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Abstract: In this paper, we introduce a novel deep learning method for dental panoramic image
segmentation, which is crucial in oral medicine and orthodontics for accurate diagnosis and treatment
planning. Traditional methods often fail to effectively combine global and local context, and struggle
with unlabeled data, limiting performance in varied clinical settings. We address these issues with an
advanced TransUNet architecture, enhancing feature retention and utilization by connecting the input
and output layers directly. Our architecture further employs spatial and channel attention mechanisms
in the decoder segments for targeted region focus, and deep supervision techniques to overcome
the vanishing gradient problem for more efficient training. Additionally, our network includes a
self-learning algorithm using unlabeled data, boosting generalization capabilities. Named the Semi-
supervised Tooth Segmentation Transformer U-Net (STS-TransUNet), our method demonstrated
superior performance on the MICCAI STS-2D dataset, proving its effectiveness and robustness in
tooth segmentation tasks.

Keywords: dental panoramic image; attention mechanisms; STS-TransUNet; self-training;
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1. Introduction

Oral health is a pivotal aspect of overall well-being, with dental ailments such as periodontal
disease, cavities, and misalignments not only affecting masticatory function and aesthetics but also
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potentially correlating with systemic maladies like cardiovascular diseases and diabetes [1]. In the
field of dental diagnostics, panoramic imaging, also known as orthopantomography, has become
increasingly significant [2]. This technology provides a comprehensive view of the mouth, capturing
images of all the teeth and the surrounding bone structure in a single shot. Unlike the traditional
intraoral radiography, panoramic imaging offers a broad perspective, essential for a holistic
assessment of dental health. It is particularly invaluable in identifying problems in areas such as tooth
positioning, impacted teeth, and the development of tumors [3–6]. Moreover, in orthodontic
treatments, tooth extractions, and pre-surgical planning, panoramic images offer clinicians a clear and
detailed view, crucial for designing precise orthodontic appliances, assessing surgical risks, and
formulating effective treatment plans, thereby significantly enhancing patient care [7, 8]. Tooth
segmentation not only significantly reduces diagnostic time and enhances diagnostic accuracy but also
furnishes vital information for pathological analysis and personalized treatment planning [6]. For
instance, accurate tooth segmentation can aid in evaluating the relationship between teeth and alveolar
bone, determining the optimal position for dental implants, or assessing the outcomes of orthognathic
surgery [9]. However, manual tooth segmentation in panoramic imaging interpretation, a task for
radiologists and dental specialists, is time-consuming and costly, underscoring the urgent clinical
need for automated segmentation technology to assist medical professionals in efficient and
accurate diagnostics.

In recent years, the medical imaging field has witnessed a significant transformation with the rapid
development of deep learning [10–12]. Unlike traditional methods that rely on manual feature
extraction [13], deep learning can identify and categorize the complex and diverse features of both the
1D physilogical parameters and 2D medical images [14–16]. The capability of deep learning for
automatic feature extraction in medical imaging leads to the creation of robust, quantifiable models
with strong adaptability and generalizability, significantly aiding doctors in formulating precise and
effective medical plans [17–19]. The advent of automatic tooth segmentation technologies [20],
leveraging and computer vision techniques, has the potential to autonomously identify and segment
dental structures [21, 22].

Current approaches predominantly utilize U-shaped convolutional neural network architectures,
with methods like Faster R-CNN [23] and Mask R-CNN [24] being widely applied in tooth
segmentation and caries detection [25, 26]. However, these are typically only suitable for
downsampled Cone Beam Computed Tomography (CBCT) images. MSLPNet [27] employs a
multi-scale structure to mitigate boundary prediction issues, subsequently utilizing a location-aware
approach to pinpoint each dental pixel in panoramic images. Finally, an aggregation module is
incorporated to diminish the semantic discrepancies across multiple branches. Two-stage
segmentation methods [28,29] generally locate the approximate position of the teeth in the first phase,
followed by precise segmentation in the second. In a similar vein, the model in [30] introduces a
coarse-to-fine tooth segmentation strategy, pre-trained on large-scale, weakly supervised datasets to
initially locate teeth, and then fine-tuned on smaller, meticulously annotated datasets. Beyond weak
supervision, researchers often resort to semi-supervised learning strategies with limited annotated
data, such as self-training and pseudo-label generation. A novel semi-supervised 3D dental arch
segmentation pipeline is proposed by [31], utilizing k-means for self-supervised learning [32, 33] and
supervised learning on annotated data. The pipeline in [34] refines nnU-Net [35] architecture, training
a preliminary nnU-Net model and then allowing medical professionals to supervise its performance
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on unannotated datasets, selectively updating the model. Undoubtedly, this semi-supervised approach
is cost-intensive. Overall, while these methods have achieved commendable performance,
convolution-based approaches are limited by their receptive field for relatively larger input images
and rely on prior localization of teeth.

