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Abstract: The influence of short-range interactions between a multi-phase, multi-component mixture
and a solid wall in confined geometries is crucial in life sciences and engineering. In this work, we
extend the Cahn-Hilliard model with dynamic boundary conditions from a binary to a ternary mixture,
employing the Onsager principle, which accounts for the cross-coupling between forces and fluxes in
both the bulk and surface. Moreover, we have developed a linear, second-order and unconditionally
energy-stable numerical scheme for solving the governing equations by utilizing the invariant energy
quadratization method. This efficient solver allows us to explore the impacts of wall-mixture interac-
tions and dynamic boundary conditions on phenomena like spontaneous phase separation, coarsening
processes and the wettability of droplets on surfaces. We observe that wall-mixture interactions in-
fluence not only surface phenomena, such as droplet contact angles, but also patterns deep within the
bulk. Additionally, the relaxation rates control the droplet spreading on surfaces. Furthermore, the
cross-coupling relaxation rates in the bulk significantly affect coarsening patterns. Our work estab-
lishes a comprehensive framework for studying multi-component mixtures in confined geometries.

Keywords: phase-field model; ternary mixture; dynamic boundary condition; energy stability;
wetting

1. Introduction

The physics of multi-component mixtures, including spontaneous phase separation, nucleation and
growth and coarsening have been well-studied both theoretically and experimentally. The question of
how the multi-component, multi-phase system interacts with solid walls in confined geometries has
gained much attention due to its wide applications in life science and engineering, e.g., membrane-less
organelle formation and wetting on the membrane-bound organelles in living cells [1–3]; micro-fluid
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close to a solid interface in microfluidic devices [4]; thin films of polymer blends in slab geometry [5–7]
and so on.

Numerous methods have been developed to study interface problems and their interaction with solid
walls. For instance, the lattice Boltzmann model has garnered considerable attention as a tool to facili-
tate the simulation of multi-phase and multi-component systems with complex boundary conditions, as
demonstrated by several studies [8–12]. Additionally, the exploration of wetting properties in ternary
mixture models has been a significant focus [13–15]. For example, Liang et al. [16] formulated a wet-
ting boundary condition for ternary fluids interacting with a solid substrate, applying this to the lattice
Boltzmann model. The volume-of-fluid (VOF) technique is particularly effective in scenarios involv-
ing solid obstacles, as it integrates the contact angle by applying appropriate boundary conditions to
the fluid-function’s gradient at solid interfaces. Therefore, VOF has been extensively used in fluid
dynamics analyses within complex porous structures [17–21]. However, among all of these methods,
the phase-field method stands out as the most effective tool for modeling and simulating multi-phase
systems. Its inherent flexibility in handling complex topological changes in the phases, coupled with its
ability to seamlessly integrate with various boundary conditions, makes it a superior choice to address
the complexities of interface problems in multi-component systems.

The Cahn-Hilliard equation is a fundamental phase-field model. Since it was first proposed in the
field of materials science to describe the pattern formation evolution of microstructures during the
phase separation process in binary alloys [22, 23], the Cahn-Hilliard equation and its variants have
been successfully applied to model a wide variety of segregation-like phenomena in science; see, for
instance, [24–31] and the references therein. In this study, we denote the domain asΩ and the boundary
of the domain Γ. We introduce ϕ, which represents the volume fraction of a specific component within
the mixture. ϕ ∈ (0, 1) is dimensionless and quantifies the proportion of the total volume occupied by
a given component, providing insight into the concentration and distribution of that component within
the system. The total free energy of the system is given as

F =
∫
Ω

[
fb(ϕ) +

κ

2
|∇ϕ|2

]
dx, (1.1)

where fb(ϕ) is the bulk free-energy density function and the term κ
2 |∇ϕ|

2 represents the interfacial
energy between phases. The Cahn-Hilliard equation has the following format:

∂tϕ = ∇M · ∇µ , (1.2)

where mobility M can be either a constant or concentration-dependent function and µ is the chemical
potential of the component ϕ. The boundary conditions include the following two categories:

1) periodic boundary conditions,

2) physical boundary conditions, e.g., homogeneous Neumann boundary conditions.

However, in some systems, e.g., phase separation in confined geometries, the condensate will inter-
play with boundaries; thus more generic boundary conditions, which describe the interaction between
wall and condensates, are introduced. In this work, we will focus on the study of generic boundary
conditions.

