[1]
|
R. Hari, M. V. Kujala, Brain basis of human social interaction: from concepts to brain imaging, Physiol. Rev., 89 (2009), 453–479. https://doi.org/10.1152/physrev.00041.2007 doi: 10.1152/physrev.00041.2007
|
[2]
|
L. Kingsbury, W. Hong, A multi-brain framework for social interaction, Trends Neurosci., 43 (2020), 651–666. https://doi.org/10.1016/j.tins.2020.06.008 doi: 10.1016/j.tins.2020.06.008
|
[3]
|
L. Tsoi, S. M. Burns, E. B. Falk, D. I. Tamir, The promises and pitfalls of functional magnetic resonance imaging hyperscanning for social interaction research, Soc. Pers. Psychol. Compass, 16 (2022), e12707. https://doi.org/10.1111/spc3.12707 doi: 10.1111/spc3.12707
|
[4]
|
I. Gordon, S. Wallot, Y. Berson, Group-level physiological synchrony and individual-level anxiety predict positive affective behaviors during a group decision-making task, Psychophysiology, 58 (2021), e13857. https://doi.org/10.1111/psyp.13857 doi: 10.1111/psyp.13857
|
[5]
|
V. Reindl, S. Wass, V. Leong, W. Scharke, S. Wistuba, C. L. Wirth, et al., Multimodal hyperscanning reveals that synchrony of body and mind are distinct in mother-child dyads, Neuroimage, 251 (2022), 118982. https://doi.org/10.1016/j.neuroimage.2022.118982 doi: 10.1016/j.neuroimage.2022.118982
|
[6]
|
J. Madsen, L. C. Parra, Cognitive processing of a common stimulus synchronizes brains, hearts, and eyes, PNAS Nexus, 1 (2022), pgac020. https://doi.org/10.1093/pnasnexus/pgac020 doi: 10.1093/pnasnexus/pgac020
|
[7]
|
L. D. Lotter, S. H. Kohl, C. Gerloff, L. Bell, A. Niephaus, J. A. Kruppa, et al., Revealing the neurobiology underlying interpersonal neural synchronization with multimodal data fusion, Neurosci. Biobehav. Rev., 146 (2023), 105042. https://doi.org/10.1016/j.neubiorev.2023.105042 doi: 10.1016/j.neubiorev.2023.105042
|
[8]
|
Y. Pan, G. Novembre, A. Olsson, The interpersonal neuroscience of social learning, Perspect. Psychol. Sci., 17 (2022), 680–695. https://doi.org/10.1177/17456916211008429 doi: 10.1177/17456916211008429
|
[9]
|
E. Redcay, L. Schilbach, Using second-person neuroscience to elucidate the mechanisms of social interaction, Nat. Rev. Neurosci., 20 (2019), 495–505. https://doi.org/10.1038/s41583-019-0179-4 doi: 10.1038/s41583-019-0179-4
|
[10]
|
L. Schilbach, B. Timmermans, V. Reddy, A. Costall, G. Bente, T. Schlicht, et al., Toward a second-person neuroscience, Behav. Brain Sci., 36 (2013), 393–414. https://doi.org/10.1017/s0140525x12000660 doi: 10.1017/s0140525x12000660
|
[11]
|
A. Czeszumski, S. H. Liang, S. Dikker, P. König, C. P. Lee, S. L. Koole, et al., Cooperative behavior evokes interbrain synchrony in the prefrontal and temporoparietal cortex: a systematic review and meta-analysis of fNIRS hyperscanning studies, eNeuro, 9 (2022), ENEURO.0268-21.2022. https://doi.org/10.1523/eneuro.0268-21.2022 doi: 10.1523/eneuro.0268-21.2022
|
[12]
|
S. Dikker, L. Wan, I. Davidesco, L. Kaggen, M. Oostrik, J. McClintock, et al., Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom, Curr. Biol., 27 (2017), 1375–1380. https://doi.org/10.1016/j.cub.2017.04.002 doi: 10.1016/j.cub.2017.04.002
|
[13]
|
D. A. Reinero, S. Dikker, J. J. Van Bavel, Inter-brain synchrony in teams predicts collective performance, Social Cognit. Affective Neurosci., 16 (2021), 43–57. https://doi.org/10.1093/scan/nsaa135 doi: 10.1093/scan/nsaa135
|
[14]
|
P. Fries, Rhythms for cognition: communication through coherence, Neuron, 88 (2015), 220–235. https://doi.org/10.1016/j.neuron.2015.09.034 doi: 10.1016/j.neuron.2015.09.034
|
[15]
|
M. Zee, H. M. Koomen, I. Van der Veen, Student-teacher relationship quality and academic adjustment in upper elementary school: the role of student personality, J. School Psychol., 51 (2013), 517–533. https://doi.org/10.1016/j.jsp.2013.05.003 doi: 10.1016/j.jsp.2013.05.003
|
[16]
|
R. Mogan, R. Fischer, J. A. Bulbulia, To be in synchrony or not? A meta-analysis of synchrony's effects on behavior, perception, cognition and affect, J. Exp. Social Psychol., 72 (2017), 13–20. https://doi.org/https://doi.org/10.1016/j.jesp.2017.03.009
|
[17]
|
J. Liu, R. Zhang, B. Geng, T. Zhang, D. Yuan, S. Otani, et al., Interplay between prior knowledge and communication mode on teaching effectiveness: Interpersonal neural synchronization as a neural marker, Neuroimage, 193 (2019), 93–102. https://doi.org/10.1016/j.neuroimage.2019.03.004 doi: 10.1016/j.neuroimage.2019.03.004
|
[18]
|
Y. Pan, S. Dikker, P. Goldstein, Y. Zhu, C. Yang, Y. Hu, Instructor-learner brain coupling discriminates between instructional approaches and predicts learning, Neuroimage, 211 (2020), 116657. https://doi.org/10.1016/j.neuroimage.2020.116657 doi: 10.1016/j.neuroimage.2020.116657
