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Abstract: Our actions and decisions in everyday life are heavily influenced by social interactions,
which are dynamic feedback loops involving actions, reactions, and internal cognitive processes
between individual agents. Social interactions induce interpersonal synchrony, which occurs at
different biobehavioral levels and comprises behavioral, physiological, and neurological activities.
Hyperscanning—a neuroimaging technique that simultaneously measures the activity of multiple
brain regions—has provided a powerful second-person neuroscience tool for investigating the phase
alignment of neural processes during interactive social behavior. Neural synchronization, revealed by
hyperscanning, is a phenomenon called inter-brain synchrony- a process that purportedly facilitates
social interactions by prompting appropriate anticipation of and responses to each other’s social
behaviors during ongoing shared interactions. In this review, I explored the therapeutic dual-brain
approach using noninvasive brain stimulation to target inter-brain synchrony based on second-person
neuroscience to modulate social interaction. Artificially inducing synchrony between the brains is a
potential adjunct technique to physiotherapy, psychotherapy, and pain treatment- which are strongly
influenced by the social interaction between the therapist and patient. Dual-brain approaches to
personalize stimulation parameters must consider temporal, spatial, and oscillatory factors. Multiple
data fusion analysis, the assessment of inter-brain plasticity, a closed-loop system, and a
brain-to-brain interface can support personalized stimulation.

Keywords: hyperscanning; inter-brain synchrony; noninvasive brain stimulation; social interaction;
two-person neuroscience
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1. Introduction

Our everyday actions and decisions are heavily influenced by communicative behaviors with
others such as cooperating, competing, imitating, helping, playing, providing information, asking
questions, negotiating, bargaining, and bluffing [1]. These communications are called social
interactions and are dynamic feedback loops that link actions, reactions, and internal cognitive
processes between individual agents [2,3]. Social interactions are associated with interpersonal
synchrony that occurs at multiple biobehavioral levels of behavioral, physiological, and hormonal
activity [4–7]. Moreover, temporally simultaneous patterns of cognitive alignment and communicative
behaviors during social interactions can align neural activities across individuals [2,8].

The focus of studies on the neural mechanisms underlying social interactions has shifted from
single individuals to interactions between individuals. This paradigm shift is known as
“second-person neuroscience” or “interpersonal neuroscience” [9,10]. Hyperscanning- a
neuroimaging technique that simultaneously measures the activity of multiple brains- is a powerful
second-person neuroscience tool for investigating the phase alignment of neural processes during
social interactions. Neural synchronization revealed by hyperscanning is a phenomenon called
inter-brain synchrony (IBS), which purportedly supports social interaction by aligning the neural
activity of dyads [7,11] and groups [12,13]. IBS may be associated with the transfer of information
between brains, as the phase alignment of neural activities facilitates the efficient transfer of
information between multiple regions within a single brain [14]. This may represent an adaptive
capacity that allows people to access the internal arousal state of others; share and regulate emotions;
enhance social affiliation, empathy, and prosocial engagement; and facilitate learning [7,8,15,16].

Human hyperscanning studies have identified several brain regions involved in IBS, including
the prefrontal cortex (PFC) [17,18], anterior cingulate cortex [19], superior temporal gyrus [20,21],
temporoparietal junction (TPJ) [22], and insular cortex [23]. Brain regions associated with IBS are
involved in theory of mind [24], predictive processing [25], mirroring [26], and social cognition [27],
which have been shown to play important roles in social interactions [28,29]. These hyperscanning
results support the hypothesis that IBS reflects complex cognitive processes, including mentalization,
prediction, imitation, and simulation of behavioral and affective states during social interactions [7].
These brain regions are expected targets for the modulation of human social functions using
noninvasive brain stimulation (NIBS), which can change cortical excitability using repetitive
transcranial magnetic stimulation and transcranial direct current stimulation [30–32]. However, few
direct associations have been identified with the rich field of NIBS, although the development of
second-person neuroscience has provided opportunities to uncover the neural mechanisms of social
interactions and to study how interpersonal brain activity shapes social behavior. Rather than
stimulating a single brain, a dual-brain approach using NIBS across individuals can help control
social interactions by manipulating communication between the brains.

