is unstable. For parameter sets leading to an unstable EDE, Ȳ can be
determined numerically by augmenting the system of differential equations with a variable Q that
represents accumulated infectiousness, that is, it is governed by the differential equation

Q′ = Y.

Now let t j−1 and t j be the location of any two consecutive peaks in Y . The mean of Y over the interval
[t j−1, t j] is

Ȳ j =

∫ t j

t j−1
Y(t) dt

t j − t j−1
=

Q(t j) − Q(t j−1)
t j − t j−1

.

Assuming the solution is converging to a limit cycle, this quantity Ȳ j converges to Ȳ as j→ ∞.
Figure 8 shows the results of some experiments for the monotone example ω1. Data for Ȳ was

computed by identifying the sequence of values Ȳ j and running the simulation until the differences
among several consecutive values of the sequence are small enough to approximate convergence. Each
panel compares Ȳ to Y∗ over a range of values of one of the parameters Σ, a, R0, and h, using default
values Σ = 6, a = 2, R0 = 4, h = 10, v = 0.5, and ϵ = 5 × 10−4. For oscillatory solutions, Ȳ is larger
than Y∗ for all examples we have studied.
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Figure 8. Comparison of prevalence mean Ȳ and equilibrium Y∗ for ω1 over ranges in Σ, a,
R0, h, with default values Σ = 6, a = 2, R0 = 4, h = 10, v = 0.5, ϵ = 5 × 10−4.

The plots show an interesting difference in the behavior of the mean prevalence Ȳ and equilibrium
prevalence Y∗ with respect to the parameters. While Y∗ is monotone for each parameter (decreasing
for Σ and a, increasing for R0 and h), Ȳ is not always so. Indeed, there is sometimes a local minimum
with respect to one or more parameters that occurs at the stability boundary. It is particularly curious
that it is possible for the mean prevalence to decrease with increasing infectivity R0.

A similar analysis cannot be done for the non-monotone case. Here, there are sometimes multiple
stable long-term behaviors, with the initial conditions determining which long-term behavior is seen.
This means that Ȳ does not have a unique value for that parameter set.

4. Simulations and sensitivity analysis

4.1. Simulations

Some simulations for the monotone example function ω(Y) = Σ
(
1 − e−aY

)
are shown in Figure 9.

The simulations use typical values for most parameters, as explained in Section 2.4, with a = 2 and two
different values for the population flexibility parameter Σ (see the open circles in Figure 5). The initial
values of Y were taken to be 50% and 20% higher than equilibrium for Σ = 3 and Σ = 10, respectively,
while initial conditions for all other variables were chosen to be the relevant equilibrium values.

As predicted, the parameter set with smaller Σ results in a stable EDE with Y = 1.037, while
the larger Σ results in an unstable EDE. We see from the simulation that the latter case produces
oscillations.
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Figure 9. a,b,c: Solutions for Y , ω/Σ, S (green), W (blue) for ω1 defined by (2.9),
with Σ = 3 (dotted) and Σ = 10 (solid), a = 2, R0 = 4, h = 10, v = 0.5,
ϵ = 5 × 10−4; d: the YW phase plane for the Σ = 10 case. Initial conditions are
(Y0, Z0, S 0, P0, W0) = (1.56, 0, 0.25, 1.31, 0.66) for d = 0.65 and (Y0, Z0, S 0, P0, W0) =
(0.66, 0, 0.25, 3.32, 0.60) for d = 0.8. The thin black line in a is the equilibrium value Y∗

for Σ = 10.

Panel d shows additional detail that indicates how the oscillation occurs. Rapid changes in Y cause
rapid changes in ω, which result in changes in W that lag comparatively behind. At the peak in Y , ω
is large and W increases, which causes Y to decrease. As ω subsequently decreases, along with Y , W
reaches its peak and then decreases in turn. Note that the amplitudes of oscillation are large for Y and
ω, but small for W, owing to the differences in time scales on which these quantities change.

The horizontal black line in panel a shows the value of Y∗ for the oscillatory (Σ = 10) case. The
peaks of the oscillation are far from the equilibrium value, which is why the mean value Ȳ is signifi-
cantly larger than Y∗, as previously seen in Figure 8.