The long-range dependency capabilities of Transformer architectures [36–39] have inspired new
paradigms in image processing. The sequence attention mechanism of vision Transformers aggregates
different patches of the same image, allowing each patch to interact with others, a significant
advantage over CNNs with their inductive bias priors. Transformers have similarly revolutionized
medical imaging [40]. TransUNet [41] introduces a U-Net combined with Transformer architecture
for medical segmentation, merging CNN’s local focus with the Transformer’s global feature
extraction capabilities, significantly inspiring the medical segmentation field. BoTNet [42], blending
Transformers with convolutions, proposes a lightweight instance segmentation backbone, replacing
some of the final convolutional layers of ResNet with Transformers. Building on this, GT U-Net [43]
introduces a Fourier loss leveraging dental prior knowledge, effectively segmenting dental roots.
However, while these Transformer-based methods excel in capturing global interactions in the
encoder, they often do not optimally leverage these encoded features due to limitations in their
decoding mechanisms. This leads to certain deficiencies in current deep learning approaches to tooth
segmentation, resulting in suboptimal performance.

To this end, we introduce STS-TransUNet, a model that merges a CNN-Transformer
encoder—blending CNN’s shallow local feature extraction with Transformer’s deep global
encoding [44] and a customized upsampling module as the decoder—aiming at prioritizing key
information and filtering out the redundant. Specifically, we have innovated the decoder part of the
architecture by incorporating channel and spatial attention mechanisms [45]. This enables the decoder
to focus exclusively on pertinent information while disregarding redundant data. The use of deep
supervision techniques allows for immediate feedback on each layer of the decoder, thereby
accelerating the convergence rate. By integrating the input and output images, our method enhances
the model’s ability to directly associate and learn from the initial and desired final states of the
images. This novel strategy overcomes some of the limitations observed in traditional segmentation
methods, where a disconnect between input and processed images can lead to inefficiencies and
inaccuracies. Furthermore, we employ a straightforward self-training semi-supervised strategy,
effectively segmenting the MICCAI 2023 public challenge dataset (STS-2D) [46] and achieving a
distinguished position in the competition. The primary contributions of this paper are threefold:

1). We propose the STS-TransUNet, a novel single-stage model tailored for precise and automated
segmentation in clinical dentistry. This model is specifically devised for panoramic dental imaging and
leverages advanced deep learning techniques to accurately identify and outline dental structures.

2). A decoder with spatial and channel attention mechanisms, combined with deep supervision
techniques, effectively captures the irregularities in dental information, mitigates gradient vanishing,
and accelerates convergence.

3). Extensive experiments conducted on the MICCAI STS-2D dataset demonstrate the exemplary
performance of our approach.
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2. Related work