This review explored the possibility of a dual-brain therapeutic approach using NIBS to
modulate social interactions based on the current knowledge of IBS. First, it provides an overview of
the methods used to analyze IBS through hyperscanning, a neuroimaging technique that
simultaneously measures the activity of multiple brains. Multimodal data fusion analysis of
behavioral, physiological, and neural activity across individuals- helps elucidate the neurobiological
mechanisms of IBS. This review discusses multi-brain stimulation (MBS) using NIBS to modulate
inter-brain communication. The simultaneous manipulation of brain activity helps elucidate the
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causal role of IBS in social interactions. Next, I discuss the possibility of clinical application using
the dual-brain approach for facilitating social interactions as an adjunctive technique to
physiotherapy, psychotherapy, and pain treatment, the effectiveness of which is strongly influenced
by interactive communication between the therapist and patient. Finally, I discuss the future
directions of dual-brain approaches to personalize stimulation parameters by considering temporal,
spatial, and oscillatory factors.

2. Methods of assessing IBS

Table 1. Several commonly used analytical methods for assessment of inter-brain synchrony.

Analytical method Measuring Characteristics Example
reference

Phase Locking Value
(PLV)

Consistency of phase
synchrony between neural
signals

Analysis value is the average
of all phase differences for
each time point in a trial

[19,37–39]

Inter-brain Phase
Coherence (IPC)

Phase synchrony between
neural signals based on a
traditional Fourier method

Analysis value is calculated
based on a whole trial

[40,41]

Partial Directed
Coherence (PDC)

Direction of information
flow based on multivariate
autoregressive modeling

PDC provides causal
information in frequency
domain, with multi-channel
data

[42–44]

Pearson (or
Spearman) correlation
coefficient

Similarities between neural
signals estimated via linear
dependence

Analysis value is high when
the data are dependent and low
when the relationship is highly
non-linear

[22,45,46]

Circular correlation
coefficient (CCorr)

Circular covariance of
differences between the
observed and mean phases

CCorr is robust to coincidental
synchronization

[47,48]

Wavelet Transform
Coherence (WTC)

Local coherence between
neural signals as a function
of both frequency and time

WTC can capture out-of-phase
relationships between data and
reveal frequency information

[18,49–52]

Inter-subject
Correlation (ISC)

Similarity between neural
signals in one region
between brains

ISC is useful for naturalistic
experimental paradigms because
it does not require an explicit
model of task or stimulus

[53,54]

Inter-subject
Functional
Connectivity (ISFC)

Similarity between neural
signals in one region of one
brain and all other regions
in another brain

ISFC, obtained by calculating
ISCs between each voxel and
all other voxels, can quantify
neural similarity across brains

[55]

Granger Causality
Analysis (GC)

Direction of information
flow from one brain to
another

GC can represent the linear
relationship between data and
is the most common method of
inferring causality

[49,50]
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Electroencephalography (EEG), magnetoencephalography (MEG), functional near-infrared
spectroscopy (fNIRS), and functional magnetic resonance imaging (fMRI) are used to measure
multibrain activity in hyperscanning research. EEG and MEG record cortical activity with a high
temporal resolution, allowing the study of high-frequency dynamics and network patterns. fNIRS can
be used to record the cortical hemodynamic activity without strict behavioral constraints. Compared to
other neuroimaging techniques, fMRI offers the best opportunity for brain-wide access to neural
signals; however, its technical limitations exclude tasks involving physical interactions [2,3]. Table 1
lists the commonly used analytical methods and provides a brief description of their characteristics.
This review was not intended for detailing any of the IBS assessment methods. I recommend the
excellent earlier reviews for further details [3,33–36].

