[1]
|
P. Sanchez, B. Everett, Y. Salamonson, S. Ajwani, S. Bhole, J. Bishop, et al., Oral health and cardiovascular care: Perceptions of people with cardiovascular disease, PLoS One, 12 (2017), e0181189. https://doi.org/10.1371/journal.pone.0181189 doi: 10.1371/journal.pone.0181189
|
[2]
|
M. P. Muresan, A. R. Barbura, S. Nedevschi, Teeth detection and dental problem classification in panoramic x-ray images using deep learning and image processing techniques, in 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), IEEE, (2020), 457–463. https://doi.org/10.1109/ICCP51029.2020.9266244
|
[3]
|
V. Hingst, M. A. Weber, Dental X-ray diagnostics with the orthopantomography–technique and typical imaging results, Der Radiologe, 60 (2020), 77–92. https://doi.org/10.1007/s00117-019-00620-1 doi: 10.1007/s00117-019-00620-1
|
[4]
|
J. C. M. Román, V. R. Fretes, C. G. Adorno, R. G. Silva, J. L. V. Noguera, H. Legal-Ayala, et al., Panoramic dental radiography image enhancement using multiscale mathematical morphology, Sensors, 21 (2021), 3110. https://doi.org/10.3390/s21093110 doi: 10.3390/s21093110
|
[5]
|
R. Izzetti, M. Nisi, G. Aringhieri, L. Crocetti, F. Graziani, C. Nardi, Basic knowledge and new advances in panoramic radiography imaging techniques: A narrative review on what dentists and radiologists should know, Appl. Sci., 11 (2021), 7858. https://doi.org/10.3390/app11177858 doi: 10.3390/app11177858
|
[6]
|
Y. Zhao, P. Li, C. Gao, Y. Liu, Q. Chen, F. Yang, et al., Tsasnet: Tooth segmentation on dental panoramic X-ray images by Two-Stage Attention Segmentation Network, Knowledge-Based Syst., 206 (2020), 106338. https://doi.org/10.1016/j.knosys.2020.106338 doi: 10.1016/j.knosys.2020.106338
|
[7]
|
A. E. Yüksel, S. Gültekin, E. Simsar, Ş. D. Özdemir, M. Gündoğar, S. B. Tokgöz, et al., Dental enumeration and multiple treatment detection on panoramic X-rays using deep learning, Sci. Rep., 11 (2021), 12342. https://doi.org/10.1038/s41598-021-90386-1 doi: 10.1038/s41598-021-90386-1
|
[8]
|
R. J. Lee, A. Weissheimer, J. Pham, L. Go, L. M. de Menezes, W. R. Redmond, et al., Three-dimensional monitoring of root movement during orthodontic treatment, Am. J. Orthod. Dentofacial Orthop., 147 (2015), 132–142. https://doi.org/10.1016/j.ajodo.2014.10.010 doi: 10.1016/j.ajodo.2014.10.010
|
[9]
|
J. Keustermans, D. Vandermeulen, P. Suetens, Integrating statistical shape models into a graph cut framework for tooth segmentation, in Machine Learning in Medical Imaging, Springer, (2012), 242–249. https://doi.org/10.1007/978-3-642-35428-1_30
|
[10]
|
O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomedical image segmentation, in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Springer, (2015), 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
|
[11]
|
W. Wang, X. Yu, B. Fang, Y. Zhao, Y. Chen, W. Wei, et al., Cross-modality LGE-CMR segmentation using image-to-image translation based data augmentation, IEEE/ACM Trans. Comput. Biol. Bioinf., 20 (2023), 2367–2375. https://doi.org/10.1109/tcbb.2022.3140306 doi: 10.1109/tcbb.2022.3140306
|
[12]
|
W. Wang, J. Chen, J. Wang, J. Chen, J. Liu, Z. Gong, Trust-enhanced collaborative filtering for personalized point of interests recommendation, IEEE Trans. Ind. Inf., 16 (2020), 6124–6132. https://doi.org/10.1109/tii.2019.2958696 doi: 10.1109/tii.2019.2958696