2.1. CNN-based methods in medical segmentation

Deep learning, particularly CNN-based approaches, has demonstrated exceptional performance
across a broad spectrum of practical applications [47–53], including the domain of medical image
segmentation. Diverging from traditional approaches in medical image segmentation [21, 54–56], the
advent of the U-Net [10] architecture has heralded a new era in this field, significantly enhancing the
precision and efficiency of segmentation tasks. Its encoder-decoder structure was capable of
extracting high-level features from input images and using them to generate fine segmentation
results [35]. In [57], deep learning methods were first introduced into panoramic X-ray tooth
segmentation. Specifically, they performed pre-training on the backbone using the Mask R-CNN on
the MSCOCO dataset and fine-tune it on their own dataset. In [58], the influence of factors such as
data augmentation, loss functions, and network ensembles on tooth segmentation based on U-Net was
investigated, fully exploiting the performance of the U-Net. TSegNet [59] formulated the 3D tooth
point cloud data segmentation task as the precise localization of each tooth’s center based on distance
perception and the segmentation task based on confidence perception. This task was accomplished
through accurate positioning in the first stage and precise segmentation in the second stage. All the
aforementioned methods employed supervised deep learning techniques. In the realm of
semi-supervised learning, MLUA [60] adopted a teacher-student strategy, utilizing a single U-shaped
network for both annotated and unannotated data. Considering the irregular shape and significant
variability of teeth, this model introduced multi-level perturbations to train more robust systems.
Similarly, the model proposed in [61] employed a comparable strategy, focusing on data
augmentation in areas of carious lesions, resulting in a high-performing caries segmentation model.
The proposal in [34] relied on the expertise of medical professionals to select data for
semi-supervised segmentation. The success of these methods largely hinged on the profound impact
of CNNs in image processing. However, CNNs inherently possess inductive bias limitations,
particularly in their local feature extraction. In contrast to the aforementioned methods, our approach
integrates CNN’s capability for shallow local feature extraction with global Transformer encoding,
thereby achieving comprehensive global capture of dependencies.

2.2. Transformer-based methods in medical segmentation

CNN-based methods inherently possess inductive biases and struggle to effectively learn global
semantic interactions due to the locality of the convolution operation [62]. TransUNet [41] pioneered
a new paradigm in medical segmentation by integrating the global encoding capabilities of
Transformers with the upsampling features of U-Net. Following this, a multitude of methods based on
the TransUNet framework have been custom-tailored and applied to various other domains of medical
image segmentation [63, 64], demonstrating its versatility and effectiveness. UNETR [65] took this
further by transforming volumetric medical images into a sequence prediction problem, marking a
significant application of Transformers in 3D medical imaging. Swin-Unet [66] merged the entire
topological structure of Unet with the attention mechanisms of Swin Transformer. Its decoder used
patch expanding for upsampling and showed remarkable performance on multi-organ CT and ACDC
datasets. Similarly, the model in [67] developed a multi-task architecture based on Swin Transformer
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for segmenting and identifying teeth and dental pulp calcification. The Mask-Transformer-based
architecture [68] has demonstrated impressive capabilities in tooth segmentation. It employed a
dual-path design combined with a panoramic quality loss function to simplify the training process.
While these methods leveraged the global dependency capabilities of Transformer encoders, they
often overly focused on global feature extraction by the encoder. Moreover, few studies have explored
combining Transformer methods with actual unannotated dental panoramic image data segmentation.
Unlike methods based on pure Transformer encoder-decoder architectures, our encoder employs a
CNN-Transformer architecture, maximizing the use of U-Net’s skip connections. This design choice
is informed by the inherent limitation of Transformer architectures in not effectively capturing global
dependencies at shallower layers [44, 69]. Our decoder focuses on relevant information without the
need for prior tooth localization, employing a straightforward self-training method to generate
pseudo-labels and iteratively update the model. This approach has demonstrated excellent
performance on the MICCAI STS-2D dataset [46].

3. Materials and methods

3.1. Materials

We utilize a high-quality MICCAI STS-2D dataset [46], including panoramic dental CT images of
children aged 3–12 years, obtained from Hangzhou Dental Group, Hangzhou Qiantang Dental
Hospital, Electronic Science and Technology University, and Queen Mary University of London. The
dataset, serving as the official training set, comprises a total of 5000 images, including 2900 labeled
and 2100 unlabeled images. All our experiments utilize this training set as the primary dataset. Our
model’s results on the official test set are detailed in Section 4.3.

3.2. Data partition and preprocessing

Data split: Fully supervised training data (random 2500 labeled images) are employed for fully
supervised training. Semi-supervised training data (random 2000 labeled images and 2100 unlabeled
images) are used for semi-supervised training. Test data (400 and 900 labeled images) are reserved for
testing fully supervised and semi-supervised method, respectively.

Data preprocessing: The original images have a resolution of 640 × 320. To facilitate training, we
resize them to 640 × 640, then further downsample them to 320 × 320 and 160 × 160. These smaller
sizes are used for deep supervised training. During training, we apply data augmentation strategies,
including random flips, rotations, and cropping, to enhance model robustness and performance.