Several analytical methods are used to estimate the covariance or directional neural coupling of
the time series produced by two interacting individuals on EEG and MEG. Common analyses of IBS
in electrophysiological studies use intra-brain estimators such as the Phase Locking Value (PLV) [56],
Inter-brain Phase Coherence (IPC) [40], and Partial Directed Coherence (PDC) [44]. While PLV and
IPC measure the phase synchrony between neural signals, PDC is useful for determining the
direction of synchrony between neural signals in a dyad [33,34]. The other IBS analyses used include
Pearson’s correlation coefficient, Spearman’s correlation coefficient, circular correlation coefficient,
and wavelet transform coherence (WTC) [34]. Time series correlation analyses that measure
symmetric effects provide a simple measure of shared dynamics between brains but may miss
out-of-phase synchronous relationships [2]. This is because many social interactions are
asymmetrical with two participants playing different roles [57]. The WTC was developed for the
analysis of geophysical time series [58] and has mainly been used for the analysis of fNIRS
hyperscanning studies [33]. Analyses using fMRI hyperscanning include coherence analysis [21,59],
inter-subject correlation [54], and inter-subject functional connectivity [55]. Other analyses such as
Granger causality and dynamic causal modeling, have been used to reveal temporal relationships and
inter-brain information flow [60–62]. Although there are various methods of analysis, as described
above, and each estimation, analysis, and hyperscanning technique has its advantages and limitations,
there is no uniform method for assessing IBS [33,34]. In addition, there is a lack of studies
comparing the quantitative results of IBS in the field of hyperscanning research [36]. The lack of
established standard methods makes it difficult to resolve the issues arising from ambiguity in the
definition and theory of IBS. Therefore, common analysis guidelines should be established to
facilitate the replication of results and their interpretation [63,64].

The behavioral coding approach is helpful for quantifying the extent to which specific
communicative behaviors contribute to IBS, thereby interpreting neural-behavioral relationships
[57,65–67]. However, the subjective nature of behavioral coding raises reliability concerns, even
when a detailed coding scheme is provided and multiple raters participate. Therefore, the use of
automated algorithms, such as Motion Energy Analysis and OpenPose, to extract behavioral
information from video recordings should be considered. Motion Energy Analysis is a computer
vision technique based on assessing differences in sequences of frames in video recordings, which can
provide a continuous measure of motion [68]. The OpenPose system is a real-time multiperson 2D
pose estimation system that uses Part Affinity Fields and is capable of tracking human interactions
from the body, foot, hand, and face keypoints in images or videos [69]. Moreover, for behavioral
activities, IBS is comodulated by physiological activities such as heart rate, pupil size, and saccade
rate [6]. Therefore, IBS assessment techniques should be developed to capture rich information about
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physiological changes in addition to participants’ behaviors such as facial expressions and hand and
body movements [57,65,70]. Integrating data that capture behavioral, physiological, and neural
interactions between individuals can reveal the underlying mechanisms of social interactions that
cannot be inferred from IBS alone [7,57]. In addition, the machine learning-based decoding approach,
which builds mathematical models based on sample data to automatically classify activities, can
provide valuable information on whether IBS serves as a neural classification feature that optimizes
the decoding of interpersonal multimodal activities during social interactions [8].

