In the context of this investigation, we introduce an innovative mathematical model designed to elucidate the intricate dynamics underlying the transmission of Anthroponotic Cutaneous Leishmania. This model offers a comprehensive exploration of the qualitative characteristics associated with the transmission process. Employing the next-generation method, we deduce the threshold value $ R_0 $ for this model. We rigorously explore both local and global stability conditions in the disease-free scenario, contingent upon $ R_0 $ being less than unity. Furthermore, we elucidate the global stability at the disease-free equilibrium point by leveraging the Castillo-Chavez method. In contrast, at the endemic equilibrium point, we establish conditions for local and global stability, when $ R_0 $ exceeds unity. To achieve global stability at the endemic equilibrium, we employ a geometric approach, a Lyapunov theory extension, incorporating a secondary additive compound matrix. Additionally, we conduct sensitivity analysis to assess the impact of various parameters on the threshold number. Employing center manifold theory, we delve into bifurcation analysis. Estimation of parameter values is carried out using least squares curve fitting techniques. Finally, we present a comprehensive discussion with graphical representation of key parameters in the concluding section of the paper.
Citation: Manal Alqhtani, Khaled M. Saad, Rahat Zarin, Amir Khan, Waleed M. Hamanah. Qualitative behavior of a highly non-linear Cutaneous Leishmania epidemic model under convex incidence rate with real data[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 2084-2120. doi: 10.3934/mbe.2024092
In the context of this investigation, we introduce an innovative mathematical model designed to elucidate the intricate dynamics underlying the transmission of Anthroponotic Cutaneous Leishmania. This model offers a comprehensive exploration of the qualitative characteristics associated with the transmission process. Employing the next-generation method, we deduce the threshold value $ R_0 $ for this model. We rigorously explore both local and global stability conditions in the disease-free scenario, contingent upon $ R_0 $ being less than unity. Furthermore, we elucidate the global stability at the disease-free equilibrium point by leveraging the Castillo-Chavez method. In contrast, at the endemic equilibrium point, we establish conditions for local and global stability, when $ R_0 $ exceeds unity. To achieve global stability at the endemic equilibrium, we employ a geometric approach, a Lyapunov theory extension, incorporating a secondary additive compound matrix. Additionally, we conduct sensitivity analysis to assess the impact of various parameters on the threshold number. Employing center manifold theory, we delve into bifurcation analysis. Estimation of parameter values is carried out using least squares curve fitting techniques. Finally, we present a comprehensive discussion with graphical representation of key parameters in the concluding section of the paper.
[1] | R. Molina, L. Gradoni, J. Alvar, HIV and the transmission of Leishmania, Ann. Trop. Med. Parasitol., 97 (2003), 29–45. https://doi.org/10.1179/000349803225002516 doi: 10.1179/000349803225002516 |
[2] | A. Hati, S. Sur, H. Dwivedi, J. Bhattacharyya, H. Mukhejee, G. Chandra, A longitudinal study on the distribution of Phlebotomus argentipes sandflies at different heights in cattleshed, Ind. J. Med. Res., 93 (1991), 388–390. |
