The influence of short-range interactions between a multi-phase, multi-component mixture and a solid wall in confined geometries is crucial in life sciences and engineering. In this work, we extend the Cahn-Hilliard model with dynamic boundary conditions from a binary to a ternary mixture, employing the Onsager principle, which accounts for the cross-coupling between forces and fluxes in both the bulk and surface. Moreover, we have developed a linear, second-order and unconditionally energy-stable numerical scheme for solving the governing equations by utilizing the invariant energy quadratization method. This efficient solver allows us to explore the impacts of wall-mixture interactions and dynamic boundary conditions on phenomena like spontaneous phase separation, coarsening processes and the wettability of droplets on surfaces. We observe that wall-mixture interactions influence not only surface phenomena, such as droplet contact angles, but also patterns deep within the bulk. Additionally, the relaxation rates control the droplet spreading on surfaces. Furthermore, the cross-coupling relaxation rates in the bulk significantly affect coarsening patterns. Our work establishes a comprehensive framework for studying multi-component mixtures in confined geometries.
Citation: Shuang Liu, Yue Wu, Xueping Zhao. A ternary mixture model with dynamic boundary conditions[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 2050-2083. doi: 10.3934/mbe.2024091
The influence of short-range interactions between a multi-phase, multi-component mixture and a solid wall in confined geometries is crucial in life sciences and engineering. In this work, we extend the Cahn-Hilliard model with dynamic boundary conditions from a binary to a ternary mixture, employing the Onsager principle, which accounts for the cross-coupling between forces and fluxes in both the bulk and surface. Moreover, we have developed a linear, second-order and unconditionally energy-stable numerical scheme for solving the governing equations by utilizing the invariant energy quadratization method. This efficient solver allows us to explore the impacts of wall-mixture interactions and dynamic boundary conditions on phenomena like spontaneous phase separation, coarsening processes and the wettability of droplets on surfaces. We observe that wall-mixture interactions influence not only surface phenomena, such as droplet contact angles, but also patterns deep within the bulk. Additionally, the relaxation rates control the droplet spreading on surfaces. Furthermore, the cross-coupling relaxation rates in the bulk significantly affect coarsening patterns. Our work establishes a comprehensive framework for studying multi-component mixtures in confined geometries.
[1] | C. Brangwynne, C. R. Eckmann, D. S. Courson, A. Rybarska, C. Hoege, J. Gharakhani, et al., Germline p granules are liquid droplets that localize by controlled dissolution/condensation, Science, 324 (2009), 1729–1732. https://doi.org/10.1126/science.1172046 doi: 10.1126/science.1172046 |
[2] | J. G. Gall, M. Bellini, Z. Wu, C. Murphy, Assembly of the nuclear transcription and processing machinery: cajal bodies (coiled bodies) and transcriptosomes, Mol. Biol. Cell, 10 (1999), 4385–4402. https://doi.org/10.1091/mbc.10.12.4385 doi: 10.1091/mbc.10.12.4385 |
[3] | J. Agudo-Canalejo, S. W. Schultz, H. Chino, S. M. Migliano, C. Saito, I. Koyama-Honda, et al., Wetting regulates autophagy of phase-separated compartments and the cytosol, Nature, 591 (2021), 142–146. https://doi.org/10.1038/s41586-020-2992-3 doi: 10.1038/s41586-020-2992-3 |
[4] | P. Tabeling, Introduction to Microfluidics, Oxford University Press, 2005. |