3.3. Network architecture

In our approach, we adopt the well-established Unet architecture, which comprises two fundamental
components: An encoder and a decoder, as shown in Figure 1. The encoder plays a crucial role in
extracting high-level features from the input images, while the decoder is responsible for generating
the final segmented results. We represent our model with the following formulas:

H = ViT(LinearProjection(ResNet50(X))), (3.1)
O1,O2,O3 = CNNDecoder(H), (3.2)
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where H denotes the hidden feature obtained from the CNN-Transformer hybrid encoder, and O1,
O2, O3 represent the outputs from the last three layers of the CNN decoder, which are used for deep
supervised training.
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Figure 1. The architecture of our proposed STS-TransUNet. ResNet50 backbone is the
standard and classical CNN backbone. The module following ResNet50 is ViT with 12
Transformer blocks. ResNet50 is employed for local short-range contextual modeling and
ViT is for global long-range contextual modeling. CBAM is used for spatial and channel
features aggregation. Outputs of the last three layers are used for calculating loss, that is
known as deep supervision.

Recognizing the unique strengths of both convolutional neural networks (CNNs) and
Transformers, we design a hybrid encoder structure. CNNs excel at capturing position-aware features,
while Transformers are proficient at integrating long-range contextual information. By combining
these two architectural elements, we harness their complementary advantages. This hybrid encoder
structure enhances the model’s ability to comprehend the underlying content within the images.

For the decoder, we employ a standalone CNN architecture. This choice aims to facilitate the
model’s effective learning of spatial and channel-related information. To further enhance performance,
we introduce the Convolutional Block Attention Module (CBAM) [45].

CBAM is an attention mechanism employed in computer vision tasks with the primary objective of
enhancing the performance of convolutional neural networks (CNNs). It enables better focus on
important information in different channels and spatial locations when processing images. CBAM
consists of two key components: Channel attention and spatial attention. Channel attention helps the
model learn which channels are most crucial for tasks such as image classification, while spatial
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attention helps the model identify essential regions or positions in an image for the task. This adaptive
weighting mechanism allows the model to adapt to various images and tasks. Moreover, CBAM has
demonstrated significant performance improvements in computer vision tasks, including image
classification, object detection, and semantic segmentation. Its main advantage lies in its ability to
automatically learn which features are more important for a given task, thus enhancing the model’s
performance and robustness. CBAM has found wide application in deep learning, providing a potent
tool for the field of computer vision.

Channel

Attention

Module

Spatial

Attention

Module

MLP +

MaxPool

AvgPool
Channel 

Attention

Mc

Input

Input [MaxPool, AvgPool]

Conv Spatial 

Attention

Ms

Input

Channel Attention Module

Spatial Attention Module

Convolutional Block Attention Module

Refine Feature

Figure 2. The architecture of CBAM. CBAM is composed of CAM and SAM. That means
CBAM provides a comprehensive attention mechanism, improving a model’s ability to
capture meaningful patterns.

F′ = Mc(F) ⊗ F, (3.3)
F′′ = Ms(F′) ⊗ F′, (3.4)

where ⊗ denotes element-wise multiplication. During multiplication, the attention values are
broadcasted (copied) accordingly: channel attention values are broadcasted along the spatial
dimension, and vice versa. F′′ is the final refined output. Figure 2 depicts the computation process of
each attention map. Following formulas describe the details of each attention module:
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Mc = σ(MLP(AvgPool(F)) +MLP(MaxPool(F)))
= σ(W1(W0(Fcavg)) +W1(W0(Fcmax))), (3.5)

Ms = σ( f7×7([AvgPool(F); MaxPool(F)]))
= σ( f7×7([Fsavg; Fsmax])), (3.6)

The CBAM module enhances proposed model’s understanding of image content and assists it in
prioritizing specific channels. To expedite the model’s convergence during training and enhance its
ability to generalize to different image scales, we implement a deep supervised training strategy. This
strategy involves introducing supervised signals into the last three decoder layers, each corresponding
to different image scales. It enables the model to better understand and adapt to various image
scales effectively.