For the non-monotone case, we consider a simulation designed to verify the features indicated in
Figure 7. The dotted curves in panels a–c of Figure 10 show the case corresponding to the leftmost
bullet point marked in Figure 7b, while the solid curves correspond to the rightmost bullet point (d =
0.65 and d = 0.8, respectively). From this plot, there should be three equilibria for each case, with the
second unstable and the third stable. The chosen initial conditions are close to the small Y equilibria,
and the simulation plots show convergence to the equilibrium for d = 0.65 and the emergence of
long-term oscillations for d = 0.8, as predicted by the theoretical results. Panel d shows behavior that
matches that for the corresponding oscillatory case in Figure 9.
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Figure 10. a,b,c: Solutions for Y , ω/Σ, S (green), W (blue) for ω2 defined by (2.10),
with d = 0.65 (dotted) and d = 0.8 (solid), Σ = 10, a = 0.64, R0 = 4, h = 10,
v = 0.5, ϵ = 5 × 10−4; d: the YW phase plane for the d = 0.8 case. Initial conditions are
(Y0, Z0, S 0, P0, W0) = (1.22, 0, 0.25, 3.08, 0.56) for d = 0.65 and (Y0, Z0, S 0, P0, W0) =
(0.83, 0, 0.25, 3.23, 0.59) for d = 0.8.

4.2. Sensitivity analysis via the Morris method

The general trend seen in Figure 8 suggests that Ȳ is less sensitive to a and R0 than is Y∗, while
both seem very sensitive to Σ and less sensitive to h. However, this plot only looks at data in a small
portion of the parameter space. To better understand how the mean infectious population is affected by
the model parameters, we conducted a global sensitivity analysis using the Morris method [24]. We
give a brief explanation of this method and an interpretation of the results for our model.

The Morris method takes a function f (t; p1, . . . , pn) of one variable and n parameters, and deter-
mines a distribution Fi of elementary effects for each parameter, which we can assume are uniformly
distributed on (0, 1). One can use the inverse CDF to work with parameters not uniformly distributed
on (0, 1). To calculate Fi, first produce a sample S from the parameter space (0, 1)n. For each sampled
s ∈ S , compute s + ei∆ where ∆ is a predetermined perturbation size and ei is the coordinate of the
ith parameter. In other words, s + ei∆ is obtained from s by perturbing the pi-value by ∆. Also, for
each s ∈ S , we compute the elementary effect Fi(s) = ( f (s + ei∆) − f (s))/∆. This elementary effect,
or simply effect, of pi at s is a measure of f ’s sensitivity to pi. This process provides n distributions
Fi, each of size |S |. We can then compare the means and standard deviations of each distribution. If
the mean of distribution F j is larger than that of Fk, then that would indicate that parameter p j has a
larger effect on f than pk, on average across S . If the standard deviation of distribution F j is larger
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than that of Fk, then that would indicate that the effect of p j varies more throughout S than the effect
of pk does. However, one shortcoming of taking the mean of the elementary effect distributions is that
of Type II errors, namely, a mixture of perturbations of pi, where some increase f and some decrease
f , can decrease the distribution mean, falsely indicating a small effect. To correct for this, we compute
the distributions Gi = |Fi| by simply considering the magnitude of changes in f .

We apply this method to the long-term mean prevalence Ȳ , with a parameter space built from the
uniform distributions Σ ∼ U(2, 20), R0 ∼ U(2, 10), a ∼ U(1, 5), and h ∼ U(0, 40), and with v = 0.5.3

From the parameter space, we took 10, 000 samples and perturbed each using ∆ = 0.01, to which
we applied the inverse CDF prior to building the elementary effect distributions F and G for each
parameter. The F distributions for each parameter are displayed in Figure 11, and the statistics of the
F and G distributions, rounded to two decimal places, are presented in Table 5.

Table 5. Statistics for the Ȳ elementary effect distributions F and G.

Parameter F-Mean F-SD G-Mean
h 0.04 2.38 0.44
Σ -0.11 3.17 0.84
R0 0.00 5.79 2.20
a -0.12 4.47 1.56
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Figure 11. Comparison of F-distributions, truncated at effect sizes with magnitude above
1, computed for Ȳ and equilibrium Y∗ for ω1 over ranges in Σ, a, R0, h, with default values
v = 0.5 and ∆ = 0.01.