[5] | F. Bruder, R. Brenn, Spinodal decomposition in thin films of a polymer blend, Phys. Rev. Lett., 69 (1992), 624–627. https://doi.org/10.1103/PhysRevLett.69.624 doi: 10.1103/PhysRevLett.69.624 |
[6] | G. Krausch, C. Dai, E. J. Kramer, F. S. Bates, Real space observation of dynamic scaling in a critical polymer mixture, Phys. Rev. Lett., 71 (1993), 3669–3672. https://doi.org/10.1103/PhysRevLett.71.3669 doi: 10.1103/PhysRevLett.71.3669 |
[7] | L. Sung, A. Karim, J. F. Douglas, C. C. Han, Dimensional crossover in the phase separation kinetics of thin polymer blend films, Phys. Rev. Lett., 76 (1996), 4368–4371. https://doi.org/10.1103/PhysRevLett.76.4368 doi: 10.1103/PhysRevLett.76.4368 |
[8] | A. K. Gunstensen, D. H. Rothman, S. Zaleski, G. Zanetti, Lattice Boltzmann model of immiscible fluids, Phys. Rev. A, 43 (1991), 4320–4327. https://doi.org/10.1103/PhysRevA.43.4320 doi: 10.1103/PhysRevA.43.4320 |
[9] | X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47 (1993), 1815–1819. https://doi.org/10.1103/PhysRevE.47.1815 doi: 10.1103/PhysRevE.47.1815 |
[10] | X. Shan, H. Chen, Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E, 49 (1994), 2941–2948. https://doi.org/10.1103/PhysRevE.49.2941 doi: 10.1103/PhysRevE.49.2941 |
[11] | M. R. Swift, W. R. Osborn, J. M. Yeomans, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., 75 (1995), 830–833. https://doi.org/10.1103/PhysRevLett.75.830 doi: 10.1103/PhysRevLett.75.830 |
[12] | M. R. Swift, E. Orlandini, W. R. Osborn, J. M. Yeomans, Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Phys. Rev. E, 54 (1996), 5041–5052. https://doi.org/10.1103/PhysRevE.54.5041 doi: 10.1103/PhysRevE.54.5041 |
[13] | S. Schmieschek, J. Harting, Contact angle determination in multicomponent lattice boltzmann simulations, Commun. Comput. Phys., 9 (2011), 1165–1178. https://doi.org/10.4208/cicp.201009.271010s doi: 10.4208/cicp.201009.271010s |
[14] | G. Yan, Z. Li, T. Bore, S. A. G. Torres, A. Scheuermann, L. Li, Discovery of dynamic two-phase flow in porous media using two-dimensional multiphase lattice Boltzmann simulation, Energies, 14 (2021), 4044. https://doi.org/10.3390/en14134044 doi: 10.3390/en14134044 |
[15] | G. Yan, Z. Li, T. Bore, S. A. G. Torres, A. Scheuermann, L. Li, A lattice Boltzmann exploration of two-phase displacement in 2D porous media under various pressure boundary conditions, J. Rock Mech. Geotech. Eng., 14 (2022), 1782–1798. https://doi.org/10.1016/j.jrmge.2022.05.003 doi: 10.1016/j.jrmge.2022.05.003 |
[16] | H. Liang, J. Xu, J. Chen, Z. Chai, B. Shi, Lattice Boltzmann modeling of wall-bounded ternary fluid flows, Appl. Math. Modell., 73 (2019), 487–513. https://doi.org/10.1016/j.apm.2019.03.009 doi: 10.1016/j.apm.2019.03.009 |
[17] | A. Ferrari, I, Lunati, Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy, Adv. Water Resour., 57 (2013), 19–31. https://doi.org/10.1016/j.advwatres.2013.03.005 doi: 10.1016/j.advwatres.2013.03.005 |
[18] | A. Ferrari, I, Lunati, Inertial effects during irreversible meniscus reconfiguration in angular pores, Adv. Water Resour., 74 (2014), 1–13. https://doi.org/10.1016/j.advwatres.2014.07.009 doi: 10.1016/j.advwatres.2014.07.009 |
[19] | A. Ferrari, J. Jimenez-Martinez, T. L. Borgne, Y. Méheust, I. Lunati, Challenges in modeling unstable two-phase flow experiments in porous micromodels, Water Resour. Res., 51 (2015), 1381–1400. https://doi.org/10.1002/2014WR016384 doi: 10.1002/2014WR016384 |
[20] | Z. Li, S. Galindo-Torres, A. Scheuermann, L. Li, Mesoscopic approach to fluid-solid interaction: Apparent liquid slippage and its effect on permeability estimation, Phys. Rev. E, 98 (2018), 052803. https://doi.org/10.1103/PhysRevE.98.052803 doi: 10.1103/PhysRevE.98.052803 |
[21] | Z. Li, J. Li, G. Yan, S. Galindo-Torres, A. Scheuermann, L. Li, Mesoscopic model framework for liquid slip in a confined parallel-plate flow channel, Phys. Rev. Fluids, 6 (2021), 034203. https://doi.org/10.1103/PhysRevFluids.6.034203 doi: 10.1103/PhysRevFluids.6.034203 |