|
[13]
|
B. G. He, B. Lin, H. P. Li, S. Q. Zhu, Suggested method of utilizing soil arching for optimizing the design of strutted excavations, Tunnelling Underground Space Technol., 143 (2024), 105450. https://doi.org/10.1016/j.tust.2023.105450 doi: 10.1016/j.tust.2023.105450
|
[14]
|
J. Chen, S. Sun, L. Zhang, B. Yang, W. Wang, Compressed sensing framework for heart sound acquisition in internet of medical things, IEEE Trans. Ind. Inf., 18 (2022), 2000–2009. https://doi.org/10.1109/tii.2021.3088465 doi: 10.1109/tii.2021.3088465
|
[15]
|
J. Chen, W. Wang, B. Fang, Y. Liu, K. Yu, V. C. M. Leung, et al., Digital twin empowered wireless healthcare monitoring for smart home, IEEE J. Sel. Areas Commun., 41 (2023), 3662–3676. https://doi.org/10.1109/jsac.2023.3310097 doi: 10.1109/jsac.2023.3310097
|
[16]
|
Y. Zhang, X. Wu, S. Lu, H. Wang, P. Phillips, S. Wang, Smart detection on abnormal breasts in digital mammography based on contrast-limited adaptive histogram equalization and chaotic adaptive real-coded biogeography-based optimization, Simulation, 92 (2016), 873–885. https://doi.org/10.1177/0037549716667834 doi: 10.1177/0037549716667834
|
[17]
|
J. H. Lee, S. S. Han, Y. H. Kim, C. Lee, I. Kim, Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs, Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 129 (2020), 635–642. https://doi.org/10.1016/j.oooo.2019.11.007 doi: 10.1016/j.oooo.2019.11.007
|
[18]
|
J. Chen, Z. Guo, X. Xu, L. Zhang, Y. Teng, Y. Chen, et al., A robust deep learning framework based on spectrograms for heart sound classification, IEEE/ACM Trans. Comput. Biol. Bioinf., 2023 (2023), 1–12. https://doi.org/10.1109/TCBB.2023.3247433 doi: 10.1109/TCBB.2023.3247433
|
[19]
|
S. H. Wang, D. R. Nayak, D. S. Guttery, X. Zhang, Y. D. Zhang, COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis, Inf. Fusion, 68 (2021), 131–148. https://doi.org/10.1016/j.inffus.2020.11.005 doi: 10.1016/j.inffus.2020.11.005
|
[20]
|
H. Chen, X. Huang, Q. Li, J. Wang, B. Fang, J. Chen, Labanet: Lead-assisting backbone attention network for oral multi-pathology segmentation, in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, (2023), 1–5. https://doi.org/10.1109/ICASSP49357.2023.10094785
|
[21]
|
L. Wang, Y. Gao, F. Shi, G. Li, K. C. Chen, Z. Tang, et al., Automated segmentation of dental cbct image with prior-guided sequential random forests, Med. Phys., 43 (2016), 336–346. https://doi.org/10.1118/1.4938267 doi: 10.1118/1.4938267
|
[22]
|
S. Liao, S. Liu, B. Zou, X. Ding, Y. Liang, J. Huang, et al., Automatic tooth segmentation of dental mesh based on harmonic fields, Biomed Res. Int., 2015 (2015). https://doi.org/10.1155/2015/187173 doi: 10.1155/2015/187173
|
[23]
|
R. Girshick, Fast R-CNN, in Proceedings of the IEEE International Conference on Computer Vision, (2015), 1440–1448. https://doi.org/10.1109/ICCV.2015.169
|
[24]
|
K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, in Proceedings of the IEEE International Conference on Computer Vision, (2017), 2961–2969. https://doi.org/10.1109/ICCV.2017.322
|
[25]
|