|
[19]
|
K. Yun, K. Watanabe, S. Shimojo, Interpersonal body and neural synchronization as a marker of implicit social interaction, Sci. Rep., 2 (2012), 959. https://doi.org/10.1038/srep00959 doi: 10.1038/srep00959
|
[20]
|
J. Levy, A. Goldstein, R. Feldman, Perception of social synchrony induces mother-child gamma coupling in the social brain, Social Cognit. Affective Neurosci., 12 (2017), 1036–1046. https://doi.org/10.1093/scan/nsx032 doi: 10.1093/scan/nsx032
|
[21]
|
A. Stolk, M. L. Noordzij, L. Verhagen, I. Volman, J. M. Schoffelen, R. Oostenveld, et al., Cerebral coherence between communicators marks the emergence of meaning, Proc. Natl. Acad. Sci. U.S.A., 111 (2014), 18183–18188. https://doi.org/10.1073/pnas.1414886111 doi: 10.1073/pnas.1414886111
|
[22]
|
S. Kinreich, A. Djalovski, L. Kraus, Y. Louzoun, R. Feldman, Brain-to-brain synchrony during naturalistic social interactions, Sci. Rep., 7 (2017), 17060. https://doi.org/10.1038/s41598-017-17339-5 doi: 10.1038/s41598-017-17339-5
|
[23]
|
D. M. Ellingsen, A. Duggento, K. Isenburg, C. Jung, J. Lee, J. Gerber, et al., Patient-clinician brain concordance underlies causal dynamics in nonverbal communication and negative affective expressivity, Transl. Psychiatry, 12 (2022), 44. https://doi.org/10.1038/s41398-022-01810-7 doi: 10.1038/s41398-022-01810-7
|
[24]
|
M. Schurz, J. Radua, M. G. Tholen, L. Maliske, D. S. Margulies, R. B. Mars, et al., Toward a hierarchical model of social cognition: A neuroimaging meta-analysis and integrative review of empathy and theory of mind, Psychol. Bull., 147 (2021), 293–327. https://doi.org/10.1037/bul0000303 doi: 10.1037/bul0000303
|
[25]
|
L. Ficco, L. Mancuso, J. Manuello, A. Teneggi, D. Liloia, S. Duca, et al., Disentangling predictive processing in the brain: a meta-analytic study in favour of a predictive network, Sci. Rep., 11 (2021), 16258. https://doi.org/10.1038/s41598-021-95603-5 doi: 10.1038/s41598-021-95603-5
|
[26]
|
G. Rizzolatti, L. Cattaneo, M. Fabbri-Destro, S. Rozzi, Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding, Physiol. Rev., 94 (2014), 655–706. https://doi.org/10.1152/physrev.00009.2013 doi: 10.1152/physrev.00009.2013
|
[27]
|
M. Arioli, N. Canessa, Neural processing of social interaction: Coordinate-based meta-analytic evidence from human neuroimaging studies, Hum. Brain Mapp., 40 (2019), 3712–3737. https://doi.org/10.1002/hbm.24627 doi: 10.1002/hbm.24627
|
[28]
|
K. Lehmann, D. Bolis, K. J. Friston, L. Schilbach, M. J. D. Ramstead, P. Kanske, An active-inference approach to second-person neuroscience, Perspect. Psychol. Sci., 2023 (2023), 17456916231188000. https://doi.org/10.1177/17456916231188000 doi: 10.1177/17456916231188000
|
[29]
|
J. Barnby, G. Bellucci, N. Alon, L. Schilbach, V. Bell, C. Frith, et al., Beyond theory of mind: A formal framework for social inference and representation, PsyarXiv, 2023. https://doi.org/10.31234/osf.io/cmgu7
|
[30]
|
D. Wei, S. Tsheringla, J. C. McPartland, A. Allsop, Combinatorial approaches for treating neuropsychiatric social impairment, Philos. Trans. R. Soc. London, Ser. B, 377 (2022), 20210051. https://doi.org/10.1098/rstb.2021.0051 doi: 10.1098/rstb.2021.0051
|
[31]
|
T. Penton, C. Catmur, M. J. Banissy, G. Bird, V. Walsh, Non-invasive stimulation of the social brain: the methodological challenges, Social Cognit. Affective Neurosci., 17 (2022), 15–25. https://doi.org/10.1093/scan/nsaa102 doi: 10.1093/scan/nsaa102
|
[32]
|
H. K. Kim, D. M. Blumberger, J. Downar, Z. J. Daskalakis, Systematic review of biological markers of therapeutic repetitive transcranial magnetic stimulation in neurological and psychiatric disorders, Clin. Neurophysiol., 132 (2021), 429–448. https://doi.org/10.1016/j.clinph.2020.11.025 doi: 10.1016/j.clinph.2020.11.025
|
[33]
|
A. Czeszumski, S. Eustergerling, A. Lang, D. Menrath, M. Gerstenberger, S. Schuberth, et al., Hyperscanning: A valid method to study neural inter-brain underpinnings of social interaction, Front. Hum. Neurosci., 14 (2020), 39. https://doi.org/10.3389/fnhum.2020.00039 doi: 10.3389/fnhum.2020.00039
|
[34]
|
A. L. Valencia, T. Froese, What binds us? Inter-brain neural synchronization and its implications for theories of human consciousness, Neurosci. Conscious., 2020 (2020), niaa010. https://doi.org/10.1093/nc/niaa010 doi: 10.1093/nc/niaa010
|
[35]
|
U. Hakim, S. De Felice, P. Pinti, X. Zhang, J. A. Noah, Y. Ono, et al., Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies, Neuroimage, 280 (2023), 120354. https://doi.org/10.1016/j.neuroimage.2023.120354 doi: 10.1016/j.neuroimage.2023.120354