The influence of boundaries (solid walls) on the phase separation process of binary mixtures has
attracted a lot of attention from scientists. For instance, Fischer et al. [27] introduced the following
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dynamic boundary conditions in 1997:

∂nµ|Γ = 0, (1.3a)

∂tϕ|Γ = −Γs

[
κ ∂nϕ + fs

′
− κΓ∆ΓϕΓ

]
, (1.3b)

where fs is the surface free-energy density, which represents the short-range interaction between mix-
ture components and the solid wall, ∆Γ stands for the Laplace–Beltrami operator on the boundary
surface Γ, Γs defines a surface kinetic coefficient and the term κ ∂nϕ is due to the surface contribution
that comes from the variation of the bulk free energy fb. The boundary (1.3a) is simply the condition
that no current can flow through the surface, while the boundary (1.3b) can be derived by requiring the
system to tend to minimize its surface free energy as follows:

Fs =

∫
Ω

[κΓ
2
|∇ΓϕΓ|

2 + fs

]
. (1.4)

Boundary conditions of similar form as (1.3) have also been derived from a semi-infinite Ising model
with Kawasaki spin exchange dynamics [32, 33]. In 2011, Goldstein et al. derived a Cahn-Hilliard
model in a domain with non-permeable walls [29]. In this model, they assumed that the total mass in
the bulk and on the boundary, i.e., ∫

Ω

ϕ(x)dx +
∫
Γ

ϕ(x)dS , (1.5)

is conserved. Its boundary conditions are as follows:

∂tϕ|Γ = ∇ΓM · ∇ΓµΓ − βM∂nµ, (1.6a)

µ|Γ = β
[
κ ∂nϕ + fs

′
− κΓ∆ΓϕΓ

]
. (1.6b)

In addition, they proved the existence and uniqueness of weak solutions and studied their asymptotic
behavior as time goes to infinity.

Liu and Wu [30] introduced a Liu-Wu model in 2019 with non-flux boundary conditions for chem-
ical potential and Cahn–Hilliard-type gradient flow on the boundary, i.e.,

∂nµ = 0, (1.7a)

∂tϕ|Γ = ∇ΓM · ∇Γ
[
κ ∂nϕ + fs

′
− κΓ∆ΓϕΓ

]
. (1.7b)

In 2021, Patrik Knopf and collaborators proposed a general model, i.e., the KLLM model [31]:

L∂nµ = −µ|Γ + β
[
κ ∂nϕ + fs

′
− κΓ∆ΓϕΓ

]
, (1.8a)

∂tϕ|Γ = ∇ΓM · ∇Γ
[
κ ∂nϕ + fs

′
− κΓ∆ΓϕΓ

]
− βM∂nµ. (1.8b)

Garcke et al. [34] performed nonlinear analysis to evaluate the long-time dynamics of the
Cahn–Hilliard equation with kinetic rate dependent dynamic boundary conditions for the KLLM
model. We refer the reader to [35] for a review of the model and analysis.

Correspondingly, there are numerical studies for binary mixture models with dynamic boundary
conditions. For example, Kenzler et al. [28] proposed an implicit numerical scheme to solve the
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Cahn–Hilliard equation with (1.3). The authors discretized the solution in space by applying the
finite-difference method to edge points. A method of stability analysis was derived and a variable
time-stepping strategy was employed to simulate the system over a long period of time. Furthermore,
the numerical scheme is conditionally gradient-stable, which means that the free energy decreases
monotonously in time. In 2017, Fukao et al. [36] constructed a structure-preserving finite-difference
scheme for the Cahn–Hilliard equation with dynamic boundary conditions in the one-dimensional
case for Goldstein model (1.6). Unlike the space discretization in [28], the authors applied the finite-
difference method to center points. The existence of the solution and the error estimate were also
obtained. In addition, the laws of mass conservation and energy dissipation were satisfied at the dis-
crete level. Meng et al. [37] developed a second-order stabilized semi-implicit scheme for Liu-Wu
model (1.7). The corresponding energy stability and convergence analysis of the scheme were derived
theoretically.

Besides the binary mixture models, phase-field models for ternary mixture systems have been de-
veloped due to their frequent real-world applications, as indicated in the literature [38–40]. Wetting
behavior [41, 42] has also been proposed based on the phase-field models. For example, a phase-field
model for multi-component Cahn-Hilliard systems in complex domains was developed in [41] by con-
sidering contact angle or no mass flow boundary conditions. Building on this, Yang et al. [42] extended
the geometric formulation of wetting conditions by using the weighted contact angles defined within
the implementation of wetting conditions, following the concept of the diffusive interface [43]. This in-
novative phase-field model efficiently describes the dynamic behavior of compound droplets in contact
with solid objects.