3.4. Training strategy

We train both fully supervised and semi-supervised models using a loss function that combines dice
loss and IoU loss weighting. The formula of used total loss is as following:

loss = DeepDiceLoss(Ŷdeep,Ydeep) × 0.6 + DeepIoULoss(Ŷdeep,Ydeep) × 0.4, (3.7)

DiceLoss = 1 −
2 · |Ŷ ∩ Y |
|Ŷ | + |Y |

, (3.8)

IoULoss = 1 −
|Ŷ ∩ Y |
|Ŷ ∪ Y |

, (3.9)

where Ŷ and Y respectively represent the prediction and ground truth. We employ deep supervision by
computing the loss at three different scales, the deep supervision loss are shown as following:

DeepLoss = loss(Ŷ640,Y640) + loss(Ŷ320,Y320) + loss(Ŷ160,Y160). (3.10)

where Ŷ640, Ŷ320, Ŷ160 denote the outputs of the last three decoder layers, each with resolutions of 640,
320, and 160, respectively. Similarly, Y640,Y320,Y160 represent the ground truth, resized to correspond
to these resolutions. The following section details the specific two-stage training process.

3.4.1. First stage: Fully supervised training

In this stage, we implement a fully supervised training approach using samples with real labels,
adopting a 5-fold cross-validation strategy to enhance model robustness. Instead of treating each fold’s
output as a separate model, we integrated these models from all five folds into a single ensemble model.
This ensemble approach capitalizes on the strengths of each fold’s training, resulting in a more robust
and generalized model that effectively captures the diversity of the training data. The details of the
first-stage training are as follows:

Learning rate initialization: We set the initial learning rate to 3e-4 to ensure a stable start to the
training process.
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Total training epochs: The training process encompasses a total of 200 epochs, providing the
model with sufficient time to progressively enhance its performance. However, it is common for the
initial few epochs to exhibit some instability.

Warm-up strategy: To mitigate the model’s instability at the beginning of training, we implement
a warm-up strategy. This involves gradually increasing the learning rate within the first 3 epochs,
guiding the model towards a more stable training state.

Cosine curve strategy: Subsequent adjustments to the learning rate follow a cosine curve strategy.
This strategy gradually reduces the learning rate, allowing for a more refined adjustment of model
parameters until the learning rate decays to 0. This aids the model in better convergence during the
later stages of training.

Fully supervised training is conducted to establish the foundational performance of the model,
enabling it to learn feature extraction from labeled data and perform tasks. This training phase equips
the model with a certain degree of predictive capability, laying the groundwork for subsequent
semi-supervised learning.

3.4.2. Second stage: Semi-supervised training

In the second stage, we employ a semi-supervised training approach, capitalizing on the benefits
it offers. Specifically, we adopt the self-training strategy [70] to generate pseudo-labels and facilitate
model training. This phase harnesses unlabeled data effectively, maximizing the utility of available
resources. The workflow of used self-training is shown as below:
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Unlabeled data

Supervised 
training

inference

Pseudo labels

Labeled data

Unlabeled data

Pseudo labels

Labeled data

inference
Unlabeled data

Pseudo labels

Labeled data
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Supervised 
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copy copycopy

Figure 3. The workflow of self-training. Labeled data are used for supervised training,
unlabeled data will be used to generate pseudo labels and add into labeled data for supervised
training.

Generating Pseudo-Labels: We initiate this phase by feeding 2100 unlabeled images into the
model obtained from the first supervised training stage. The model, in response, produces outputs
containing predicted class (foreground and background) probabilities for these images. These
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probabilities are then averaged across the entire set.
Pseudo-Label selection: To identify high-quality data points for training, we select the top 300

images based on the predicted probabilities. These images are paired with the corresponding high-
quality pseudo-labels generated by the model.

Training with augmented data: The chosen images, along with their newly created pseudo-labels,
are used to augment the training dataset. The training process initializes with an initial learning rate of
1e-4 and spanned three epochs. This helps the model adapt to the augmented dataset.

Iterative refinement: In pursuit of further model improvement, this process is repeated five times.
In each iteration, a new model is employed, and the same steps are repeated. This iterative refinement
strategy allows the model to learn progressively from the unlabeled data. This semi-supervised training
strategy, specifically the self-training method, is valuable for harnessing the potential of unlabeled data,
effectively expanding the training dataset, and improving the model’s performance. It is a powerful tool
for leveraging available resources and enhancing the robustness of the final model.