|
[36]
|
A. P. Burgess, On the interpretation of synchronization in EEG hyperscanning studies: a cautionary note, Front. Hum. Neurosci., 7 (2013), 881. https://doi.org/10.3389/fnhum.2013.00881 doi: 10.3389/fnhum.2013.00881
|
[37]
|
G. Dumas, J. Nadel, R. Soussignan, J. Martinerie, L. Garnero, Inter-brain synchronization during social interaction, PLoS One, 5 (2010), e12166. https://doi.org/10.1371/journal.pone.0012166 doi: 10.1371/journal.pone.0012166
|
[38]
|
K. Gugnowska, G. Novembre, N. Kohler, A. Villringer, P. E. Keller, D. Sammler, Endogenous sources of interbrain synchrony in duetting pianists, Cereb. Cortex, 32 (2022), 4110–4127. https://doi.org/10.1093/cercor/bhab469 doi: 10.1093/cercor/bhab469
|
[39]
|
W. Peng, W. Lou, X. Huang, Q. Ye, R. K. Tong, F. Cui, Suffer together, bond together: Brain-to-brain synchronization and mutual affective empathy when sharing painful experiences, Neuroimage, 238 (2021), 118249. https://doi.org/10.1016/j.neuroimage.2021.118249 doi: 10.1016/j.neuroimage.2021.118249
|
[40]
|
U. Lindenberger, S. C. Li, W. Gruber, V. Müller, Brains swinging in concert: cortical phase synchronization while playing guitar, BMC Neurosci., 10 (2009), 22. https://doi.org/10.1186/1471-2202-10-22 doi: 10.1186/1471-2202-10-22
|
[41]
|
V. Müller, U. Lindenberger, Probing associations between interbrain synchronization and interpersonal action coordination during guitar playing, Ann. N. Y. Acad. Sci., 1507 (2022), 146–161. https://doi.org/10.1111/nyas.14689 doi: 10.1111/nyas.14689
|
[42]
|
L. Astolfi, J. Toppi, A. Ciaramidaro, P. Vogel, C. M. Freitag, M. Siniatchkin, Raising the bar: Can dual scanning improve our understanding of joint action, Neuroimage, 216 (2020), 116813. https://doi.org/10.1016/j.neuroimage.2020.116813 doi: 10.1016/j.neuroimage.2020.116813
|
[43]
|
F. De Vico Fallani, V. Nicosia, R. Sinatra, L. Astolfi, F. Cincotti, D. Mattia, et al., Defecting or not defecting: how to "read" human behavior during cooperative games by EEG measurements, PLoS One, 5 (2010), e14187. https://doi.org/10.1371/journal.pone.0014187 doi: 10.1371/journal.pone.0014187
|
[44]
|
L. Astolfi, J. Toppi, F. De Vico Fallani, G. Vecchiato, S. Salinari, D. Mattia, et al., Neuroelectrical hyperscanning measures simultaneous brain activity in humans, Brain Topogr., 23 (2010), 243–256. https://doi.org/10.1007/s10548-010-0147-9 doi: 10.1007/s10548-010-0147-9
|
[45]
|
M. O. Abe, T. Koike, S. Okazaki, S. K. Sugawara, K. Takahashi, K. Watanabe, et al., Neural correlates of online cooperation during joint force production, Neuroimage, 191 (2019), 150–161. https://doi.org/10.1016/j.neuroimage.2019.02.003 doi: 10.1016/j.neuroimage.2019.02.003
|
[46]
|
L. Liu, Y. Zhang, Q. Zhou, D. D. Garrett, C. Lu, A. Chen, et al., Auditory-articulatory neural alignment between listener and speaker during verbal communication, Cereb. Cortex, 30 (2020), 942–951. https://doi.org/10.1093/cercor/bhz138 doi: 10.1093/cercor/bhz138
|
[47]
|
P. Goldstein, I. Weissman-Fogel, G. Dumas, S. G. Shamay-Tsoory, Brain-to-brain coupling during handholding is associated with pain reduction, Proc. Natl. Acad. Sci. U.S.A., 115 (2018), e2528–e2537. https://doi.org/10.1073/pnas.1703643115 doi: 10.1073/pnas.1703643115
|
[48]
|
I. Davidesco, E. Laurent, H. Valk, T. West, S. Dikker, C. Milne, et al., Brain-to-brain synchrony predicts long-term memory retention more accurately than individual brain measures, bioRxiv, (2019), 644047. https://doi.org/10.1101/644047 doi: 10.1101/644047
|
[49]
|
Y. Tang, X. Liu, C. Wang, M. Cao, S. Deng, X. Du, et al., Different strategies, distinguished cooperation efficiency, and brain synchronization for couples: An fNIRS-based hyperscanning study, Brain Behav., 10 (2020), e01768. https://doi.org/10.1002/brb3.1768 doi: 10.1002/brb3.1768
|
[50]
|
J. Jiang, C. Chen, B. Dai, G. Shi, G. Ding, L. Liu, et al., Leader emergence through interpersonal neural synchronization, Proc. Natl. Acad. Sci. U.S.A., 112 (2015), 4274–4279. https://doi.org/10.1073/pnas.1422930112 doi: 10.1073/pnas.1422930112
|
[51]
|
Q. Wang, Z. Han, X. Hu, S. Feng, H. Wang, T. Liu, et al., Autism symptoms modulate interpersonal neural synchronization in children with autism spectrum disorder in cooperative interactions, Brain Topogr., 33 (2020), 112–122. https://doi.org/10.1007/s10548-019-00731-x doi: 10.1007/s10548-019-00731-x
|
[52]
|
Y. Hu, Y. Hu, X. Li, Y. Pan, X. Cheng, Brain-to-brain synchronization across two persons predicts mutual prosociality, Social Cognit. Affective Neurosci., 12 (2017), 1835–1844. https://doi.org/10.1093/scan/nsx118 doi: 10.1093/scan/nsx118