3. Multiple brain stimulation (MBS)

IBS, revealed by hyperscanning, may be a neural mechanism that facilitates social interactions
by prompting appropriate anticipation and response to each other’s social behaviors during ongoing
shared interactions [71,72]. Therefore, artificially modulating IBS using neurofeedback and MBS has
the potential to improve social interaction. Multi-brain neurofeedback using brain-computer interface
technology involves providing real-time feedback of brain activity to interacting individuals,
potentially enabling them to regulate IBS [73–75]. Some brain dynamics observed during the
multi-brain neurofeedback task correlated with communicative behaviors, suggesting a link between
cognitive and emotional states [73]. However, multi-brain neurofeedback approaches have the
disadvantage that feedback learning takes time; and detailed phase shifts are not easily implemented.
However, MBS using NIBS can easily reproduce different stimulation phase shifts between the
brains and respond to cases in which the oscillatory activity between the brains may not be fully
synchronized. In humans, rhythmic NIBS such as transcranial magnetic stimulation (TMS) and
transcranial alternating current stimulation (tACS) can be used to simultaneously stimulate multiple
brains by entraining brain oscillations. TMS creates a local magnetic field to stimulate the cortex
through the scalp using wire coils placed on the scalp. When a pulsed magnetic field enters the brain,
it creates an electric current that flows through neurons, causing them to depolarize [76]. In contrast,
tACS uses a weak oscillating current stimulation applied to the brain via scalp electrodes to drive
neuronal activity into these frequency patterns [77,78]. These NIBS entrainment designs generally
match the stimulation frequencies to those of the underlying brain activity because computational
modeling suggests that brain activity entrapment is characterized by an increased likelihood of
“resonance” of oscillatory brain activity when the stimulation frequency matches that of the
underlying brain oscillations [79,80]. However, no studies have used TMS to manipulate
communication between the brains, and tACS has mainly been used for MBS in human studies [81].
tACS can induce functional connectivity between distant regions of the brain by modulating the phase
synchrony of oscillations [77,82]. As an application of intra- to inter-brain communication, tACS
applied simultaneously to two brains, known as hyper-tACS, aims to manipulate the oscillation
frequencies between brains and artificially induce IBS.

IBS has mainly been reported in slower frequency bands, such as theta (4–7 Hz) [19,41,83,84]
and alpha-mu (8–13 Hz) [37,47,85–87], but it has also been reported in beta (14–30 Hz) [19,88,89]
and gamma (30–80 Hz) bands [20,22,38,90]. Matching the stimulation frequency of the NIBS to the
neural oscillations associated with the brain regions and behavioral contexts may be effective for
entrainment; however, in the case of artificial IBS modulation, it is necessary to consider not only
within the brain but also the interactions between brains. Interactions between brains can be thought
of as long range, with low frequencies suitable for integrating information across distant areas. There
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are fewer constraints on timing accuracy at lower frequencies because the excitability rise and fall
periods are longer [91,92]. Computational simulations also suggest that low frequencies such as theta
oscillations are associated with the sharing of belief states when communicating [93]. However, the
specific neural oscillations associated with IBS are currently not well understood, so for future MBS
studies using tACS, I will outline the characteristics of other oscillation bands associated with IBS.
The alpha-mu-band is the most robust oscillation in IBS during social interactions [94]. However,
alpha-band oscillations are well-established neural activities related to attention [95,96]. Attention
to relevant cues may enhance common neural processing, leading to meaningless synchronized
neural oscillations unrelated to social interaction. Therefore, alpha IBS during social interactions
should be interpreted with caution [63,97]. As beta-band oscillations are associated with motor
processes [98,99], a relationship between beta oscillations and movement synchrony during social
interaction might be expected. However, the results for the beta band IBS involved in movement
synchrony have been inconsistent [19,40,89,100]. Gamma oscillations have been associated with
several neurocognitive processes like: Information processing, conscious perception, and
memory [101]. Given these relationships, the gamma band appears to be associated with cognitive
processes, such as social interaction. However, this is too fast for the multiple brains to interact with.
Even the slowest gamma frequencies oscillate within approximately 30 ms. Therefore, brains
interacting at gamma frequencies must establish and maintain IBS with a half-cycle accuracy of at
least 15 ms [63]. This is likely not possible given that the duration of the excitatory postsynaptic
potential is approximately 10 ms [102]. Therefore, IBS at gamma frequencies has often reported, but
its role in social interactions is questionable [63].