[22] | J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. Ⅰ. interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102 |
[23] | J. W. Cahn, On spinodal decomposition in cubic crystals, Acta Metall., 10 (1962), 179–183. https://doi.org/10.1016/0001-6160(62)90114-1 doi: 10.1016/0001-6160(62)90114-1 |
[24] | F. Eliot, E. G. Morton, Continuum theory of thermally induced phase transitions based on an order parameter, Physica D, 68 (1993), 326–343. https://doi.org/10.1016/0167-2789(93)90128-N doi: 10.1016/0167-2789(93)90128-N |
[25] | F. Bai, C. M. Elliott, A. Gardiner, A. Spence, A. M. Stuart, The viscous Cahn–Hilliard equation. Ⅰ. Computations, Nonlinearity, 8 (1995), 131–160. https://doi.org/10.1088/0951-7715/8/2/002 doi: 10.1088/0951-7715/8/2/002 |
[26] | M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178–192. https://doi.org/10.1016/0167-2789(95)00173-5 doi: 10.1016/0167-2789(95)00173-5 |
[27] | H. P. Fischer, P. Maass, W. Dieterich, Novel surface modes in spinodal decomposition, Phys. Rev. Lett., 79 (1997), 893–896. https://doi.org/10.1103/PhysRevLett.79.893 doi: 10.1103/PhysRevLett.79.893 |
[28] | R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl, et al., Phase separation in confined geometries: Solving the Cahn–Hilliard equation with generic boundary conditions, Comput. Phys. Commun., 133 (2001), 139–157. https://doi.org/10.1016/S0010-4655(00)00159-4 doi: 10.1016/S0010-4655(00)00159-4 |
[29] | R. G. Gisèle, M. Alain, S. Giulio, A Cahn–Hilliard model in a domain with non-permeable walls, Physica D, 240 (2011), 754–766. https://doi.org/10.1016/j.physd.2010.12.007 doi: 10.1016/j.physd.2010.12.007 |
[30] | C. Liu, H. Wu, A Cahn–Hilliard model in a domain with non-permeable walls, Arch. Ration. Mech. Anal., 233 (2019), 167–247. https://doi.org/10.1007/s00205-019-01356-x doi: 10.1007/s00205-019-01356-x |
[31] | P. Knopf, K. F. Lam, C. Liu, S. Metzger, Phase-field dynamics with transfer of materials: The Cahn–Hilliard equation with reaction rate dependent dynamic boundary conditions, ESAIM Math. Model. Numer. Anal., 55 (2021), 229–282. https://doi.org/10.1051/m2an/2020090 doi: 10.1051/m2an/2020090 |
[32] | K. Binder, H. L. Frisch, Dynamics of surface enrichment: A theory based on the Kawasaki spin-exchange model in the presence of a wall, Z. Phys. B: Condens. Matter, 84 (1991), 403–418. https://doi.org/10.1007/BF01314015 doi: 10.1007/BF01314015 |
[33] | S. Puri, K. Binder, Surface effects on spinodal decomposition in binary mixtures and the interplay with wetting phenomena, Phys. Rev. E, 49 (1994), 5359–5377. https://doi.org/10.1103/PhysRevE.49.5359 doi: 10.1103/PhysRevE.49.5359 |
[34] | H. Garcke, P. Knopf, S. Yayla, Long-time dynamics of the Cahn–Hilliard equation with kinetic rate dependent dynamic boundary conditions, Nonlinear Anal., 215 (2022), 112619. https://doi.org/10.1016/j.na.2021.112619 doi: 10.1016/j.na.2021.112619 |
[35] | H. Wu, A review on the Cahn–Hilliard equation: classical results and recent advances in dynamic boundary conditions, Electron. Res. Arch., 30 (2022), 2788–2832. https://doi.org/10.3934/era.2022143 doi: 10.3934/era.2022143 |
[36] | T. Fukao, S. Yoshikawa, S. Wada, Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case, Commun. Pure Appl. Anal., 16 (2017), 1915–1938. https://doi.org/10.3934/cpaa.2017093 doi: 10.3934/cpaa.2017093 |
[37] | X. Meng, X. Bao, Z. Zhang, Second order stabilized semi-implicit scheme for the Cahn–Hilliard model with dynamic boundary conditions, J. Comput. Appl. Math., 428 (2023), 115145. https://doi.org/10.1016/j.cam.2023.115145 doi: 10.1016/j.cam.2023.115145 |