However, we note that dynamic boundary conditions are missing in the aforementioned multi-
component phase-field models. Moreover, to the best of our knowledge, a ternary mixture model
with the force-flux cross-coupling relations has not been explored yet. In summary, based on the above
discussion, we focus on the following aims in this work:

1) Derive a model for a ternary mixture with the force-flux cross-coupling relations in a confined
geometry with dynamic boundary conditions based on the Onsager principle and irreversible ther-
modynamics [44–49].

2) Develop a linear second-order unconditionally energy-stable numerical scheme for the derived
model based on the invariant energy quadratization (IEQ) method [50–53].

3) Investigate equilibrium and non-equilibrium properties of the system based on the numerical simu-
lations.

Section 2 details the derivation of a kinetic model. This model, which addresses a ternary mix-
ture within confined geometries and its interaction with adjacent solid walls, is formulated by using
principles of irreversible thermodynamics. It features a conservation of total mass and a decrease in
total energy over time. The mathematical model undergoes an equivalent reformulation based on the
IEQ method in Section 3, where we also introduce a second-order, linear, unconditional energy-stable
numerical scheme for the revised model. Section 4 examines how spontaneous phase separation and
surface wettability are influenced by various model parameters through the use of numerical studies.
The paper concludes in Section 5, where we summarize our findings. For clarity, we list abbreviations
and notations in Tables 1 and 2.
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Table 1. Abbreviations.

Abbreviations Explanations

DBC Dynamic boundary condition

IEQ Invariant energy quadratization

Table 2. Notations.

Notations Explanations

χi j interaction strength between the components i and j

γ coupling interaction strength between components on the surface

Γ boundary of domain

Γi relaxation parameter of dynamic boundary condition, i=1, 2, 12

Γs surface kinetic coefficient

κB Boltzmann constant

κi,κiΓ gradient coefficients associated with interface free energies, i=1, 2, 12

µi chemical potential in the bulk for components i=1, 2

µiΓ chemical potential on the surface for components i=1, 2

∆Γ Laplace–Beltrami operator on the boundary surface

ν molecular volume of component 3

νi molecular volume of component i, i=1, 2

Ω domain

ωi internal free energy coefficient for component i in the bulk

ϕi volume fraction of three components, i=1, 2, 3

ϕiΓ volume fraction of a component, i=1, 2

Di diffusion coefficients, i=1, 2, 12

fb bulk free-energy density function

fs surface free-energy density function

gi molecule-molecule interaction strength of each component near the wall

hi interaction strength proportional to the component volume fraction, i=1, 2

Ji mass flux, i=1, 2

Mi mobility function, i=1, 2, 12

T temperature of the isotropic system

2. Mathematical model derivation

In this section, we will extend the binary mixture model with dynamic boundary conditions to a
ternary mixture model, based on the Onsager principles [44–48]. We denote the volume fractions of
three components as ϕ1, ϕ2 and ϕ3, where ϕ3 = 1 − ϕ1 − ϕ2 based on the incompressibility assumption.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2050–2083.



2055

The total free energy of the system involves two contributions: one is the free energy in the bulk Ω,
and another on the surface Γ, i.e.,

E = Ebulk + Esurf, (2.1)

where the bulk free energy Ebulk and surface free energy Esurface are as follows:

Ebulk =

∫
Ω

[
fb(ϕ1, ϕ2) +

κ1
2
|∇ϕ1|

2 +
κ2
2
|∇ϕ2|

2 + κ12∇ϕ1 · ∇ϕ2

]
, (2.2)

Esurf =

∫
Γ

[
fs(ϕ1Γ, ϕ2Γ) +

κ1Γ
2
|∇Γϕ1Γ|

2 +
κ2Γ
2
|∇Γϕ2Γ|

2 + κ12Γ∇Γϕ1Γ · ∇Γϕ2Γ

]
. (2.3)

κi, κiΓ, i = 1, 2, 12 denote the gradient coefficients associated with interface free energies. For simplic-
ity, we set κ12 = 0 and κ12Γ = 0 in the following work. ∇Γ denotes the gradient operator on the surface.
The bulk free-energy density function fb(ϕ1, ϕ2) and surface free-energy density function fs(ϕ1Γ, ϕ2Γ)
are defined as the Flory-Huggins free energy and a second-order polynomial based on application in
the polymer field [54]:

fb(ϕ1, ϕ2) =
kBT
ν

[ϕ1

n1
ln ϕ1 +

ϕ2

n2
ln ϕ2 + (1 − ϕ1 − ϕ2) ln(1 − ϕ1 − ϕ2) + χ12ϕ1ϕ2

+ χ13ϕ1(1 − ϕ1 − ϕ2) + χ23ϕ2(1 − ϕ1 − ϕ2) + ω1ϕ1 + ω2ϕ2

]
, (2.4)