We see that R0 and h have the largest and smallest effect on
∣∣∣Ȳ ∣∣∣ on average, respectively. The

standard deviations of the F-distributions indicate that the effect of R0 varies the most across the
parameter space, whereas the effect of h varies the least. The distributions have long tails that skew
the mean effect size, most dramatically for Σ, whose mean is clearly pulled to the left of its mode.
Note that these long tails are not depicted in Figure 11, which truncates effect sizes whose magnitude
is above 1. Finally, the discrepancy in magnitude between the F and G means indicates that Ȳ is not
monotonic in any parameter.

3The value of v does not affect the equilibrium solution, but when the equilibrium is unstable, it does change the infectious mean.
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5. Discussion and conclusions

In this study, we created and analyzed a relatively simple model that incorporates attitude change
toward vaccination in response to the current disease prevalence. Asymptotic approximation allowed
us to obtain simple conditions for the existence and stability of disease-free and endemic disease equi-
libria. We then chose some functional forms for the rate constants in the attitude change processes to
provide examples, both for the more rational case of monotone increasing response with increasing
prevalence and the case where a maximum response occurs at an intermediate prevalence level, with a
subsequent decrease owing to vaccine fatigue.

5.1. Effects of attitude change

Much of the work reported here focuses on instability in the model. The precursor model, which
takes attitude to be immutable, does not show any instability [21]. The results suggest that attitude
change is an important factor in the population dynamics of infectious diseases when vaccination is a
part of the public health strategy.

5.2. Comparison with the information index approach

The closest prior work to ours is the collection of papers that use an information index to modify the
vaccination rate [10–16]. The two post-COVID papers in this group [15,16] lack a complete analysis of
endemic disease equilibria. The earlier papers contain a complete EDE analysis; in each case, a larger
sensitivity of vaccination to the information index can lead to an unstable EDE with a stable limit cycle.
The primary differences between the information index models and our flexible attitude model are the
mechanism by which changes in prevalence impact vaccination rates and the incorporation of loss of
immunity in our model.

Even when the information index is based on recent prevalence history rather than just current
prevalence, vaccination rates based on it respond much faster to prevalence changes than they do in
our model. This is because of the different assumptions about human behavior. Prior to COVID-
19, it was natural to assume that decisions about vaccination were based on a rational comparison of
the payoffs of vaccination as compared to non-vaccination. Rational choices happen quickly, on the
time scale of the disease processes. Following COVID-19, it is clear that vaccination decisions are
based more on individual attitudes toward vaccination rather than rational comparison of alternative
strategies. Unlike rational assessment, attitude changes are slow because people tend to be resistant to
changing their opinions in response to new facts. In our model, vaccination rates respond to changes
in prevalence on a slower time scale because the mechanism is indirect, with prevalence determining
rates of attitude change rather than attitude itself and rate changes occurring on a slower time scale
than that of prevalence changes.

Another implication of the difference between rational choice and attitude is that it makes sense
to prescribe a mechanistic model for rational choice, whereas mechanistic models are less clear for
human behavior. While it would be natural to expect an increase in a pro-vaccination attitude as
disease prevalence increases, we also considered the possibility of a non-monotone response, in which
a sufficiently high prevalence eventually results in a loss of confidence in the vaccine, thereby resulting
in a decrease in pro-vaccination attitude with increasing prevalence.
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For the monotone case, there is always a unique endemic disease equilibrium whenever the disease-
free equilibrium is unstable. This unique EDE is sometimes stable, but when the response of the rate
change coefficient to disease prevalence is strong enough, the EDE becomes unstable and the resulting
behavior converges to a limit cycle.

The non-monotone case always has at least one EDE, but it can have up to three in the example
function family we used, and possibly more for an unrealistically complicated function family. As
seen in Figure 7, a variety of possibilities for stability exist, including either a stable EDE or a stable
limit cycle when there is a unique EDE, and, when there are three EDE’s, either a stable small-Y EDE
or a stable limit cycle, in addition to an unstable medium-Y EDE and a stable large-Y EDE.