E. Y. Park, H. Cho, S. Kang, S. Jeong, E. Kim, Caries detection with tooth surface segmentation on intraoral photographic images using deep learning, BMC Oral Health, 22 (2022), 1–9. https://doi.org/10.1186/s12903-022-02589-1 doi: 10.1186/s12903-022-02589-1
|
[26]
|
G. Zhu, Z. Piao, S. C. Kim, Tooth detection and segmentation with mask R-CNN, in 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), IEEE, (2020), 070–072. https://doi.org/10.1109/ICAIIC48513.2020.9065216
|
[27]
|
Q. Chen, Y. Zhao, Y. Liu, Y. Sun, C. Yang, P. Li, et al., Mslpnet: Multi-scale location perception network for dental panoramic X-ray image segmentation, Neural Comput. Appl., 33 (2021), 10277–10291. https://doi.org/10.1007/s00521-021-05790-5 doi: 10.1007/s00521-021-05790-5
|
[28]
|
P. Li, Y. Liu, Z. Cui, F. Yang, Y. Zhao, C. Lian, et al., Semantic graph attention with explicit anatomical association modeling for tooth segmentation from CBCT images, IEEE Trans. Med. Imaging, 41 (2022), 3116–3127. https://doi.org/10.1109/tmi.2022.3179128 doi: 10.1109/tmi.2022.3179128
|
[29]
|
E. Shaheen, A. Leite, K. A. Alqahtani, A. Smolders, A. Van Gerven, H. Willems, et al., A novel deep learning system for multi-class tooth segmentation and classification on Cone Beam Computed Tomography. A validation study, J. Dent., 115 (2021), 103865. https://doi.org/10.1016/j.jdent.2021.103865 doi: 10.1016/j.jdent.2021.103865
|
[30]
|
M. Ezhov, A. Zakirov, M. Gusarev, Coarse-to-fine volumetric segmentation of teeth in cone-beam CT, in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), (2019), 52–56. https://doi.org/10.1109/ISBI.2019.8759310
|
[31]
|
A. Alsheghri, F. Ghadiri, Y. Zhang, O. Lessard, J. Keren, F. Cheriet, et al., Semi-supervised segmentation of tooth from 3D scanned dental arches, in Medical Imaging 2022: Image Processing, (2022), 766–771. https://doi.org/10.1117/12.2612655
|
[32]
|
X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, et al., Self-supervised learning: Generative or contrastive, IEEE Trans. Knowl. Data Eng., 35 (2021), 857–876. https://doi.org/10.1109/tkde.2021.3090866 doi: 10.1109/tkde.2021.3090866
|
[33]
|
Q. Li, X. Huang, Z. Wan, L. Hu, S. Wu, J. Zhang, et al., Data-efficient masked video modeling for self-supervised action recognition, in Proceedings of the 31st ACM International Conference on Multimedia, (2023), 2723–2733. https://doi.org/10.1145/3581783.3612496
|
[34]
|
H. Lim, S. Jung, S. Kim, Y. Cho, I. Song, Deep semi-supervised learning for automatic segmentation of inferior alveolar nerve using a convolutional neural network, BMC Oral Health, 21 (2021), 1–9. https://doi.org/10.2196/preprints.32088 doi: 10.2196/preprints.32088
|
[35]
|
F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, K. H. Maier-Hein, nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation, Nat. Methods, 18 (2021), 203–211. https://doi.org/10.1038/s41592-020-01008-z doi: 10.1038/s41592-020-01008-z
|
[36]
|
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, et al., An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint, (2020), arXiv: 2010.11929. https://doi.org/10.48550/arXiv.2010.11929
|
[37]
|
H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jégou, Training data-efficient image transformers & distillation through attention, in International Conference on Machine Learning, PMLR, (2021), 10347–10357.