fs(ϕ1Γ, ϕ2Γ) =
kBT
νs

[
h1ϕ1Γ + g1ϕ

2
1Γ + h2ϕ2Γ + g2ϕ

2
2Γ + γϕ1Γϕ2Γ

]
, (2.5)

where νi = niν represents the molecular volume of component i, i = 1, 2, and ν represents the molecular
volume of component 3. For simplicity, we assume the molecular volumes of each component are
equivalent, i.e., ν1 = ν2 = ν and n1 = n2 = 1. kB is the Boltzmann constant and T is the temperature of
the isotropic system. The term χi jϕiϕ j refers to the interaction strength between the component i and
the component j. ωiϕi denotes the internal free energy for component i in the bulk Ω. On the surface,
hiϕi, i = 1, 2 is the linear order term, which denotes the interaction strength as is proportional to the
component volume fraction. The quadratic giϕ

2
i depicts the molecule-molecule interactions of each

components near the wall, while γϕ1ϕ2 describes the coupling interaction between components on the
surface.

We assume that there is no chemical reaction in the system, that is, each component of the mixture
conserves the total mass. We write the conservation laws as follows:

∂tϕ1 + ∇ · J1 = 0, (2.6)
∂tϕ2 + ∇ · J2 = 0. (2.7)

2.1. Irreversible thermodynamics

We consider a closed system in this work. According to irreversible thermodynamics, the entropy
product rate is inversely proportional to the energy change rate.

−T∂tS =
dE
dt
=
∂E
∂ϕ1

∂ϕ1

∂t
+
∂E
∂ϕ2

∂ϕ2

∂t
+
∂E
∂ϕ1Γ

∂ϕ1Γ

∂t
+
∂E
∂ϕ2Γ

∂ϕ2Γ

∂t
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+
∂E
∂∇ϕ1

∂∇ϕ1

∂t
+
∂E
∂∇ϕ2

∂∇ϕ2

∂t
+
∂E
∂∇Γϕ1Γ

∂∇Γϕ1Γ

∂t
+
∂E
∂∇Γϕ2Γ

∂∇Γϕ2Γ

∂t
(2.8)

=

∫
Γ

dS
[
n · κ1∇ϕ1 + (

∂ fs

∂ϕ1Γ
− κ1Γ∆Γϕ1)

]∂ϕ1Γ

∂t

+

∫
Γ

dS
[
n · κ2∇ϕ2 + (

∂ fs

∂ϕ2Γ
− κ2Γ∆Γϕ2)

]∂ϕ2Γ

∂t

−

∫
Γ

dS
[µ1

ν1
n · J1 +

µ2

ν2
n · J2

]
+

∫
Ω

dx
[
∇
µ1

ν1
· J1 + ∇

µ2

ν2
· J2

]
, (2.9)

where the chemical potentials in the bulk for components 1 and 2 are respectively defined as

µ1 = ν1
δE
δϕ1
= ν1

[ ∂ fb

∂ϕ1
− κ1∆ϕ1

]
, (2.10)

µ2 = ν2
δE
δϕ2
= ν2

[ ∂ fb

∂ϕ2
− κ2∆ϕ2

]
. (2.11)

We obtain the conjugate fluxes and forces as follows:

J1 ←→ −∇µ1 , x ∈ Ω , (2.12a)
J2 ←→ −∇µ2 , x ∈ Ω , (2.12b)

∂tϕ1Γ ←→ −

(
n · κ1∇ϕ1 +

∂ fs

∂ϕ1Γ
− κ1Γ∆Γϕ1

)
, x ∈ Γ , (2.12c)

∂tϕ2Γ ←→ −

(
n · κ2∇ϕ2 +

∂ fs

∂ϕ2Γ
− κ2Γ∆Γϕ2

)
, x ∈ Γ . (2.12d)

Based on the Onsager principle, we define a symmetric positive definite mobility function between
conjugate fluxes and forces in both the bulk Ω and the surface Γ, i.e.,

J1 = −M1(ϕ1, ϕ2)∇µ1 − M12(ϕ1, ϕ2)∇µ2, (2.13a)
J2 = −M12(ϕ1, ϕ2)∇µ1 − M2(ϕ1, ϕ2)∇µ2, (2.13b)

∂tϕ1Γ = −Γ1

[
n · κ1∇ϕ1 − κ1Γ∆Γϕ1Γ +

∂ fs

∂ϕ1Γ

]
− Γ12

[
n · κ2∇ϕ2 − κ2Γ∆Γϕ2Γ +

∂ fs

∂ϕ2Γ

]
, (2.13c)