Few studies have reported on hyper-tACS [103–105]. Novembre et al. reported that hyper-tACS
increases interpersonal synchrony. In-phase 20-Hz tACS applied to the motor cortex in dyads
performing a finger-tapping task improved interpersonal movement synchrony compared to
anti-phase or sham stimulation. The phase coupling of brain oscillations across the motor cortices of
two individuals may support the interpersonal alignment of sensorimotor processes, resulting in the
facilitation of interpersonal synchrony [103]. Pan et al. reported that hyper-tACS applied to the
inferior frontal cortex improved instruction-based learning. In-phase 6-Hz hyper-tACS applied to the
instructor and learner improved the learning performance of naturalistic song-learning tasks [105]. In
addition, body movement synchrony of the dyads was increased by hyper-tACS. In contrast, another
study reported that in-phase 6-Hz hyper-tACS applied to the right frontocentral and centroparietal
sites during a dyadic drumming synchrony task worsened interpersonal action coordination [104].
The hyper-tACS frequency, location, and phase may have been inappropriate for facilitating this
dyadic task since it deteriorated the interpersonal coordination. Furthermore, it may not be necessary
for the two brains to synchronize at the same frequency. Brain oscillations can be coupled with
activity in other brains at lower frequencies, known as cross-frequency coupling (CFC), where one
stimulation band modulates another band between different regions of the brain [106].

Thus, how neural oscillations are coupled between brains remains poorly understood, and future
studies on dual-brain approaches using NIBS to modulate social interactions will need to consider
the possibility of temporal, spatial, and frequency asymmetries in brain activity between participants.
Additionally, electrical stimulation applied to the scalp, such as tACS, is often associated with
peripheral sensations [107]. Therefore, brain regions unrelated to task function should be examined
as controls to exclude the possibility that changes in social interactions by hyper-tACS are due to
sensory stimulation effects. Furthermore, future studies should investigate whether the experimental
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modulation of IBS could affect the degree of social interaction to deny that IBS is not purely
epiphenomenally induced by other forms of neural synchrony, such as behavioral entrainment,
cognitive alignment, shared understanding, and affective contagion. Experimental hyper-tACS,
which simultaneously manipulates neural activity in interacting partners, could help clarify the
causal role of IBS in social interactions by modulating IBS and measuring its influence on social
interactions [108]. However, the potential causal mechanisms of IBS, including behavioral
entrainment, shared understanding, and affective contagion, are not mutually exclusive and may
collaborate to facilitate neural coupling [8].

4. Potential therapeutic dual-brain approach using NIBS

The effectiveness of psychotherapy, physiotherapy, and pain treatment is influenced by the
therapist–patient relationship [109–112]. Therefore, the dual-brain approach using NIBS aimed at
facilitating social interaction may be an adjunctive approach in clinical situations that are strongly
influenced by interactive communication with others. Impaired social interactions are one of the
most common symptoms of many psychiatric disorders. The study of the neural mechanisms
underlying interactions between individuals in the field of psychiatry is referred to as second-person
neuropsychiatry [113,114]. Disturbances in inter-brain dynamics may have a negative impact on
social function, because brain-brain coupling may trigger neural mechanisms that control social
alignment, such as cooperation and affective contagion. In line with this, it has been investigated
how the dynamics between the brains may be altered in mental and neurodevelopmental disorders
associated with social deficits. Previous studies reported abnormal IBS during interactions between
healthy individuals and patients with autism spectrum disorder (ASD), a neurodevelopmental
disorder characterized by deficits in interpersonal interactions and social communication [51,115].
Wang et al. reported that children with more severe ASD symptoms showed lower IBS levels in the
PFC with their parents during cooperative tasks [51]. In addition to ASD, IBS is reduced in the right
TPJ during the cooperation task in healthy individuals and patients with borderline personality
disorders compared to those observed in healthy dyads [116]. Furthermore, low IBS has not been
observed between healthy individuals and remitted patients with borderline personality disorders.
Using fNIRS hyperscanning, Zhang et al. found that IBS in the right TPJ between counselors and
clients increased during psychological counseling, which correlated with the strength of the
therapeutic alliance [117]. A deeper understanding of the dynamics between the brains of different
patients may reveal the common neural mechanisms of different psychiatric disorders as well as
diagnostic tools for patient heterogeneity, potentially leading to prosocial therapeutic approaches
for psychotherapy.