|
[53]
|
U. Hasson, Y. Nir, I. Levy, G. Fuhrmann, R. Malach, Intersubject synchronization of cortical activity during natural vision, Science, 303 (2004), 1634–1640. https://doi.org/10.1126/science.1089506 doi: 10.1126/science.1089506
|
[54]
|
S. A. Nastase, V. Gazzola, U. Hasson, C. Keysers, Measuring shared responses across subjects using intersubject correlation, Social Cognit. Affective Neurosci., 14 (2019), 667–685. https://doi.org/10.1093/scan/nsz037 doi: 10.1093/scan/nsz037
|
[55]
|
E. Simony, C. J. Honey, J. Chen, O. Lositsky, Y. Yeshurun, A. Wiesel, et al., Dynamic reconfiguration of the default mode network during narrative comprehension, Nat. Commun., 7 (2016), 12141. https://doi.org/10.1038/ncomms12141 doi: 10.1038/ncomms12141
|
[56]
|
J. P. Lachaux, E. Rodriguez, J. Martinerie, F. J. Varela, Measuring phase synchrony in brain signals, Hum. Brain Mapp., 8 (1999), 194–208. https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c doi: 10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
|
[57]
|
A. F. C. Hamilton, Hyperscanning: Beyond the hype, Neuron, 109 (2021), 404–407. https://doi.org/10.1016/j.neuron.2020.11.008 doi: 10.1016/j.neuron.2020.11.008
|
[58]
|
A. Grinsted, J. C. Moore, S. Jevrejeva, Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11 (2004), 561–566. https://doi.org/10.5194/npg-11-561-2004 doi: 10.5194/npg-11-561-2004
|
[59]
|
L. S. Wang, J. T. Cheng, I. J. Hsu, S. Liou, C. C. Kung, D. Y. Chen, et al., Distinct cerebral coherence in task-based fMRI hyperscanning: cooperation versus competition, Cereb. Cortex, 33 (2022), 421–433. https://doi.org/10.1093/cercor/bhac075 doi: 10.1093/cercor/bhac075
|
[60]
|
A. K. Seth, A. B. Barrett, L. Barnett, Granger causality analysis in neuroscience and neuroimaging, J. Neurosci., 35 (2015), 3293–3297. https://doi.org/10.1523/jneurosci.4399-14.2015 doi: 10.1523/jneurosci.4399-14.2015
|
[61]
|
M. B. Schippers, A. Roebroeck, R. Renken, L. Nanetti, C. Keysers, Mapping the information flow from one brain to another during gestural communication, Proc. Natl. Acad. Sci. U.S.A., 107 (2010), 9388–9393. https://doi.org/10.1073/pnas.1001791107 doi: 10.1073/pnas.1001791107
|
[62]
|
E. Bilek, P. Zeidman, P. Kirsch, H. Tost, A. Meyer-Lindenberg, K. Friston, Directed coupling in multi-brain networks underlies generalized synchrony during social exchange, Neuroimage, 252 (2022), 119038. https://doi.org/10.1016/j.neuroimage.2022.119038 doi: 10.1016/j.neuroimage.2022.119038
|
[63]
|
C. B. Holroyd, Interbrain synchrony: on wavy ground, Trends Neurosci., 45 (2022), 346–357. https://doi.org/10.1016/j.tins.2022.02.002 doi: 10.1016/j.tins.2022.02.002
|
[64]
|
Y. Pan, X. Cheng, Two-person approaches to studying social interaction in psychiatry: Uses and clinical relevance, Front. Psychiatry, 11 (2020), 301. https://doi.org/10.3389/fpsyt.2020.00301 doi: 10.3389/fpsyt.2020.00301
|
[65]
|
V. Leong, L. Schilbach, The promise of two-person neuroscience for developmental psychiatry: using interaction-based sociometrics to identify disorders of social interaction, Br. J. Psychiatry, 215 (2019), 636–638. https://doi.org/10.1192/bjp.2019.73 doi: 10.1192/bjp.2019.73
|
[66]
|
S. V. Wass, M. Whitehorn, I. Marriott Haresign, E. Phillips, V. Leong, Interpersonal neural entrainment during early social interaction, Trends Cognit. Sci., 24 (2020), 329–342. https://doi.org/10.1016/j.tics.2020.01.006 doi: 10.1016/j.tics.2020.01.006
|
[67]
|
Y. Pan, G. Novembre, B. Song, X. Li, Y. Hu, Interpersonal synchronization of inferior frontal cortices tracks social interactive learning of a song, Neuroimage, 183 (2018), 280–290. https://doi.org/10.1016/j.neuroimage.2018.08.005 doi: 10.1016/j.neuroimage.2018.08.005
|
[68]
|
F. T. Ramseyer, Motion energy analysis (MEA): A primer on the assessment of motion from video, J. Couns. Psychol., 67 (2020), 536–549. https://doi.org/10.1037/cou0000407 doi: 10.1037/cou0000407
|
[69]
|
Z. Cao, G. Hidalgo, T. Simon, S. E. Wei, Y. Sheikh, OpenPose: Realtime multi-person 2D pose estimation using part affinity fields, IEEE Trans. Pattern Anal. Mach. Intell., 43 (2021), 172–186. https://doi.org/10.1109/tpami.2019.2929257 doi: 10.1109/tpami.2019.2929257
|
[70]
|
S. Guglielmini, G. Bopp, V. L. Marcar, F. Scholkmann, M. Wolf, Systemic physiology augmented functional near-infrared spectroscopy hyperscanning: a first evaluation investigating entrainment of spontaneous activity of brain and body physiology between subjects, Neurophotonics, 9 (2022), 026601. https://doi.org/10.1117/1.NPh.9.2.026601 doi: 10.1117/1.NPh.9.2.026601
|
[71]
|