∂tϕ2Γ = −Γ12

[
n · κ1∇ϕ1 − κ1Γ∆Γϕ1Γ +

∂ fs

∂ϕ1Γ

]
− Γ2

[
n · κ2∇ϕ2 − κ2Γ∆Γϕ2Γ +

∂ fs

∂ϕ2Γ

]
, (2.13d)

where Γ1, Γ2 and Γ12 are the relaxation parameters of the dynamic boundary conditions. Mi(ϕ1, ϕ2) and
M12(ϕ1, ϕ2) are defined as

M1(ϕ1, ϕ2) = m1ϕ1(1 − ϕ1 − ϕ2), (2.14)
M2(ϕ1, ϕ2) = m2ϕ2(1 − ϕ1 − ϕ2), (2.15)

M12(ϕ1, ϕ2) = m12ϕ1ϕ2(1 − ϕ1 − ϕ2) (2.16)

to remove the singularity from the Flory-Huggins free-energy density functions. Mi(ϕ1, ϕ2) and Γi,
i = 1, 2 are the diagonal elements in the mobility matrix, depicting the direct effects of forces on the
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corresponding fluxes, while M12(ϕ1, ϕ2) and Γ12 are the cross-coupling terms denoting the cross inter-
play of forces and fluxes. The cross-coupling relaxation rate refers to the rate at which perturbations
in one variable are coupled to changes in another variable in the system. We note that our model is
an extension of the binary model developed in [27]. Our work provides a general framework that can
extend all existing binary mixture models [29–31, 35] with dynamic boundary conditions to a ternary
model.

Combining the definition of fluxes derived from the Onsager principle with the conservation law
(2.6), we obtain the governing equations of the system as follows:

∂tϕ1 = ∇M1(ϕ1, ϕ2) · ∇µ1 + ∇M12(ϕ1, ϕ2) · ∇µ2, (2.17a)
∂tϕ2 = ∇M2(ϕ1, ϕ2) · ∇µ2 + ∇M12(ϕ1, ϕ2) · ∇µ1, (2.17b)

with the following boundary conditions:

∂tϕ1Γ = −Γ1

[
n · κ1∇ϕ1 − κ1Γ∆Γϕ1Γ +

∂ fs

∂ϕ1Γ

]
− Γ12

[
n · κ2∇ϕ2 − κ2Γ∆Γϕ2Γ +

∂ fs

∂ϕ2Γ

]
, (2.18a)

∂tϕ2Γ = −Γ2

[
n · κ2∇ϕ2 − κ2Γ∆Γϕ2Γ +

∂ fs

∂ϕ2Γ

]
− Γ12

[
n · κ1∇ϕ1 − κ1Γ∆Γϕ1Γ +

∂ fs

∂ϕ1Γ

]
, (2.18b)

∂nµ1|Γ = 0, (2.18c)
∂nµ2|Γ = 0. (2.18d)

We denote the diffusion coefficients as Di = mikBT , i = 1, 2, and D12 = m12kBT . In this work, we
use the dynamic boundary conditions given by (2.18) in the x direction and the periodic boundary
condition for all variables in the y direction.

Our model has the following properties:

Theorem 2.1. The total mass of each component in the domain Ω is conserved, i.e.,∫
Ω

ϕi(x, y, t)dx =
∫
Ω

ϕi(x, y, 0)dx, i = 1, 2. (2.19)

proof: For i = 1,

d
dt

∫
Ω

ϕ1dx =
∫
Ω

∂tϕ1dx = −
∫
Ω

∇ · J1dx =
∫
Γ

J1 · ndS

=

∫
Γ

[
− M1(ϕ1, ϕ2)∇µ1 − M12(ϕ1, ϕ2)∇µ2

]
· ndS = 0, (2.20)

with the boundary conditions ∂nµ1|Γ = 0 and ∂nµ2|Γ = 0. It is similar for i = 2. Thus, (2.19) is obtained.

Theorem 2.2. The total free energy is dissipative, i.e.,

∂tE = ∂t(Esurf + Ebulk) ≤ 0. (2.21)

proof: For simplicity, we assume that ν1 = ν2 = ν, and we define

µ1Γ = n · κ1∇ϕ1 − κ1Γ∆Γϕ1Γ +
∂ fs

∂ϕ1Γ
, (2.22)
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µ2Γ = n · κ2∇ϕ2 − κ2Γ∆Γϕ2Γ +
∂ fs

∂ϕ2Γ
. (2.23)