Of particular interest are the amplitudes of the Willing subpopulation and the Unwilling to Willing
transition rate, as shown in the plots of ω/Σ in Figures 9b and 10b. The equilibrium for the stable
example in Figure 9 is 66% Willing (dotted curve in panel c), but the dotted curve in panel b shows
that attainment of this level of willingness requires that the Unwilling to Willing transition coefficient
(ω) be much larger than the reverse transition coefficient (Σ − ω). This is because newborns arrive in
the population as Unwilling and become Willing only through the transition.

5.3. The ϵ → 0 approximation

The use of asymptotic methods to produce approximate analytical results has been studied in detail
by Ledder [22], with the conclusion that the actual differences in prediction between results for ϵ → 0
and small values like ϵ = 5 × 10−4 are often insignificant compared to differences caused by small
changes in the estimates used for the model parameters. This claim can be tested for examples in this
study.
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Figure 12. Level curves of Y in the Σa-plane for ω = Σ
(
1 − e−aY

)
, along with the ϵ → 0

stability boundary (blue) and the ϵ = 5×10−4 stability boundary (black dashed), with R0 = 4,
h = 10, and v = 0.5. The level curves are solid when the equilibrium is stable and dotted
when the equilibrium is unstable.

Using the asymptotic limit ϵ → 0 simplified the mathematical analysis by reducing the system
from five variables to four. We could instead have done the eigenvalue analysis for the full system,
which would yield stability boundaries without having simple analytical results. The details appear in
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Appendix C.
Figure 12 shows the same scenario as in the right panel of Figure 5 but comparing the results for

ϵ = 5 × 10−4 and those for ϵ → 0. As before, the heavy blue curve is the stability boundary calculated
with the ϵ → 0 approximation. For comparison, the stability boundary for the 5-component system is
the dashed black curve. The difference is noticeable, but small. If trying to fit actual data, it would be
worthwhile to use the more accurate result; however, our work uses a generic model rather than one
for a specific disease. Also, the curves are far more dependent on the other parameter values than on
the difference between ϵ = 5 × 10−4 and ϵ = 0.

5.4. Conclusions

While the model is speculative in nature, it does suggest the possibility that attitude changes in
response to prevalence can destabilize an endemic disease equilibrium, with multiple long-term out-
comes in the case where the response is non-monotone. It would perhaps be difficult to identify this
type of instability in real data because it would have seasonal and stochastic variation superimposed
on it, but it would be worth exploring.

In searching for real examples of EDE destabilization, it is helpful to know what disease features
are likely to promote destabilization. Most obviously, the sensitivity of the rate constants for attitude
changes to differences in prevalence should be key, as evidenced by the greater tendency toward insta-
bility in the parameters Σ, a, and d in the functions we used for these rate constants. It is also worth
noting the destabilizing influence of the rate constant for loss of immunity h. While we might expect a
faster loss of immunity to be destabilizing, the plots of Figure 5 suggest otherwise, as they show that a
larger value of the attitude variability parameter Σ is needed for instability for a relatively large value
of h as compared to a disease where there is no loss of immunity. But note also from this figure that the
overall incidence of the disease is much higher for diseases with short-lived immunity than diseases
with more permanent immunity, as of course would be expected.

While it is customary to consider the equilibrium values as measures of disease impact, our work
shows that this is only true when the endemic disease equilibrium is stable. When there is a stable
limit cycle, the mean prevalence is more important and can differ noticeably from the equilibrium
prevalence.

In an effort to focus on the process of attitude change motivated strictly by disease incidence, we
made a number of simplifying assumptions: simple SIR disease class structure, perfect vaccination that
prevents infection and (through boosters) loss of immunity, no influence of incidence history, and no
drivers of attitude connected to interpersonal or media-based communication. Of these assumptions,
the assumption of perfect vaccination is the most likely to make a qualitative difference in outcomes,
as imperfect vaccination would make prevalence less sensitive to vaccination rates and likely reduce
the tendency toward instability.