Social interactions between therapists and patients are important in physiotherapy, in which
therapists instruct patients to improve their motor impairments. Instruction is not just a one-way
transmission of information from instructors to learners; rather, it is a complex social interaction that
requires mentalizing and metacognitive functions to understand others’ intentions and monitor
information about others in addition to oneself [118]. Much evidence suggests that the IBS in the
PFC increases during instruction-based learning [17,18,119]. A meta-analysis of 16 hyperscanning
studies also concluded that IBS levels during the teaching-learning interactions correlates with better
learning outcomes [120]. The PFC plays a central role in metacognitive processes [121,122].
Furthermore, PFC is associated with shared intentionality, requiring individuals to align their
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thoughts with others to promote coordinated behavior [52]. Patients with brain damage, such as
stroke and traumatic brain injury, who require physiotherapy, often have impaired metacognitive and
mentalizing functions. These cognitive impairments lead to poor rehabilitation outcomes [123–126].
The interpersonal neural entrainment induced by oscillatory synchronization through phase
alignment can facilitate the efficient transfer of information from one brain to another, resulting in
better social interaction during instruction-based learning [66,127]. Consistent with this, in-phase
theta hyper-tACS applied to the inferior frontal cortex in both instructors and learners enhanced
interactive social learning [105]. Artificial induction of IBS can help physiotherapy by enhancing
instruction-based learning between the therapist and patient.

It is well known that interpersonal interactions relieve pain [128,129]. Pain empathy allows us
to understand and recognize others’ pain experiences by observing them and inducing the sharing of
emotions related to pain relief [128,130]. A previous EEG hyperscanning study investigated the
neural mechanisms underlying pain empathy when one participant in a dyad was presented with an
electrical pain stimulus [39]. This study shows that the IBS of the sensorimotor alpha oscillation
band between pain sufferers and observers was greater during the anticipation of high-intensity pain
than during low-intensity pain. In addition, the mediation analysis showed that the sharing of a
painful experience induced prosocial behavior within pairs of individuals via IBS. Another study
using EEG hyperscanning found that when romantic partners held hands, the alpha oscillation band
in the centro-parietal regions increased during pain stimulation [47]. IBS also correlated with the
degree of pain relief and touch-related empathic accuracy of the observer. An fMRI hyperscanning
study investigated the concordance of brain activity when clinicians treated evoked pain in patients
with chronic pain [131]. Behavioral mirroring was reportedly associated with pain relief and
therapeutic alliance between patient–clinician dyads and that dynamic concordance of brain
activity increased in circuits associated with theory of mind and mirror processing. A good
therapist–patient relationship improves patient outcomes and is an important component of
psychological analgesia [112,132]. A dual-brain approach using NIBS, based on IBS knowledge, to
manipulate social interactions may provide pain relief through prosocial effects.

Thus, dual-brain approaches such as MBS have potentially broad clinical implications for
mental health, rehabilitation, and pain treatment. However, before artificial manipulation of IBS
based on second-person neuroscience can be applied clinically, a caveat regarding the therapeutic
relationship needs to be considered. The dual-brain approach of the therapist–patient dyad to
artificially modulate social interactions in clinical settings is likely to raise important ethical issues
and requires systematic neuroethical guidelines [133,134]. Before using the dual-brain approach to
improve the therapist–patient relationship, the issue of artificially manipulating the therapist–patient
alliance must be discussed to ensure the therapist’s neutrality toward the patient.

5. Future direction of personalized dual brain approaches using NIBS

The NIBS parameters used in the dual-brain approach should be personalized to stabilize and
promote artificial induction of IBS. Longitudinal hyperscanning may allow more valid stimulus
parameters across dyads by revealing how the temporal, spatial, and oscillatory nature of IBS
changes with the task and/or participant as social interaction progresses. The use of brain-to-brain
interfaces that allow decoded neural information to be exchanged between the two brains may be
useful in the clinical dual-brain approach to avoid stimulating healthy therapists. A closed-loop
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system that monitors and predicts individual responses in real time can personalize the stimulus to
maximize the effect. Studies on IBS have mainly focused on within-subject effects under different
task conditions, and there is a lack of research on the differences in IBS between healthy individuals
and therapeutic targets. Longitudinal hyperscanning and closed-loop systems may be beneficial for
improving the precision of dual-brain approaches using NIBS to adequately account for
inter-individual differences in IBS. In the final chapter, future directions of dual-brain approaches
that use NIBS for personalized stimulation are discussed.