4. Experiments and analysis

All our experiments are conducted on two 32 GB V100 GPUs. Our STS-TransUNet has a training
duration of 12 hours, and we use Pytorch 1.12 as the experimental framework. Additionally, to ensure
the reproducibility of our results, we have fixed the seed in all our experiments.

4.1. Comparative results

Quantitative analysis: After fully supervised and semi-supervised training, the results are
presented in Table 1. We use Dice, IoU (Intersection over Union) and Hausdorff distance as our
evaluation metrics. The formulas of them are shown as below,

Dice =
2 · |Ŷ ∩ Y |
|Ŷ | + |Y |

, (4.1)

IoU =
|Ŷ ∩ Y |
|Ŷ ∪ Y |

, (4.2)

H(Ŷ ,Y) = max

sup
ŷ∈Ŷ

inf
y∈Y

d(ŷ, y), sup
y∈Y

inf
ŷ∈Ŷ

d(y, ŷ)

 . (4.3)

where Ŷ and Y represent the prediction and the ground truth, respectively.
For the fully supervised training, models like UNet++ [71], UNet 3+ [72], and R2AU-Net [73],

which rely solely on CNN, exhibits relatively weak perception of global information, resulting in
less-than-ideal performance. Among the CNN-based models, R2AU-Net, which incorporates
attention mechanisms, performed the best. While Transformer blocks are capable of capturing
long-range information, they exhibit poorer position awareness inherently and require substantial
training data to excel. As a result, the performance of Swin-Unet [66, 74], DAE-Former [75] and
SegFormer [76] are not on par with our model. In summary, the hybrid combination of CNN and
Transformer in our model harnesses the strengths of both and delivered satisfying results. Even in the
semi-supervised training phase, our model outperforms the other models. While all models
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experience a decrease in dice scores on the semi-supervised test set due to its larger size, our model
retains its superior performance.

Table 1. Comparison of quantitative results on test data. Bold indicate the best results.

Fully supervised Semi-supervised
Dice IoU Hausdorff distance Dice IoU Hausdorff distance

UNet++ [71] 0.8978 0.9560 0.0368 0.8689 0.9427 0.0403
UNet 3+ [72] 0.9070 0.9589 0.0326 0.8739 0.9531 0.0365
R2AU-Net [73] 0.9081 0.9598 0.0309 0.8826 0.9556 0.0321
SegFormer [76] 0.9182 0.9626 0.0304 0.9087 0.9589 0.0303
Swin-Unet [66] 0.9171 0.9631 0.0303 0.9102 0.9588 0.0301
DAE-Former [75] 0.9251 0.9685 0.0306 0.9153 0.9601 0.0286
STS-TransUNet (Ours) 0.9318 0.9691 0.0298 0.9206 0.9723 0.0269

Qualitative analysis: Results from different models on randomly selected 4 samples are presented
in Figure 4. Comparing models solely based on CNN with those incorporating attention mechanisms,
the latter achieves clearer results. However, in comparison to Transformer-based models, the ability to
segment the completeness of teeth remains a challenge, affirming the notion that Transformers
possess stronger global modeling capabilities relative to CNN. Nevertheless, models based
exclusively on Transformers often struggle with local information awareness compared to CNN. This
is evident in Figure 4, where DAE-Former, while superior in overall results to CNN models, falls
slightly short in fine details. Our model outperforms others in terms of texture and completeness.

image UNet 3+UNet++ R2AU-Net SegFormer DAE-Former labelSTS-TransUnetSwin-Unet

Figure 4. Visual quality comparison on the test data of different models.