While our study does not directly apply to COVID-19, it does suggest possibilities for how attitude
changes will impact COVID-19 prevalence. While the actual epidemiological structure for COVID-19
should include a latent (usually called ‘exposed’) class and an asymptomatic class, these differences are
unlikely to affect qualitative outcomes in the long run. Gradual loss of immunity is particularly impor-
tant for COVID-19 population dynamics, with a typical loss of immunity over 6 months corresponding
to a much larger value of h than we used in our generic disease examples.
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Appendix

A. Proposition 1

Given Y = 0 for the disease-free equilibrium, the W and P equations have equilibrium relations

Σ̄W = ω, vP = ωS ,

where the parameters ψ and ω and those that depend on them are all understood to be evaluated at
Y = 0. Substituting these relations for W and P into the equilibrium S equation yields the disease-free
equilibrium susceptible fraction

S ∗ =
Σ̄h̄ − hω
Σ̄h̄ + Σ̄ω

> 0. (A.1)

The vaccine-reduced reproduction number Rv can be found from the scaled problem (2.8) using
first principles. If a small population Y0 of infectious persons is introduced into a population that is at
the disease-free equilibrium, the rate of infections in the scaled model from that initial attack will be
R0S ∗Y0, and the rate of removal of those infectious individuals will be Y0. The average number of new
infections per initial infectious individual will be the ratio of these two rates, that is

Rv = R0S ∗ =
Σ̄h̄ − hω
Σ̄h̄ + Σ̄ω

R0. (A.2)

To show the connection between Rv and stability, we begin with the Jacobian, evaluated at the DFE:

JDFE =


(Rv − 1)Γ 0 0 0
−Rv −h̄ −v −h
Sω′Γ ωΓ −vΓ 0

ω′ −WΣ′ 0 0 −Σ̄

 , (A.3)

where Γ = ϵ−1 and all state variables are evaluated at the equilibrium and all functions of Y at Y = 0.
Lower case letters are defined in (2.5). The block structure of the matrix allows us to immediately
identify two of the eigenvalues as

λ1 = (Rv − 1)Γ, λ4 = −Σ̄.

The remaining eigenvalues come from the center block. Since this block has negative trace and positive
determinant, the associated eigenvalues have negative real part; hence, stability is determined entirely
by Rv < 1.

From (A.2), rearranging Rv < 1 yields a minimum requirement for ω, given all other parameter
values,

ω(0) > ωcr ≡
Σ̄rh̄
Σ̄ + R0h

=
Σ̄rh̄
ρ
,

where Σ̄ is evaluated at Y = 0 and r = R0 − 1.
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B. Proposition 3

The Jacobian matrix at the endemic disease equilibrium is

JEDE =


0 yΓ 0 0
−1 −x −v −h
AΓ ωΓ −vΓ 0
B 0 0 −Σ̄

 , (B.1)

where
Γ = ϵ−1, x = y + h̄, A = R−1

0 ω
′, B = ω′ −WΣ′ (B.2)

have been introduced to simplify the notation.
The usual way to compute the characteristic polynomial for a matrix J is to find the determinant of

λI − J; however, it is more efficient to use the characteristic polynomial theorem [25]:

Theorem 1. For an n × n matrix J, let S be the set of all nonempty subsets of the integers 1, 2, . . . , n.
For each possible K ∈ S , let JK be the determinant of the principal submatrix of J that contains the
entries in the rows and columns indicated by the index set K. Then the characteristic polynomial of J
is

P(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · · + cn−1λ + cn, (B.3)

where
cm = (−1)m

∑
|K|=m

JK , cn = (−1)n|J|. (B.4)

For (B.1), we can quickly get leading order results4

c1 ∼ vΓ, c2 ∼ [y + v(Σ̄ + h̄ + y + ω]Γ, c3 ∼ (1 + A)vyΓ2, c4 = (Σ̄ + Σ̄A + hB)vyΓ2.

To leading order, we then have the characteristic polynomial as5

P(λ) = λ4 + vΓλ3 + k2Γλ
2 + k3vyΓ2λ + k4vyΓ2, (B.5)

where
k2 = y + v(Σ̄ + Q), k3 = 1 + A, k4 = Σ̄k3 + hB, Q = h̄ + y + ω, (B.6)

Using only the leading order terms, we obtain the Routh array [22] as

1 k2Γ k4vyΓ2

vΓ k3vyΓ2

q1Γ k4vyΓ2

q2q−1
1 vyΓ2

k4vyΓ2

,

4Because ϵ → 0, we have Γ → ∞; thus, the term in each cm with the most factors of Γ dominates the other terms in the formula for
that cm.