The total energy dissipation rate is given by

∂tE =
∫
Ω

dx
[
(
∂ fb

∂ϕ1
− κ1∆ϕ1)∂tϕ1 + (

∂ fb

∂ϕ2
− κ2∆ϕ2)∂tϕ2

]
+

∫
Γ

dS
[
n · κ1∇ϕ1 + (

∂ fs

∂ϕ1Γ
− κ1Γ∆Γϕ1)

]∂ϕ1Γ

∂t
+

∫
Γ

dS
[
n · κ2∇ϕ2 + (

∂ fs

∂ϕ2Γ
− κ2Γ∆Γϕ2)

]∂ϕ2Γ

∂t

= −

∫
Ω

dx
1
ν

[
M1(ϕ1, ϕ2)|∇µ1|

2 + 2M12(ϕ1, ϕ2)∇µ1 · ∇µ2 + M2(ϕ1, ϕ2)|∇µ2|
2
]

−

∫
Γ

dS
[
Γ1µ

2
1Γ + 2Γ12µ1Γµ2Γ + Γ2µ

2
2Γ

]
. (2.24)

Since the mobility matrices

 M1 M12

M12 M2

,
 Γ1 Γ12

Γ12 Γ2

 are positive definite, ∂tE ≤ 0 holds.

2.2. Non-dimensionalization

We set the characteristic length scale as the molecular length l0 = ν
1/3 and characteristic timescale

t0 = ν
2/3/D1 such that D̃1 = D1t0/l2

0 = 1. Rescaling x̃ = x/l0 and t̃ = t/t0, our model has the following
non-dimensional parameters:

D̃2 =
D2

D1
, D̃12 =

D12

D1
, Γ̃i = Γi

kBT
νs

t0 , κ̄i = κi
νs

kBT
1
l0
=
ν1/3

l0
, (2.25)

f̃s = fs
νs

kBT
, κ̃iΓ =

1

l2/3
0

κiΓ
νs

kBT
, κ̃i =

1

l2/3
0

κi
ν

kBT
, i = 1, 2. (2.26)

For brevity, we skip the tildes in the following equations. The dimensionless equations governing
the kinetics of the system are given as

∂tϕ1 = ∇ϕ1(1 − ϕ1 − ϕ2) · ∇µ1 + ∇D12ϕ1ϕ2(1 − ϕ1 − ϕ2) · ∇µ2, (2.27a)
∂tϕ2 = ∇D12ϕ1ϕ2(1 − ϕ1 − ϕ2) · ∇µ1 + ∇D2ϕ2(1 − ϕ1 − ϕ2) · ∇µ2, (2.27b)

with the dimensionless boundary conditions written as

∂tϕ1Γ = −Γ1

[
n · κ̄1∇ϕ1 − κ1Γ∆Γϕ1Γ +

∂ fs

∂ϕ1Γ

]
− Γ12

[
n · κ̄2∇ϕ2 − κ2Γ∆Γϕ2Γ +

∂ fs

∂ϕ2Γ

]
, (2.28a)

∂tϕ2Γ = −Γ2

[
n · κ̄2∇ϕ2 − κ2Γ∆Γϕ2Γ +

∂ fs

∂ϕ2Γ

]
− Γ12

[
n · κ̄1∇ϕ1 − κ1Γ∆Γϕ1Γ +

∂ fs

∂ϕ1Γ

]
, (2.28b)

∂nµ1|Γ = 0, (2.28c)
∂nµ2|Γ = 0. (2.28d)

In the next section, we will develop the numerical scheme based on the IEQ method [51–53].
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3. Numerical scheme

We first reformulate the mathematical model into an equivalent form. Then, we discretize the
reformulated system in time and space, respectively. In this work, we consider the 2D domain for
simplicity.

3.1. Mathematical reformulation

We reformulate the total free energy in a quadratic form:

q1 =

√
ϕ1

n1
ln ϕ1 +

ϕ2

n2
ln ϕ2 + (1 − ϕ1 − ϕ2) ln(1 − ϕ1 − ϕ2) + χ12ϕ1ϕ2 + χ13ϕ1ϕ3 + χ23ϕ2ϕ3 +C, (3.1)

where C is a constant such that the value under the square root is positive; ϕ3 = 1 − ϕ1 − ϕ2. Then, the
total energy becomes

E = Esurf + Ebulk = Esurf +

∫
Ω

[
q2

1 + ω1ϕ1 + ω2ϕ2 +
κ1
2
|∇ϕ1|

2 +
κ2
2
|∇ϕ2|

2
]
dx; (3.2)

the chemical potentials become

µ1 = 2q1
∂q1

∂ϕ1
+ ω1 − κ1∆ϕ1, (3.3a)

µ2 = 2q1
∂q1

∂ϕ2
+ ω2 − κ2∆ϕ2. (3.3b)