R. Cañigueral, S. Krishnan-Barman, A. F. C. Hamilton, Social signalling as a framework for second-person neuroscience, Psychon. Bull. Rev., 29 (2022), 2083–2095. https://doi.org/10.3758/s13423-022-02103-2 doi: 10.3758/s13423-022-02103-2
|
[72]
|
L. Kingsbury, S. Huang, J. Wang, K. Gu, P. Golshani, Y. E. Wu, et al., Correlated neural activity and encoding of behavior across brains of socially interacting animals, Cell, 178 (2019), 429–446.e416. https://doi.org/10.1016/j.cell.2019.05.022 doi: 10.1016/j.cell.2019.05.022
|
[73]
|
V. Müller, D. Perdikis, M. A. Mende, U. Lindenberger, Interacting brains coming in sync through their minds: an interbrain neurofeedback study, Ann. N. Y. Acad. Sci., 1500 (2021), 48–68. https://doi.org/10.1111/nyas.14605 doi: 10.1111/nyas.14605
|
[74]
|
L. Duan, W. J. Liu, R. N. Dai, R. Li, C. M. Lu, Y. X. Huang, et al., Cross-brain neurofeedback: scientific concept and experimental platform, PLoS One, 8 (2013), e64590. https://doi.org/10.1371/journal.pone.0064590 doi: 10.1371/journal.pone.0064590
|
[75]
|
S. Dikker, G. Michalareas, M. Oostrik, A. Serafimaki, H. M. Kahraman, M. E. Struiksma, et al., Crowdsourcing neuroscience: Inter-brain coupling during face-to-face interactions outside the laboratory, Neuroimage, 227 (2021), 117436. https://doi.org/10.1016/j.neuroimage.2020.117436 doi: 10.1016/j.neuroimage.2020.117436
|
[76]
|
M. Hallett, Transcranial magnetic stimulation and the human brain, Nature, 406 (2000), 147–150. https://doi.org/10.1038/35018000 doi: 10.1038/35018000
|
[77]
|
J. Vosskuhl, D. Struber, C. S. Herrmann, Non-invasive brain stimulation: A paradigm shift in understanding brain oscillations, Front. Hum. Neurosci., 12 (2018), 211. https://doi.org/10.3389/fnhum.2018.00211 doi: 10.3389/fnhum.2018.00211
|
[78]
|
A. Liu, M. Vöröslakos, G. Kronberg, S. Henin, M. R. Krause, Y. Huang, et al., Immediate neurophysiological effects of transcranial electrical stimulation, Nat. Commun., 9 (2018), 5092. https://doi.org/10.1038/s41467-018-07233-7 doi: 10.1038/s41467-018-07233-7
|
[79]
|
C. S. Herrmann, M. M. Murray, S. Ionta, A. Hutt, J. Lefebvre, Shaping intrinsic neural oscillations with periodic stimulation, J. Neurosci., 36 (2016), 5328–5337. https://doi.org/10.1523/jneurosci.0236-16.2016 doi: 10.1523/jneurosci.0236-16.2016
|
[80]
|
S. Alagapan, S. L. Schmidt, J. Lefebvre, E. Hadar, H. W. Shin, F. Frӧhlich, Modulation of cortical oscillations by low-frequency direct cortical stimulation is state-dependent, PloS Biol., 14 (2016), e1002424. https://doi.org/10.1371/journal.pbio.1002424 doi: 10.1371/journal.pbio.1002424
|
[81]
|
N. Takeuchi, Perspectives on rehabilitation using non-invasive brain stimulation based on second-person neuroscience of teaching-learning interactions, Front. Psychol., 12 (2022), 789637. https://doi.org/10.3389/fpsyg.2021.789637 doi: 10.3389/fpsyg.2021.789637
|
[82]
|
Y. Cabral-Calderin, M. Wilke, Probing the link between perception and oscillations: Lessons from transcranial alternating current stimulation, Neuroscientist, 26 (2020), 57–73. https://doi.org/10.1177/1073858419828646 doi: 10.1177/1073858419828646
|
[83]
|
V. Müller, U. Lindenberger, Hyper-brain networks support romantic kissing in humans, PloS One, 9 (2014), e112080. https://doi.org/10.1371/journal.pone.0112080 doi: 10.1371/journal.pone.0112080
|
[84]
|
J. Toppi, G. Borghini, M. Petti, E. J. He, V. De Giusti, B. He, et al., Investigating cooperative behavior in ecological settings: An EEG hyperscanning study, PloS One, 11 (2016), e0154236. https://doi.org/10.1371/journal.pone.0154236 doi: 10.1371/journal.pone.0154236
|
[85]
|
V. Leong, E. Byrne, K. Clackson, S. Georgieva, S. Lam, S. Wass, Speaker gaze increases information coupling between infant and adult brains, Proc. Natl. Acad. Sci. U.S.A., 114 (2017), 13290–13295. https://doi.org/10.1073/pnas.1702493114 doi: 10.1073/pnas.1702493114
|
[86]
|
Y. Mu, C. Guo, S. Han, Oxytocin enhances inter-brain synchrony during social coordination in male adults, Social Cognit. Affective Neurosci., 11 (2016), 1882–1893. https://doi.org/10.1093/scan/nsw106 doi: 10.1093/scan/nsw106
|
[87]
|
O. A. Heggli, I. Konvalinka, J. Cabral, E. Brattico, M. L. Kringelbach, P. Vuust, Transient brain networks underlying interpersonal strategies during synchronized action, Social Cognit. Affective Neurosci., 16 (2021), 19–30. https://doi.org/10.1093/scan/nsaa056 doi: 10.1093/scan/nsaa056
|
[88]
|
A. Pérez, M. Carreiras, J. A. Duñabeitia, Brain-to-brain entrainment: EEG interbrain synchronization while speaking and listening, Sci. Rep., 7 (2017), 4190. https://doi.org/10.1038/s41598-017-04464-4 doi: 10.1038/s41598-017-04464-4
|
[89]
|