[3] | M. Hussain, S. Munir, M. A. Jamal, S. Ayaz, M. Akhoundi, K. Mohamed, Epidemic outbreak of anthroponotic cutaneous leishmaniasis in Kohat District, Khyber Pakhtunkhwa, Pakistan, Acta Tropica, 172 (2017), 147–155. https://doi.org/10.1016/j.actatropica.2017.04.035 doi: 10.1016/j.actatropica.2017.04.035 |
[4] | J. Kolaczinski, S. Brooker, H. Reyburn, M. Rowland, Epidemiology of anthroponotic cutaneous leishmaniasis in Afghan refugee camps in northwest Pakistan, Trans. R. Soc. Trop. Med. Hygiene, 98 (2004), 373–378. https://doi.org/10.1016/j.trstmh.2003.11.003 doi: 10.1016/j.trstmh.2003.11.003 |
[5] | L. F. Chaves, M. J. Cohen, M. Pascual, M. L. Wilson, Social exclusion modifies climate and deforestation impacts on a vector-borne disease, PLoS Neglected Trop. Dis., 2 (2008), e176. https://doi.org/10.1371/journal.pntd.0000176 doi: 10.1371/journal.pntd.0000176 |
[6] | D. L. Sacks, P. V. Perkins, Development of infective stage Leishmania promastigotes within phlebotomine sandflies, Am. J. Trop. Med. Hyg., 34 (1985), 456–467. |
[7] | J. Harre, K. Dorsey, L. Armstrong, J. Burge, K. Kinnamon, Comparative fecundity and survival rates of Phlebotomus papatasi sandflies membrane-fed on blood from eight mammal species, Med. Vet. Entomol., 15 (2001), 189–196. |
[8] | O. E. Kasap, B. Alten, Comparative demography of the sand fly Phlebotomus papatasi (Diptera: Psychodidae) at constant temperatures, J. Vector Ecol., 31 (2006), 378–385. https://doi.org/10.3376/1081-1710(2006)31[378:CDOTSF]2.0.CO;2 doi: 10.3376/1081-1710(2006)31[378:CDOTSF]2.0.CO;2 |
[9] | R. Porrozzi, A. Teva, V. F. Amara, M. V. Santos dacocta, G. J. R. Grimaldi, Cross-immunity experiments between different species or strains of Leishmania in rhesus macaques (Macaca mulatta), Am. J. Trop. Med. Hyg., 71 (2004), 297–305. https://doi.org/10.4269/ajtmh.2004.71.297 doi: 10.4269/ajtmh.2004.71.297 |
[10] | L. F. Chaves, M. J. Hernandez, Mathematical modelling of American Cutaneous Leishmaniasis: Incidental hosts and threshold conditions for infection persistence, Acta Tropica, 92 (2004), 245–252. https://doi.org/10.1016/j.actatropica.2004.08.004 doi: 10.1016/j.actatropica.2004.08.004 |
[11] | L. F. Chaves, M. J. Cohen, M. Pascual, M. L. Wilson, Social exclusion modifies climate and deforestation impacts on a vector-borne disease, PLoS Neglected Trop. Dis., 2 (2008), e176. https://doi.org/10.1371/journal.pntd.0000176 doi: 10.1371/journal.pntd.0000176 |
[12] | A. Khan, R. Zarin, M. Inc, G. Zaman, B. Almohsen, Stability analysis of leishmania epidemic model with harmonic mean type incidence rate, Eur. Phys. J. Plus, 135 (2020), 528. https://doi.org/10.1140/epjp/s13360-020-00535-0 doi: 10.1140/epjp/s13360-020-00535-0 |
[13] | K. Khan, R. Zarin, A. Khan, A. Yusuf, M. Al-Shomrani, A. Ullah, Stability analysis of five-grade Leishmania epidemic model with harmonic mean-type incidence rate, Adv. Differ. Equations, 2021 (2021), 86. https://doi.org/10.1186/s13662-021-03249-4 doi: 10.1186/s13662-021-03249-4 |
[14] | Y. Zhao, A. Khan, U. W. Humphries, R. Zarin, M. Khan, A. Yusuf, Dynamics of visceral leishmania epidemic model with non-singular kernel, Fractals, 30 (2022), 2240135. |
[15] | R. Zarin, A. Khan, M. Inc, U. W. Humphries, T. Karite, Dynamics of five grade leishmania epidemic model using fractional operator with Mittag-Leffler kernel, Chaos Solitons Fractals, 147 (2021), 110985. https://doi.org/10.1016/j.chaos.2021.110985 doi: 10.1016/j.chaos.2021.110985 |