|
[38]
|
N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-end object detection with transformers, in European Conference on Computer Vision, Springer, (2020), 213–229. https://doi.org/10.1007/978-3-030-58452-8_13
|
[39]
|
X. Zhu, W. Su, L. Lu, B. Li, X. Wang, J. Dai, Deformable DETR: Deformable transformers for end-to-end object detection, arXiv preprint, (2020), arXiv: 2010.04159. https://doi.org/10.48550/arXiv.2010.04159
|
[40]
|
Q. Li, X. Huang, B. Fang, H. Chen, S. Ding, X. Liu, Embracing large natural data: Enhancing medical image analysis via cross-domain fine-tuning, IEEE J. Biomed. Health. Inf., 2023 (2023), 1–10. https://doi.org/10.1109/JBHI.2023.3343518 doi: 10.1109/JBHI.2023.3343518
|
[41]
|
J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, et al., Transunet: Transformers make strong encoders for medical image segmentation, arXiv preprint, arXiv: 2102.04306. https://doi.org/10.48550/arXiv.2102.04306
|
[42]
|
A. Srinivas, T. Lin, N. Parmar, J. Shlens, P. Abbeel, A. Vaswani, Bottleneck transformers for visual recognition, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), 16519–16529. https://doi.org/10.1109/CVPR46437.2021.01625
|
[43]
|
Y. Li, S. Wang, J. Wang, G. Zeng, W. Liu, Q. Zhang, et al., GT U-Net: A U-Net like group transformer network for tooth root segmentation, in Machine Learning in Medical Imaging, Springer, (2021), 386–395. https://doi.org/10.1007/978-3-030-87589-3_40
|
[44]
|
W. Lin, Z. Wu, J. Chen, J. Huang, L. Jin, Scale-aware modulation meet transformer, arXiv preprint, (2023), arXiv: 2307.08579. https://doi.org/10.48550/arXiv.2307.08579
|
[45]
|
S. Woo, J. Park, J. Lee, I. Kweon, CBAM: Convolutional block attention module, in Computer Vision–ECCV 2018, Springer, (2018), 3–19. https://doi.org/10.1007/978-3-030-01234-2_1
|
[46]
|
Y. Zhang, F. Ye, L. Chen, F. Xu, X. Chen, H. Wu, et al., Children's dental panoramic radiographs dataset for caries segmentation and dental disease detection, Sci. Data, 10 (2023), 380. https://doi.org/10.1038/s41597-023-02237-5 doi: 10.1038/s41597-023-02237-5
|
[47]
|
K. Chen, L. Yao, D. Zhang, X. Wang, X. Chang, F. Nie, A semisupervised recurrent convolutional attention model for human activity recognition, IEEE Trans. Neural Networks Learn. Syst., 31 (2019), 1747–1756. https://doi.org/10.1109/tnnls.2019.2927224 doi: 10.1109/tnnls.2019.2927224
|
[48]
|
G. Litjens, C. I. Sánchez, N. Timofeeva, M. Hermsen, I. Nagtegaal, I. Kovacs, et al., Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis, Sci. Rep., 6 (2016), 26286. https://doi.org/10.1038/srep26286 doi: 10.1038/srep26286
|
[49]
|
J. Chen, L. Chen, Y. Zhou, Cryptanalysis of a DNA-based image encryption scheme, Inf. Sci., 520 (2020), 130–141. https://doi.org/10.1016/j.ins.2020.02.024 doi: 10.1016/j.ins.2020.02.024
|
[50]
|
D. Yuan, X. Chang, P. Y. Huang, Q. Liu, Z. He, Self-supervised deep correlation tracking, IEEE Trans. Image Process., 30 (2020), 976–985. https://doi.org/10.1109/tip.2020.3037518 doi: 10.1109/tip.2020.3037518
|
[51]
|
Y. Tian, G. Yang, Z. Wang, H. Wang, E. Li, Z. Liang, Apple detection during different growth stages in orchards using the improved YOLO-V3 model, Comput. Electron. Agric., 157 (2019), 417–426. https://doi.org/10.1016/j.compag.2019.01.012 doi: 10.1016/j.compag.2019.01.012