J. Sünger, V. Müller, U. Lindenberger, Directionality in hyperbrain networks discriminates between leaders and followers in guitar duets, Front. Hum. Neurosci., 7 (2013), 234. https://doi.org/10.3389/fnhum.2013.00234 doi: 10.3389/fnhum.2013.00234
|
[90]
|
Y. Mu, S. Han, M. J. Gelfand, The role of gamma interbrain synchrony in social coordination when humans face territorial threats, Social Cognit. Affective Neurosci., 12 (2017), 1614–1623. https://doi.org/10.1093/scan/nsx093 doi: 10.1093/scan/nsx093
|
[91]
|
N. Kopell, G. B. Ermentrout, M. A. Whittington, R. D. Traub, Gamma rhythms and beta rhythms have different synchronization properties, Proc. Natl. Acad. Sci. U.S.A., 97 (2000), 1867–1872. https://doi.org/10.1073/pnas.97.4.1867 doi: 10.1073/pnas.97.4.1867
|
[92]
|
P. J. Uhlhaas, W. Singer, Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks, Neuron, 75 (2012), 963–980. https://doi.org/10.1016/j.neuron.2012.09.004 doi: 10.1016/j.neuron.2012.09.004
|
[93]
|
K. J. Friston, T. Parr, Y. Yufik, N. Sajid, C. J. Price, E. Holmes, Generative models, linguistic communication and active inference, Neurosci. Biobehav. Rev., 118 (2020), 42–64. https://doi.org/10.1016/j.neubiorev.2020.07.005 doi: 10.1016/j.neubiorev.2020.07.005
|
[94]
|
E. Tognoli, J. A. Kelso, The coordination dynamics of social neuromarkers, Front. Hum. Neurosci., 9 (2015), 563. https://doi.org/10.3389/fnhum.2015.00563 doi: 10.3389/fnhum.2015.00563
|
[95]
|
C. Peylo, Y. Hilla, P. Sauseng, Cause or consequence? Alpha oscillations in visuospatial attention, Trends Neurosci., 44 (2021), 705–713. https://doi.org/10.1016/j.tins.2021.05.004 doi: 10.1016/j.tins.2021.05.004
|
[96]
|
W. Klimesch, α-band oscillations, attention, and controlled access to stored information, Trends Cognit. Sci., 16 (2012), 606–617. https://doi.org/10.1016/j.tics.2012.10.007 doi: 10.1016/j.tics.2012.10.007
|
[97]
|
S. Hoehl, M. Fairhurst, A. Schirmer, Interactional synchrony: signals, mechanisms and benefits, Social Cognit. Affective Neurosci., 16 (2021), 5–18. https://doi.org/10.1093/scan/nsaa024 doi: 10.1093/scan/nsaa024
|
[98]
|
N. J. Davis, S. P. Tomlinson, H. M. Morgan, The role of beta-frequency neural oscillations in motor control, J. Neurosci., 32 (2012), 403–404. https://doi.org/10.1523/jneurosci.5106-11.2012 doi: 10.1523/jneurosci.5106-11.2012
|
[99]
|
B. Pollok, D. Latz, V. Krause, M. Butz, A. Schnitzler, Changes of motor-cortical oscillations associated with motor learning, Neuroscience, 275 (2014), 47–53. https://doi.org/10.1016/j.neuroscience.2014.06.008 doi: 10.1016/j.neuroscience.2014.06.008
|
[100]
|
V. Müller, J. Sünger, U. Lindenberger, Intra- and inter-brain synchronization during musical improvisation on the guitar, PloS One, 8 (2013), e73852. https://doi.org/10.1371/journal.pone.0073852 doi: 10.1371/journal.pone.0073852
|
[101]
|
C. S. Herrmann, D. Strüber, R. F. Helfrich, A. K. Engel, EEG oscillations: From correlation to causality, Int. J. Psychophysiol., 103 (2016), 12–21. https://doi.org/10.1016/j.ijpsycho.2015.02.003 doi: 10.1016/j.ijpsycho.2015.02.003
|
[102]
|
S. H. Williams, D. Johnston, Kinetic properties of two anatomically distinct excitatory synapses in hippocampal CA3 pyramidal neurons, J. Neurophysiol., 66 (1991), 1010–1020. https://doi.org/10.1152/jn.1991.66.3.1010 doi: 10.1152/jn.1991.66.3.1010
|
[103]
|
G. Novembre, G. Knoblich, L. Dunne, P. E. Keller, Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation, Social Cognit. Affective Neurosci., 12 (2017), 662–670. https://doi.org/10.1093/scan/nsw172 doi: 10.1093/scan/nsw172
|
[104]
|
C. Szymanski, V. Müller, T. R. Brick, T. von Oertzen, U. Lindenberger, Hyper-transcranial alternating current stimulation: experimental manipulation of inter-brain synchrony, Front. Hum. Neurosci., 11 (2017), 539. https://doi.org/10.3389/fnhum.2017.00539 doi: 10.3389/fnhum.2017.00539
|
[105]
|
Y. Pan, G. Novembre, B. Song, Y. Zhu, Y. Hu, Dual brain stimulation enhances interpersonal learning through spontaneous movement synchrony, Social Cognit. Affective Neurosci., 16 (2021), 210–221. https://doi.org/10.1093/scan/nsaa080 doi: 10.1093/scan/nsaa080
|
[106]
|
R. T. Canolty, R. T. Knight, The functional role of cross-frequency coupling, Trends Cognit. Sci., 14 (2010), 506–515. https://doi.org/10.1016/j.tics.2010.09.001 doi: 10.1016/j.tics.2010.09.001
|
[107]
|
B. Asamoah, A. Khatoun, M. Mc Laughlin, tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves, Nat. Commun., 10 (2019), 266. https://doi.org/10.1038/s41467-018-08183-w doi: 10.1038/s41467-018-08183-w
|
[108]
|