[16] | L. F. Chaves, M. J. Hernandez, Mathematical modelling of American Cutaneous Leishmaniasis: Incidental hosts and threshold conditions for infection persistence, Acta Tropica, 92 (2004), 245–252. https://doi.org/10.1016/j.actatropica.2004.08.004 doi: 10.1016/j.actatropica.2004.08.004 |
[17] | P. Das, D. Mukherjee, A. K. Sarkar, Effect of delay on the model of American Cutaneous Leishmaniasis, J. Biol. Syst., 15 (2007), 139. https://doi.org/10.1142/S0218339007002155 doi: 10.1142/S0218339007002155 |
[18] | J. E. Calzada, A. Saldaña, C. Rigg, A. Valderrama, L. Romero, L. F. Chaves, Changes in phlebotomine sandfly species composition following insecticide thermal fogging in a rural setting of Western Panama, PLoS ONE, 8 (2013), e53289. https://doi.org/10.1371/journal.pone.0053289 doi: 10.1371/journal.pone.0053289 |
[19] | L. F. Chaves, Climate and recruitment limitation of hosts: The dynamics of American cutaneous Leishmaniasis seen through semi-mechanistic seasonal models, Ann. Trop. Med. Parasitol., 103 (2009), 221–234. https://doi.org/10.1179/136485909X398267 doi: 10.1179/136485909X398267 |
[20] | N. Bacaer, S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality: The case of cutaneous leishmaniasis in Chichaoua, Morocco, J. Math. Biol., 53 (2006), 421–436. https://doi.org/10.1007/s00285-006-0015-0 doi: 10.1007/s00285-006-0015-0 |
[21] | M. Zamir, G. Zaman, A. S. Alshomrani, Sensitivity analysis and optimal control of anthroponotic cutaneous Leishmania, PLoS ONE, 11 (2016), e0160513. https://doi.org/10.1371/journal.pone.0160513 doi: 10.1371/journal.pone.0160513 |
[22] | M. Y. Li, J. S. Muldowney, A geometric approach to global-stability problems, SIAM J. Math. Anal., 27 (2006), 1070–1083. https://doi.org/10.1137/S0036141094266449 doi: 10.1137/S0036141094266449 |
[23] | A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871–1886. https://doi.org/10.1007/s11538-007-9196-y doi: 10.1007/s11538-007-9196-y |
[24] | B. Buonomo, D. Lacitignola, On the backward bifurcation of a vaccination model with nonlinear incidence, Nonlinear Anal. Modell. Control, 16 (2011), 30–46. |
[25] | B. Buonomo, D. Lacitignola, On the dynamics of an SEIR epidemic model with a convex incidence rate, Ricerche di Matematica, 57 (2008), 261–281. |
[26] | C. Castillo-Chavez, Z. Feng, W. Huang, Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, Springer-Verlag, Berlin-Heidelberg, New York, 2001. |
[27] | R. H. Martin, Logarithmic norms and projections applied to linear differential systems, J. Math. Anal. Appl., 45 (1974), 432–454. https://doi.org/10.1016/0022-247X(74)90084-5 doi: 10.1016/0022-247X(74)90084-5 |
[28] | C. Sun, W. Yang, Global results for an SIRS model with vaccination and isolation, Nonlinear Anal. Real World Appl., 11 (2010), 4223–4237. https://doi.org/10.1016/j.nonrwa.2010.05.009 doi: 10.1016/j.nonrwa.2010.05.009 |
[29] | A. B. Gumel, C. C. McCluskey, J. Watmough, An SVEIR model for assessing potential impact of an imperfect Anti-SARS vaccine, Math. Biosci. Eng., 3 (2006), 485–512. |
[30] | O. Sharomi, C. N. Podder, A. B. Gumel, E. H. Elbasha, J. Watmough, Role of incidence function in vaccine-induced backward bifurcation in some HIV models, Math. Biosci., 210 (2007), 436–463. https://doi.org/10.1016/j.mbs.2007.05.012 doi: 10.1016/j.mbs.2007.05.012 |