The reformulated governing equations of the system are as follows:

∂tϕ1 = ∇M1(ϕ1, ϕ2)·∇µ1 + ∇M12(ϕ1, ϕ2)·∇µ2, (3.4a)
∂tϕ2 = ∇M2(ϕ1, ϕ2)·∇µ2 + ∇M12(ϕ1, ϕ2)·∇µ1, (3.4b)

∂tq1 =
∂q1

∂ϕ1
∂tϕ1 +

∂q1

∂ϕ2
∂tϕ2, (3.4c)

with the following boundary conditions:

∂tϕ1Γ = −Γ1

[
n · κ1∇ϕ1 − κ1Γ∆Γϕ1Γ +

∂ fs

∂ϕ1Γ

]
− Γ12

[
n · κ2∇ϕ2 − κ1Γ∆Γϕ2Γ +

∂ fs

∂ϕ2Γ

]
, (3.5a)

∂tϕ2Γ = −Γ2

[
n · κ2∇ϕ2 − κ1Γ∆Γϕ2Γ +

∂ fs

∂ϕ2Γ

]
− Γ12

[
n · κ1∇ϕ1 − κ1Γ∆Γϕ1Γ +

∂ fs

∂ϕ1Γ

]
, (3.5b)

∂nµ1|Γ = 0, (3.5c)
∂nµ2|Γ = 0. (3.5d)

The reformulated system has the following properties.

Theorem 3.1. The total mass of each component in the domain Ω is conserved, i.e.,∫
Ω

ϕi(x, y, t)dx =
∫
Ω

ϕi(x, y, 0)dx, i = 1, 2. (3.6)
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Theorem 3.2. The total free energy is dissipative, i.e.,

∂tE = ∂t(Esurf + Ebulk) ≤ 0. (3.7)

We skip the proof here. Next, we will discretize the reformulated governing equation in both the
time and space directions.

3.2. Semi-discrete scheme in time

We use the Crank-Nicolson method in the time direction. ∆t is the time step. (·)n represents the
solution at the nth time step, i.e., tn = n∆t. We denote

∂n+1
t (·) =

(·)n+1 − (·)n

∆t
, (·)n+1/2 =

(·)n + (·)n+1

2
, ¯(·)n+1/2

=
3(·)n − (·)n−1

2
. (3.8)

The governing equations of the system are as follows:

∂n+1
t ϕ1 = ∇M1(ϕ̄1

n+1/2
, ϕ̄2

n+1/2)·∇µn+1/2
1 + ∇M12(ϕ̄1

n+1/2
, ϕ̄2

n+1/2)·∇µn+1/2
2 , (3.9a)

∂n+1
t ϕ2 = ∇M2(ϕ̄1

n+1/2
, ϕ̄2

n+1/2)·∇µn+1/2
2 + ∇M12(ϕ̄1

n+1/2
, ϕ̄2

n+1/2)·∇µn+1/2
1 , (3.9b)

∂n+1
t q1 =

¯∂q1

∂ϕ1

n+1/2

∂n+1
t ϕ1 +

¯∂q1

∂ϕ2

n+1/2

∂n+1
t ϕ2, (3.9c)

with the following boundary conditions:

∂n+1
t ϕ1Γ = −Γ1

[
n · κ̄1∇ϕn+1/2

1 − κ1Γ∆Γϕ
n+1/2
1Γ +

∂ fs

∂ϕ1Γ

n+1/2]
(3.10a)

− Γ12

[
n · κ̄2∇ϕn+1/2

2 − κ1Γ∆Γϕ
n+1/2
2Γ +

∂ fs

∂ϕ2Γ

n+1/2]
,

∂n+1
t ϕ2Γ = −Γ2

[
n · κ̄2∇ϕn+1/2

2 − κ1Γ∆Γϕ
n+1/2
2Γ +

∂ fs

∂ϕ2Γ

n+1/2]
(3.10b)

− Γ12

[
n · κ̄1∇ϕn+1/2

1 − κ1Γ∆Γϕ
n+1/2
1Γ +

∂ fs

∂ϕ1Γ

n+1/2]
,

∂nµ
n+1
1 |Γ = 0, (3.10c)

∂nµ
n+1
2 |Γ = 0, (3.10d)

where

µn+1/2
1 = 2qn+1/2

1

¯∂q1

∂ϕ1

n+1/2

+ ω1 − κ1∆ϕ
n+1/2
1 , (3.11a)

µn+1/2
2 = 2qn+1/2

1

¯∂q1

∂ϕ2

n+1/2

+ ω2 − κ2∆ϕ
n+1/2
2 . (3.11b)