G. Novembre, G. D. Iannetti, Hyperscanning alone cannot prove causality. Multibrain stimulation can, Trends Cognit. Sci., 25 (2021), 96–99. https://doi.org/10.1016/j.tics.2020.11.003 doi: 10.1016/j.tics.2020.11.003
|
[109]
|
S. L. Koole, W. Tschacher, Synchrony in psychotherapy: A review and an integrative framework for the therapeutic alliance, Front. Psychol., 7 (2016), 862. https://doi.org/10.3389/fpsyg.2016.00862 doi: 10.3389/fpsyg.2016.00862
|
[110]
|
M. Bishop, N. Kayes, K. McPherson, Understanding the therapeutic alliance in stroke rehabilitation, Disability Rehabil., 43 (2021), 1074–1083. https://doi.org/10.1080/09638288.2019.1651909 doi: 10.1080/09638288.2019.1651909
|
[111]
|
P. Søndenå, G. Dalusio-King, C. Hebron, Conceptualisation of the therapeutic alliance in physiotherapy: is it adequate, Musculoskeletal Sci. Pract., 46 (2020), 102131. https://doi.org/10.1016/j.msksp.2020.102131 doi: 10.1016/j.msksp.2020.102131
|
[112]
|
P. Mistiaen, M. van Osch, L. van Vliet, J. Howick, F. L. Bishop, Z. Di Blasi, et al., The effect of patient-practitioner communication on pain: a systematic review, Eur. J. Pain, 20 (2016), 675–688. https://doi.org/10.1002/ejp.797 doi: 10.1002/ejp.797
|
[113]
|
L. Schilbach, Towards a second-person neuropsychiatry, Philos. Trans. R. Soc. London, Ser. B, 371 (2016), 20150081. https://doi.org/10.1098/rstb.2015.0081 doi: 10.1098/rstb.2015.0081
|
[114]
|
L. Schilbach, J. M. Lahnakoski, Clinical neuroscience meets second-person neuropsychiatry, in Social and Affective Neuroscience of Everyday Human Interaction: From Theory to Methodology, Cham (CH): Springer, (2023), 177–191.
|
[115]
|
L. E. Quiñones-Camacho, F. A. Fishburn, K. Belardi, D. L. Williams, T. J. Huppert, S. B. Perlman, Dysfunction in interpersonal neural synchronization as a mechanism for social impairment in autism spectrum disorder, Autism Res., 14 (2021), 1585–1596. https://doi.org/10.1002/aur.2513 doi: 10.1002/aur.2513
|
[116]
|
E. Bilek, G. Stößel, A. Schüfer, L. Clement, M. Ruf, L. Robnik, et al., State-dependent cross-brain information flow in borderline personality disorder, JAMA Psychiatry, 74 (2017), 949–957. https://doi.org/10.1001/jamapsychiatry.2017.1682 doi: 10.1001/jamapsychiatry.2017.1682
|
[117]
|
Y. Zhang, T. Meng, Y. Hou, Y. Pan, Y. Hu, Interpersonal brain synchronization associated with working alliance during psychological counseling. Psychiatry Res. Neuroimaging, 282 (2018), 103–109. https://doi.org/10.1016/j.pscychresns.2018.09.007 doi: 10.1016/j.pscychresns.2018.09.007
|
[118]
|
N. Takeuchi, T. Mori, Y. Suzukamo, S. I. Izumi, Integration of teaching processes and learning assessment in the prefrontal cortex during a video game teaching-learning task, Front. Psychol., 7 (2017), 2052. https://doi.org/10.3389/fpsyg.2016.02052 doi: 10.3389/fpsyg.2016.02052
|
[119]
|
L. Zheng, C. Chen, W. Liu, Y. Long, H. Zhao, X. Bai, et al., Enhancement of teaching outcome through neural prediction of the students' knowledge state, Hum. Brain Mapp., 39 (2018), 3046–3057. https://doi.org/10.1002/hbm.24059 doi: 10.1002/hbm.24059
|
[120]
|
L. Zhang, X. Xu, Z. Li, L. Chen, L. Feng, Interpersonal neural synchronization predicting learning outcomes from teaching-learning interaction: A Meta-analysis, Front. Psychol., 13 (2022), 835147. https://doi.org/10.3389/fpsyg.2022.835147 doi: 10.3389/fpsyg.2022.835147
|
[121]
|
S. M. Fleming, R. J. Dolan, The neural basis of metacognitive ability, Philos. Trans. R. Soc. London, Ser. B, 367 (2012), 1338–1349. https://doi.org/10.1098/rstb.2011.0417 doi: 10.1098/rstb.2011.0417
|
[122]
|
A. G. Vaccaro, S. M. Fleming, Thinking about thinking: A coordinate-based meta-analysis of neuroimaging studies of metacognitive judgements, Brain Neurosci. Adv., 2 (2018), 2398212818810591. https://doi.org/10.1177/2398212818810591 doi: 10.1177/2398212818810591
|
[123]
|
J. F. Martín-Rodríguez, J. León-Carrión, Theory of mind deficits in patients with acquired brain injury: a quantitative review, Neuropsychologia, 48 (2010), 1181–1191. https://doi.org/10.1016/j.neuropsychologia.2010.02.009 doi: 10.1016/j.neuropsychologia.2010.02.009
|
[124]
|
M. Al Banna, N. A. Redha, F. Abdulla, B. Nair, C. Donnellan, Metacognitive function poststroke: a review of definition and assessment, J. Neurol. Neurosurg. Psychiatry, 87 (2016), 161–166. https://doi.org/10.1136/jnnp-2015-310305 doi: 10.1136/jnnp-2015-310305
|
[125]
|
B. Nijsse, J. M. Spikman, J. M. A. Visser-Meily, P. L. M. de Kort, C. M. van Heugten, Social cognition impairments are associated with behavioural changes in the long term after stroke, PloS One, 14 (2019), e0213725. https://doi.org/10.1371/journal.pone.0213725 doi: 10.1371/journal.pone.0213725