[31] | H. Abboubakar, J. C. Kamgang, D. Tieudjo, Backward bifurcation and control in transmission dynamics of arboviral diseases, Math. Biosci., 278 (2016), 100–129. https://doi.org/10.1016/j.mbs.2016.06.002 doi: 10.1016/j.mbs.2016.06.002 |
[32] | D. Mua, C. Xub, Z. Liua, Y. Panga, Further insight into bifurcation and hybrid control tactics of a chlorine dioxide-iodine-malonic acid chemical reaction model incorporating delays, MATCH Commun. Math. Comput. Chem., 89 (2023), 529–566. https://doi.org/10.46793/match.89-3.529M doi: 10.46793/match.89-3.529M |
[33] | C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 55 (2023), 6125–6151. https://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y |
[34] | P. Li, R. Gao, C. Xu, J. Shen, S. Ahmad, Y. Li, Exploring the impact of delay on Hopf bifurcation of a type of BAM neural network models concerning three nonidentical delays, Neural Process. Lett., 55 (2023), 11595–11635. https://doi.org/10.1007/s11063-023-11392-0 doi: 10.1007/s11063-023-11392-0 |
[35] | P. Li, Y. Lu, C. Xu, J. Ren, Insight into hopf bifurcation and control methods in fractional order BAM neural networks incorporating symmetric structure and delay, Cognit. Comput., 15 (2023), 1825–1867. |
[36] | C. Xu, Q. Cui, Z. Liu, Y. Pan, X. Cui, W. Ou, et al., Extended hybrid controller design of bifurcation in a delayed chemostat model, MATCH Commun. Math. Comput. Chem., 90 (2023), 609–648. |
[37] | M. Alqhtani, M. M. Khader, K. M. Saad, Numerical simulation for a high-dimensional chaotic lorenz system based on gegenbauer wavelet polynomials, Mathematics, 11 (2023), 472. https://doi.org/10.3390/math11020472 doi: 10.3390/math11020472 |
[38] | K. M. Saad, H. M. Srivastava, Numerical solutions of the multi-space fractional-order coupled Korteweg–De Vries equation with several different kernels, Fractal Fract., 7 (2023), 716. https://doi.org/10.3390/fractalfract7100716 doi: 10.3390/fractalfract7100716 |
[39] | S. A. Fahel, D. Baleanu, Q. M. Al-Mdallal, K. M. Saad, Quadratic and cubic logistic models involving Caputo–Fabrizio operator, Eur. Phys. J. Spec. Top., 232 (2023), 2351–2355. https://doi.org/10.1140/epjs/s11734-023-00935-0 doi: 10.1140/epjs/s11734-023-00935-0 |
[40] | P. Li, X. Peng, C. Xu, L. Han, S. Shi, Novel extended mixed controller design for bifurcation control of fractional-order Myc/E2F/miR-17-92 network model concerning delay, Math. Methods Appl. Sci., 46 (2023), 18878–18898. https://doi.org/10.1002/mma.9597 doi: 10.1002/mma.9597 |
[41] | Y. Zhang, P. Li, C. Xu, X. Peng, R. Qiao, Investigating the effects of a fractional operator on the evolution of the ENSO model: Bifurcations, stability and numerical analysis, Fractal Fract., 7 (2023), 602. https://doi.org/10.3390/fractalfract7080602 doi: 10.3390/fractalfract7080602 |
[42] | J. Carr, Applications of Center Manifold Theory, Springer-Verlag, New York, 2012. |
[43] | C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361–404. |
[44] | A. Khan, R. Zarin, G. Hussain, A. H. Usman, U. W. Humphries, J. F. Gomez-Aguilar, Modeling and sensitivity analysis of HBV epidemic model with convex incidence rate, Results Phys., 22 (2021), 103836. https://doi.org/10.1016/j.rinp.2021.103836 doi: 10.1016/j.rinp.2021.103836 |
[45] | R. Zarin, U. W. Humphries, A robust study of dual variants of SARS-CoV-2 using a reaction-diffusion mathematical model with real data from the USA, Eur. Phys. J. Plus, 138 (2023), 1057. https://doi.org/10.1140/epjp/s13360-023-04631-9 doi: 10.1140/epjp/s13360-023-04631-9 |