|
[52]
|
D. Yuan, X. Chang, Q. Liu, Y. Yang, D. Wang, M. Shu, et al., Active learning for deep visual tracking, IEEE Trans. Neural Networks Learn. Syst., 2023 (2023), 1–13. https://doi.org/10.1109/TNNLS.2023.3266837 doi: 10.1109/TNNLS.2023.3266837
|
[53]
|
Y. Zhang, L. Deng, H. Zhu, W. Wang, Z. Ren, Q. Zhou, et al., Deep learning in food category recognition, Inf. Fusion, 98 (2023), 101859. https://doi.org/10.1016/j.inffus.2023.101859 doi: 10.1016/j.inffus.2023.101859
|
[54]
|
D. Cremers, M. Rousson, R. Deriche, A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape, Int. J. Comput. Vision, 72 (2007), 195–215. https://doi.org/10.1007/s11263-006-8711-1 doi: 10.1007/s11263-006-8711-1
|
[55]
|
X. Shu, Y. Yang, J. Liu, X. Chang, B. Wu, Alvls: Adaptive local variances-based levelset framework for medical images segmentation, Pattern Recognit., 136 (2023), 109257. https://doi.org/10.1016/j.patcog.2022.109257 doi: 10.1016/j.patcog.2022.109257
|
[56]
|
K. Ding, L. Xiao, G. Weng, Active contours driven by region-scalable fitting and optimized laplacian of gaussian energy for image segmentation, Signal Process., 134 (2017), 224–233. https://doi.org/10.1016/j.sigpro.2016.12.021 doi: 10.1016/j.sigpro.2016.12.021
|
[57]
|
G. Jader, J. Fontineli, M. Ruiz, K. Abdalla, M. Pithon, L. Oliveira, Deep instance segmentation of teeth in panoramic X-ray images, in 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), IEEE, (2018), 400–407. https://doi.org/10.1109/SIBGRAPI.2018.00058
|
[58]
|
T. L. Koch, M. Perslev, C. Igel, S. S. Brandt, Accurate segmentation of dental panoramic radiographs with U-Nets, in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), IEEE, (2019), 15–19. https://doi.org/10.1109/ISBI.2019.8759563
|
[59]
|
Z. Cui, C. Li, N. Chen, G. Wei, R. Chen, Y. Zhou, et al., Tsegnet: An efficient and accurate tooth segmentation network on 3D dental model, Med. Image Anal., 69 (2021), 101949. https://doi.org/10.1016/j.media.2020.101949 doi: 10.1016/j.media.2020.101949
|
[60]
|
X. Wang, S. Gao, K. Jiang, H. Zhang, L. Wang, F. Chen, et al., Multi-level uncertainty aware learning for semi-supervised dental panoramic caries segmentation, Neurocomputing, 540 (2023), 126208. https://doi.org/10.1016/j.neucom.2023.03.069 doi: 10.1016/j.neucom.2023.03.069
|
[61]
|
A. Qayyum, A. Tahir, M. A. Butt, A. Luke, H. T. Abbas, J. Qadir, et al., Dental caries detection using a semi-supervised learning approach, Sci. Rep., 13 (2023), 749. https://doi.org/10.1038/s41598-023-27808-9 doi: 10.1038/s41598-023-27808-9
|
[62]
|
Y. Zhang, H. Liu, Q. Hu, Transfuse: Fusing transformers and cnns for medical image segmentation, in Medical Image Computing and Computer Assisted Intervention–MICCAI 2021, Springer, (2021), 14–24. https://doi.org/10.1007/978-3-030-87193-2_2
|
[63]
|
Y. Wang, T. Wang, H. Li, H. Wang, ACF-TransUNet: Attention-based coarse-fine transformer U-Net for automatic liver tumor segmentation in CT images, in 2023 4th International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), IEEE, (2023), 84–88. https://doi.org/10.1109/ICBASE59196.2023.10303169
|
[64]
|