|
[126]
|
Y. X. Yeo, C. F. Pestell, R. S. Bucks, F. Allanson, M. Weinborn, Metacognitive knowledge and functional outcomes in adults with acquired brain injury: A meta-analysis, Neuropsychol. Rehabil., 31 (2021), 453–478. https://doi.org/10.1080/09602011.2019.1704421 doi: 10.1080/09602011.2019.1704421
|
[127]
|
P. Lakatos, J. Gross, G. Thut, A new unifying account of the roles of neuronal entrainment, Curr. Biol., 29 (2019), R890–R905. https://doi.org/10.1016/j.cub.2019.07.075 doi: 10.1016/j.cub.2019.07.075
|
[128]
|
K. B. Jensen, P. Petrovic, C. E. Kerr, I. Kirsch, J. Raicek, A. Cheetham, et al., Sharing pain and relief: neural correlates of physicians during treatment of patients, Mol. Psychiatry, 19 (2014), 392–398. https://doi.org/10.1038/mp.2012.195 doi: 10.1038/mp.2012.195
|
[129]
|
S. G. Shamay-Tsoory, N. I. Eisenberger, Getting in touch: A neural model of comforting touch, Neurosci. Biobehav. Rev., 130 (2021), 263–273. https://doi.org/10.1016/j.neubiorev.2021.08.030 doi: 10.1016/j.neubiorev.2021.08.030
|
[130]
|
B. M. Fitzgibbon, M. J. Giummarra, N. Georgiou-Karistianis, P. G. Enticott, J. L. Bradshaw, Shared pain: from empathy to synaesthesia, Neurosci. Biobehav. Rev., 34 (2010), 500–512. https://doi.org/10.1016/j.neubiorev.2009.10.007 doi: 10.1016/j.neubiorev.2009.10.007
|
[131]
|
D. M. Ellingsen, K. Isenburg, C. Jung, J. Lee, J. Gerber, I. Mawla, et al., Dynamic brain-to-brain concordance and behavioral mirroring as a mechanism of the patient-clinician interaction, Sci. Adv., 6 (2020), eabc1304. https://doi.org/10.1126/sciadv.abc1304 doi: 10.1126/sciadv.abc1304
|
[132]
|
T. J. Kaptchuk, F. G. Miller, Placebo effects in medicine, N. Engl. J. Med., 373 (2015), 8–9. https://doi.org/10.1056/NEJMp1504023 doi: 10.1056/NEJMp1504023
|
[133]
|
M. Ienca, R. W. Kressig, F. Jotterand, B. Elger, Proactive ethical design for neuroengineering, assistive and rehabilitation technologies: the cybathlon lesson, J. Neuroeng. Rehabil., 14 (2017), 115. https://doi.org/10.1186/s12984-017-0325-z doi: 10.1186/s12984-017-0325-z
|
[134]
|
R. Cohen Kadosh, N. Levy, J. O'Shea, N. Shea, J. Savulescu, The neuroethics of non-invasive brain stimulation, Curr. Biol., 22 (2012), R108–111. https://doi.org/10.1016/j.cub.2012.01.013 doi: 10.1016/j.cub.2012.01.013
|
[135]
|
S. G. Shamay-Tsoory, Brains that fire together wire together: Interbrain plasticity underlies learning in social interactions, Neuroscientist, 28 (2022), 543–551. https://doi.org/10.1177/1073858421996682 doi: 10.1177/1073858421996682
|
[136]
|
A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, et al., MNE software for processing MEG and EEG data, Neuroimage, 86 (2014), 446–460. https://doi.org/10.1016/j.neuroimage.2013.10.027 doi: 10.1016/j.neuroimage.2013.10.027
|
[137]
|
R. D. Pascual-Marqui, C. M. Michel, D. Lehmann, Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain, Int. J. Psychophysiol., 18 (1994), 49–65. https://doi.org/10.1016/0167-8760(84)90014-x doi: 10.1016/0167-8760(84)90014-x
|
[138]
|
J. Onton, M. Westerfield, J. Townsend, S. Makeig, Imaging human EEG dynamics using independent component analysis, Neurosci. Biobehav. Rev., 30 (2006), 808–822. https://doi.org/10.1016/j.neubiorev.2006.06.007 doi: 10.1016/j.neubiorev.2006.06.007
|
[139]
|
C. S. Nam, Z. Traylor, M. Chen, X. Jiang, W. Feng, P. Y. Chhatbar, Direct communication between brains: A systematic PRISMA review of brain-to-brain interface, Front. Neurorobot., 15 (2021), 656943. https://doi.org/10.3389/fnbot.2021.656943 doi: 10.3389/fnbot.2021.656943
|
[140]
|
G. Thut, T. O. Bergmann, F. Fröhlich, S. R. Soekadar, J. S. Brittain, A. Valero-Cabré, et al., Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper, Clin. Neurophysiol., 128 (2017), 843–857. https://doi.org/10.1016/j.clinph.2017.01.003 doi: 10.1016/j.clinph.2017.01.003
|
[141]
|
S. Kohli, A. J. Casson, Removal of gross artifacts of transcranial alternating current stimulation in simultaneous EEG monitoring, Sensors (Basel), 19 (2019), 190. https://doi.org/10.3390/s19010190 doi: 10.3390/s19010190
|
[142]
|
D. Bolis, J. Balsters, N. Wenderoth, C. Becchio, L. Schilbach, Beyond autism: introducing the dialectical misattunement hypothesis and a Bayesian account of intersubjectivity, Psychopathology, 50 (2017), 355–372. https://doi.org/10.1159/000484353 doi: 10.1159/000484353
|
[143]
|
G. Zarubin, C. Gundlach, V. Nikulin, A. Villringer, M. Bogdan, Transient amplitude modulation of alpha-band oscillations by short-time intermittent closed-loop tACS, Front. Hum. Neurosci., 14 (2020), 366. https://doi.org/10.3389/fnhum.2020.00366 doi: 10.3389/fnhum.2020.00366
|