[38] | J. M. Park, R. Mauri, P. D. Anderson, Phase separation of viscous ternary liquid mixtures, Chem. Eng. Sci., 80 (2023), 270–278. https://doi.org/10.1016/j.ces.2012.06.017 doi: 10.1016/j.ces.2012.06.017 |
[39] | A. Lamorgese, R. Mauri, Diffusion-driven dissolution or growth of a liquid drop embedded in a continuous phase of another liquid via phase-field ternary mixture model, Langmuir, 33 (2017), 13125–13132. https://doi.org/10.1021/acs.langmuir.7b02105 doi: 10.1021/acs.langmuir.7b02105 |
[40] | A. Lamorgese, R. Mauri, Dissolution or growth of a liquid drop via phase-field ternary mixture model based on the non-random, two-liquid equation, Langmuir, 20 (2018), 125. https://doi.org/10.3390/e20020125 doi: 10.3390/e20020125 |
[41] | Y. Li, J. Choi, J. Kim, Multi-component Cahn–Hilliard system with different boundary conditions in complex domains, J. Comput. Phys., 323 (2016), 1–16. https://doi.org/10.1016/j.jcp.2016.07.017 doi: 10.1016/j.jcp.2016.07.017 |
[42] | J. Yang, Y. Li, J. Kim, Modified multi-phase diffuse-interface model for compound droplets in contact with solid, J. Comput. Phys., 491 (2023), 112345. https://doi.org/10.1016/j.jcp.2023.112345 doi: 10.1016/j.jcp.2023.112345 |
[43] | C. Zhang, H. Ding, P. Gao, Y. Wu, Diffuse interface simulation of ternary fluids in contact with solid, J. Comput. Phys., 309 (2016), 37–51. https://doi.org/10.1016/j.jcp.2015.12.054 doi: 10.1016/j.jcp.2015.12.054 |
[44] | L. Onsager, Reciprocal relations in irreversible processes. Ⅰ., Phys. Rev., 37 (1931), 405–426. https://doi.org/10.1103/PhysRev.37.405 doi: 10.1103/PhysRev.37.405 |
[45] | L. Onsager, Reciprocal relations in irreversible processes. Ⅱ., Phys. Rev., 38 (1931), 2265–2279. https://doi.org/10.1103/PhysRev.38.2265 doi: 10.1103/PhysRev.38.2265 |
[46] | X. Yang, J. Li, G. Forest, Q. Wang, Hydrodynamic theories for flows of active liquid crystals and the generalized Onsager principle, Entropy, 18 (2016), 202. https://doi.org/10.1103/PhysRev.38.2265 doi: 10.1103/PhysRev.38.2265 |
[47] | P. Sheng, J. Zhang, C. Liu, Onsager principle and electrorheological fluid dynamics, Prog. Theor. Phys. Suppl., 175 (2008), 131–143. https://doi.org/10.1143/PTPS.175.131 doi: 10.1143/PTPS.175.131 |
[48] | M. Doi, Onsager principle in polymer dynamics, Prog. Polym. Sci., 112 (2021), 101339. https://doi.org/10.1016/j.progpolymsci.2020.101339 doi: 10.1016/j.progpolymsci.2020.101339 |
[49] | F. Jülicher, J. Prost, Generic theory of colloidal transport, Eur. Phys. J. E, 29 (2009), 27–36. https://doi.org/10.1140/epje/i2008-10446-8 doi: 10.1140/epje/i2008-10446-8 |
[50] | X. Yang, J. Zhao, Q. Wang, J. Shen, Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method, Math. Models Methods Appl. Sci., 27 (2017), 1993–2030. https://doi.org/10.1142/S0218202517500373 doi: 10.1142/S0218202517500373 |
[51] | X. Yang, D. Han, Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal equation, J. Comput. Phys., 333 (2017), 1116–1134. https://doi.org/10.1016/j.jcp.2016.10.020 doi: 10.1016/j.jcp.2016.10.020 |
[52] | J. Zhao, X. Yang, J. Li, Q. Wang, Energy stable numerical schemes for a hydrodynamic model of Nematic liquid crystals, SIAM J. Sci. Comput., 38 (2016), A3264–A3290. https://doi.org/10.1137/15M1024093 doi: 10.1137/15M1024093 |
[53] | J. Zhao, X. Yang, Y. Gong, X. Zhao, X. Yang, J. Li, et al., A general strategy for numerical approximations of non-equilibrium models–Part Ⅰ: Thermodynamical systems, Int. J. Numer. Anal. Mod., 15 (2018), 884–918. |
[54] | J. W. Cahn, Critical point wetting, J. Chem. Phys., 66 (1977), 3667–3672. https://doi.org/10.1063/1.434402 doi: 10.1063/1.434402 |
[55] | X. Zhao, Q. Wang, A second order fully-discrete linear energy stable scheme for a binary compressible viscous fluid model, J. Comput. Phys., 395 (2019), 382–409. https://doi.org/10.1016/j.jcp.2019.06.030 doi: 10.1016/j.jcp.2019.06.030 |