B. Chen, Y. Liu, Z. Zhang, G. Lu, A. W. K. Kong, TransAttUnet: Multi-level attention-guided U-Net with transformer for medical image segmentation, IEEE Trans. Emerging Top. Comput. Intell., 2023 (2023), 1–14. https://doi.org/10.1109/TETCI.2023.3309626 doi: 10.1109/TETCI.2023.3309626
|
[65]
|
A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman, et al., UNETR: Transformers for 3D medical image segmentation, in 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), (2022), 1748–1758. https://doi.org/10.1109/WACV51458.2022.00181
|
[66]
|
H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, et al., Swin-Unet: Unet-like pure transformer for medical image segmentation, in European Conference on Computer Vision, Springer, (2022), 205–218. https://doi.org/10.1007/978-3-031-25066-8_9
|
[67]
|
S. Li, C. Li, Y. Du, L. Ye, Y. Fang, C. Wang, et al., Transformer-based tooth segmentation, identification and pulp calcification recognition in CBCT, in International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, (2023), 706–714. https://doi.org/10.1007/978-3-031-43904-9_68
|
[68]
|
M. Kanwal, M. M. Ur Rehman, M. U. Farooq, D. K. Chae, Mask-transformer-based networks for teeth segmentation in panoramic radiographs, Bioengineering, 10 (2023), 843. https://doi.org/10.3390/bioengineering10070843 doi: 10.3390/bioengineering10070843
|
[69]
|
W. Chen, X. Du, F. Yang, L. Beyer, X. Zhai, T. Y. Lin, et al., A simple single-scale vision transformer for object detection and instance segmentation, in European Conference on Computer Vision, Springer, (2022), 711–727. https://doi.org/10.1007/978-3-031-20080-9_41
|
[70]
|
M. R. Amini, V. Feofanov, L. Pauletto, E. Devijver, Y. Maximov, Self-training: A survey, arXiv preprint, (2023), arXix: 2202.12040. https://api.semanticscholar.org/CorpusID: 247084374
|
[71]
|
Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, J. Liang, UNet++: A nested U-Net architecture for medical image segmentation, in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer, (2018), 3–11. https://doi.org/10.1007/978-3-030-00889-5_1
|
[72]
|
H. Huang, L. Lin, R. Tong, H. Hu, Q. Zhang, Y. Iwamoto, et al., Unet 3+: A full-scale connected unet for medical image segmentation, in 2020 IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP, IEEE, (2020), 1055–1059. https://doi.org/10.1109/ICASSP40776.2020.9053405
|
[73]
|
Q. Zuo, S. Chen, Z. Wang, R2AU-Net: Attention recurrent residual convolutional neural network for multimodal medical image segmentation, Secur. Commun. Netw., 2021 (2021), 1–10. https://doi.org/10.1155/2021/6625688 doi: 10.1155/2021/6625688
|
[74]
|
C. Sheng, L. Wang, Z. Huang, T. Wang, Y. Guo, W. Hou, et al., Transformer-based deep learning network for tooth segmentation on panoramic radiographs, J. Syst. Sci. Complexity, 36 (2023), 257–272. https://doi.org/10.1007/s11424-022-2057-9 doi: 10.1007/s11424-022-2057-9
|
[75]
|
R. Azad, R. Arimond, E. K. Aghdam, A. Kazerouni, D. Merhof, DAE-former: Dual attention-guided efficient transformer for medical image segmentation, in Predictive Intelligence in Medicine, Springer, (2023), 83–95. https://doi.org/10.1007/978-3-031-46005-0_8
|
[76]
|
E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, P. Luo, Segformer: Simple and efficient design for semantic segmentation with transformers, Adv. Neural Inf. Process. Syst., 34 (2021), 12077–12090.
|