5The reader may wonder why we must keep all the terms in this polynomial even though some have more factors of Γ than others.
The answer is that the magnitude of λ is different for different roots. For example, the assumption λ = O(1) yields a linear polynomial
to leading order. This correctly approximates only one of the four eigenvalues; the other three must have λ→ ∞ as ϵ → 0.
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where
q1 = k2 − k3y = v(Σ̄ + Q) − Yω′, (B.7)

q2 = k3q1 − vk4 =
(
1 + R−1

0 ω
′
)

(vQ − Yω′) − vh(ω′ −WΣ′). (B.8)

Stability requires the quantities in the first column of the array to be positive. For simplicity, we can
substitute k3 > 0 for the more complicated q1 > 0. To see this, suppose k4 > 0 and q2 > 0 as required.
The formula for q2 then implies that k3 and q1 must have the same sign. Stability requires q1 to be
positive, so it requires k3 to be positive also. But then k3 > 0, along with k4 > 0 and q2 > 0 is sufficient
to guarantee the required condition q1 > 0.

After simplification, the three requirements reduce to

k3 > 0 : ω′ > −R0 (B.9)
k4 > 0 : ρω′ + R0Σ̄ > R0hWΣ′ (B.10)

q2 > 0 :
(
1 + R−1

0 ω
′
)

(vQ − Yω′) > vh(ω′ −WΣ′). (B.11)

Taking Σ′ = 0 simplifies the stability criteria. Suppose ω′ > 0, as is the case for monotone functions
and for Y small enough for non-monotone functions. Then A > 0, so the first two conditions are
automatically satisfied. If ω′ < 0, then the limiting criterion is always k4 > 0, or A > −Σ̄/ρ = ω∗′.
If this condition is satisfied, then the first condition is satisfied as well; hence, 1 + A > 0. The third
condition is now satisfied automatically because both factors on the left side of the inequality are
positive while the right side of the inequality is R0hvA < 0. Taking both cases into account, the
stability criteria simplify to

R0ω
∗′(R0Y) < ω′(Y) < R0Υ(R0Y), (B.12)

where

Υ(y) =

√
b2 + 4yc − b

2y
, b = y + v(rh − ȳ − ω), c = v(h + ȳ + ω). (B.13)

C. Details for the original five-component system

Here we provide the details needed to do numerical stability analysis for the endemic-disease equi-
librium for the original five-component system (2.7).

From the W and P equations, we obtain the results

Σ̄W = ω = ξp, ξ = v + ϵ(Σ̄ + y), (C.1)

where y = R0Y and p = R0P as for the four-component system. The Z equation then yields

z =
ϵξ̄yp

1 + ϵΣ
, z = R0Z,

whereupon the S equation yields the result

p =
Σ̄[rh̄ − (1 + ϵh)y]

Σ̄(v − ϵh) + R0hξ − ϵ2 Σ̄hξ̄y
1+ϵΣ

. (C.2)
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Combining this result with ω = ξp, we see that solutions occur when

ω = ω∗ =
Σ̄[rh̄ − (1 + ϵh)y]

Σ̄(v − ϵh) + R0hξ − ϵ2 Σ̄hξ̄y
1+ϵΣ

. (C.3)

This generalizes the formula obtained for ω∗ for the four-component case.
With the additional assumption Σ′ = 0, we obtain the Jacobian

JEDE =


0 0 Γy 0 0

Yω′ + ξ̄p −(Γ + Σ) 0 y 0
−1 − ϵh ϵh −x −(v − ϵh) −h
ΓR−1

0 ω
′ − p 0 Γω −Γξ 0

ω′ 0 0 0 −Σ̄


, (C.4)

Now suppose we want to find the stability boundary to compare with the solid blue curves in Figures
5 and 7(c). Using the Y value at equilibrium as a parameter, we first calculate the corresponding values
of p and ω∗ from (C.2) and (C.3). Then we use ω = ω∗ to calculate the remaining parameter for ω(Y)
[a for ω1 and d for ω2], and then use the analytical derivative formula for ω′. We can then think of the
Jacobian as being an explicit function of Y and identify the stability boundary for given Σ [and a for
the case of ω2] as the value for which the dominant eigenvalue is 0.
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