Social interactions evolve over time and the coupling between brains may change over the
course of one or more interactions. This idea is supported by the emerging concept of inter-brain
plasticity, which is the ability of interacting brains to modify the coupling between brains in response
to repeated social interactions [135]. Inter-brain plasticity may be influenced by the lesions and
reorganization of the brain after injury, analogous to intra-brain plasticity. To address the influence of
structural changes on inter-brain plasticity, source-based estimation of brain activity using techniques
such as minimum norm estimation [136], low-resolution electromagnetic tomography [137], and blind
source separation techniques such as independent component analysis [138] may be helpful in
electrophysiological signal analysis. Moreover, longitudinal hyperscanning studies across multiple
interventions may reveal how neural dynamics in the coupled brain change and are associated with
functional improvements. This information and approach will help us improve our knowledge of IBS
as an objective indicator of treatment efficacy and allow for more valid stimulus parameters across
dyads while preserving subject-specific differences in analyses.

Invasive neurostimulation is evident; however, the dual-brain approach using NIBS to stimulate
the brain in healthy therapists is unrealistic in clinical settings. Rather than a treatment method, MBS
is a useful technique for investigating the role of frequency- and location-specific IBS in social
interactions, which can support and complement findings from hyperscanning and single-brain
stimulation studies. Once the role of IBS in social interactions is clarified, a brain-to-brain interface
may be useful for avoiding stimulating therapists. A brain-to-brain interface receives neural
information from the brain and transmits it to the brain of another person via electrical stimulation [139].
Therefore, a brain-to-brain interface enables the manipulation of IBS by modulating the patient’s
brain activity using rhythmic forms of NIBS and adjusting it to the therapist’s brain activity. The
direct transmission of neural information could enable more bidirectional therapist–patient
interactions, leading to improved functioning. Furthermore, it is desirable that the stimulus
parameters for the patient are continuously adjusted according to the patient’s brain state using a
closed-loop control system. This system, which consists of a high-temporal-resolution recording of
brain activity (EEG/MEG) and NIBS, could make it possible to predict individual neural responses
to NIBS and adjust real-time personalized stimulation parameters such as location, frequency, and
phase, to maximize the stimulation effect [140,141]. To establish bidirectional social interactions, it
is important to coordinate both participants, rather than take a unilateral approach [142]. Providing
the therapist with real-time feedback on IBS, in addition to stimulating the patient, may be useful for
bidirectional social interactions. For practical applications, further refinement and testing are required to
remove artifacts produced by tACS without removing large amounts of valuable electrophysiological
signaling [140,143]. The figure shows a schema of the future direction of personalized stimulation
methods for IBS modulation to facilitate clinical effects using multiple data fusion analysis, assessment
of inter-brain plasticity, closed-loop stimulation, and brain-to-brain interface.
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Figure 1. Schematic of the future direction for personalized stimulation.

Multimodal data fusion analysis can further elucidate inter-brain synchrony in terms of
neural–physiological-behavioral relationships. Assessing inter-brain plasticity can provide more
valid stimulus parameters for the dual-brain approach. Brain-to-brain interfaces can support a
therapeutic dual-brain approach to avoid stimulating a healthy therapist, and a closed-loop system
can adjust stimulation parameters according to individual responses.

6. Conclusions

An understanding of dynamic inter-brain interactions and their mechanisms provides deep insight
into social interaction in clinical settings. Recent meta-analyses have identified brain regions associated
with IBS during social interactions [7,11]; however, few direct associations with the rich field of NIBS
have been identified. Dual-brain approaches using NIBS have broad clinical implications for mental
health, rehabilitation, and pain treatment. New technologies, such as closed-loop stimulation and
brain-to-brain interfaces, may help personalize stimulation to facilitate clinical effects. However, the
neutrality of the therapist towards the patient should be maintained before the artificial manipulation of
IBS based on second-person neuroscience can be applied clinically.
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