4.2. Ablation study

To further validate the effectiveness of CBAM module and deep supervision strategy, we conduct
extensive ablation experiments, as detailed in Table 2. Models a, b, c, d denote classical TransUNet,
TransUNet+CBAM, TransUNet+CBAM+Concat, TransUNet+Concat+DeepSupervision,
TransUNet+CBAM+Concat+DeepSupervision, respectively. The “Concat” means concat the input
with the last output feature.
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Effectiveness of CBAM: The comparison between models a and b, as well as models d and e,
reveals that CBAM contributes to some improvement in the model’s capabilities. Due to the ability of
CBAM to dynamically adjust the importance of channels and spatial locations in the feature maps
generated by CNNs. Through channel attention, it highlights crucial channels, emphasizing
informative ones while downplaying less relevant ones. Furthermore, spatial attention allows the
model to focus on significant regions within an image. This adaptive recalibration enhances feature
representation, making CBAM effective in diverse computer vision tasks.

Table 2. Results of ablation study. Bold indicates the best result.

Fully supervised Semi-supervised
Dice IoU Hausdorff distance Dice IoU Hausdorff distance

a 0.9107 0.9559 0.0315 0.9033 0.9589 0.0317
b 0.9189 0.9588 0.0308 0.9106 0.9601 0.0301
c 0.9206 0.9637 0.0306 0.9135 0.9634 0.0298
d 0.9306 0.9657 0.0300 0.9201 0.9698 0.0286
e 0.9318 0.9691 0.0298 0.9206 0.9723 0.0269

Effectiveness of deep supervision: According to the comparison between models c and e, deep
supervision strategy plays an important role in our proposed STS-TransUNet. On the Dice metric, the
adoption of the deep supervision strategy shows significant improvement in both full supervision and
semi-supervised training. By introducing supervisory signals at multiple layers, deep supervision
enables more effective learning of hierarchical features. In turn, this contributes to improved
convergence during training and enhances the model’s ability to capture intricate patterns in the data.

4.3. Competition results

We participated in MICCAI 2023 Challenges STS-2D Competition with STS-TransUNet and
achieved top 3% rankings in both the fully supervised (first round) and semi-supervised (second
round) tracks. The detailed results are as follows:

Table 3. Results of competition online test.

Fully supervised Semi-supervised
Dice IoU Hausdorff distance Dice IoU Hausdorff distance

Ours 0.9334 0.9686 0.0299 0.9113 0.9746 0.0265

5. Conclusions

We outline the methodology for both fully and semi-supervised learning with panoramic dental
images, covering dataset, partitioning, preprocessing, network architecture, training, comparisons, and
evaluation metrics.

We harness a high-quality dataset from various institutions and employ general data preprocessing
techniques to ensure the performance and robustness of our model. Furthermore, we seamlessly merge
fully supervised and semi-supervised learning, effectively harnessing both labeled and unlabeled data.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2366–2384.

https://tianchi.aliyun.com/competition/entrance/532086


2378

We employ a U-shape architecture and introduce a hybrid encoder merging CNN and Transformer
strengths, enhancing positional awareness and long-range information fusion. Additionally, CBAM is
incorporated to improve spatial and channel information management, contributing to exceptional
performance. We train the model in two stages: First, with fully supervised training for a robust
baseline, and then transition to semi-supervised training. The semi-supervised approach includes a
‘self-training’ strategy with pseudo-labels, data augmentation, and iterative model optimization,
effectively improving performance with limited labeled data. For evaluation, we compare our model
with others in the field. The results unequivocally show its superiority across various metrics,
excelling in detail representation, tooth segmentation completeness, and global modeling capabilities.
This reaffirms the soundness of our model’s design.

Our research has limitations, such as the omission of prior clinical dental knowledge in the model
construction. We have focused on the model’s architectural priors, inadvertently overlooking the
integration of valuable clinical insights. In our future work, we plan to adopt a more inclusive
approach, incorporating a broader spectrum of clinical priors to infuse the model with greater
real-world clinical relevance and accuracy.

In conclusion, our comprehensive methodology, diverse materials, and rigorous evaluation
highlight the outstanding performance of our model in dental panoramic image segmentation. The
innovative fusion of CNN and Transformer technologies, along with the implementation of
semi-supervised training, establishes it as a front-runner in the field. This study not only provides
valuable insights into deep learning applications in medical imaging but also underscores the potential
of semi-supervised learning with unlabeled data. In the future, we aim to enhance the practical
deployment of our model by integrating clinical information, ensuring that it not only excels in
theoretical performance but also demonstrates greater real-world clinical efficacy and relevance.
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