3.3. Fully discrete scheme

We use the central finite-difference method such that there is second-order accuracy in the space.
Specifically, we apply a uniform mesh in 2D space [0, L] × [0, L] (see Figure 1). In the x direction, the
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Interior point

Ghost point

Edge point

y

x

Figure 1. Sketch of the staggered mesh in 2D space. The blue line is the boundary Γ of the
2D domain Ω = [0, L] × [0, L] in the x − y plane. The black solid points are the center points
inside the bulk, the black empty points are the ghost points adjacent to the boundary Γ and
the crosses denote the edge points.

domain is divided into Nx equal-sized subintervals. Similarly, in the y direction, the domain is divided
into Ny subintervals, each of equal size. We discretize the scalar functions given as ϕi and ∆ϕi values
at the center point (xi, y j), where

xi =

(
i −

1
2

)
L
Nx
, i = 0, 1, · · · ,Nx + 1, (3.12)

y j =

(
j −

1
2

)
L
Ny
, j = 0, 1, · · · ,Ny + 1, (3.13)

and we discretize the vector functions, e.g., ∇ϕi, at the edge points (xi+ 1
2
, y j) or (xi, y j+ 1

2
) [55], where

xi+ 1
2
= i

L
Nx
, i = 0, 1, · · · ,Nx, (3.14)

y j+ 1
2
= j

L
Ny
, j = 0, 1, · · · ,Ny. (3.15)

At the boundary Γ, we use the average value at adjacent discrete center points, e.g.,

ϕn
1Γ| 12 , j

=
ϕn

1|0, j + ϕ
n
1|1, j

2
, ϕn

1Γ|Nx+
1
2 , j
=
ϕn

1|Nx, j + ϕ
n
1|Nx+1, j

2
, (3.16)

j = 1, · · ·Ny, is the index in the y direction.
We respectively denote the edge-to-center average and difference operator as ax and dx in the x

direction and ay and dy in the y direction, which are defined as follows:

axui, j :=
1
2

(ui+ 1
2 , j
+ ui− 1

2 , j
), dxui, j :=

1
hx

(ui+ 1
2 , j
− ui− 1

2 , j
), (3.17)
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ayvi, j :=
1
2

(vi, j+ 1
2
+ vi, j− 1

2
), dyui, j :=

1
hy

(vi, j+ 1
2
− vi, j− 1

2
). (3.18)

Figure 2. Profiles of ϕ1 with a linear interaction between solid walls and mixture components
along the contact angle of a two-phase coexisting mixture in equilibrium. The snapshots
denote the profiles of component 1, i.e., ϕ1, with different values of h1 and h2. At each
snapshot, the yellow area depicts the condensates and a white line is used to denote the
tangent line of the spherical interface at the contact point on the surface Γ. The contact angle
of a droplet between the tangent line and surface is denoted by θ. In each column (row),
we use the same h1 (h2) values. The basic parameter values used in this case are as follows:
κ1Γ = κ2Γ = 0, κ1 = κ2 = 1, g1 = g2 = γ = 0, χ12 = −1, χ23 = 0, χ13 = 2.5. Since the droplet
is a composite of ϕ1, mainly, and the contact angle is determined by the value of h1 in this
study.
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Figure 3. Profiles of ϕ2 with a linear interaction between solid walls and mixture components
along the contact angle of a two-phase coexisting mixture in equilibrium. The snapshots
denote the profiles of component 2, i.e., ϕ2, with different values of h1 and h2. The profile of
ϕ2 changes rapidly near the surface with respect to different h2 values. However, the contact
angle is determined by the value of h1 since the the droplet mainly contains ϕ1. The basic
parameter values used in this case are as follows: κ1Γ = κ2Γ = 0, κ1 = κ2 = 1, g1 = g2 = γ = 0,
χ12 = −1, χ23 = 0, χ13 = 2.5.

We respectively denote the center-to-edge average and difference operators by Ax and Dx in the
x direction. Analogously, the center-to-edge average in the y direction and difference operators are
respectively denoted as Ay and Dy. Their definitions are as follows:

Axϕi+ 1
2 , j

:=
1
2

(ϕi+1, j + ϕi, j), Dxϕi+ 1
2 , j

:=
1
hx

(ϕi+1, j − ϕi, j), (3.19)
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Ayϕi, j+ 1
2

:=
1
2

(ϕi, j+1 + ϕi, j), Dyϕi, j+ 1
2

:=
1
hy

(ϕi, j+1 − ϕi, j). (3.20)

The standard 2D discrete Laplace operator is defined as ∆h in the bulk and ∆Γh on the surface.

∆hϕ := dx(Dxϕ) + dy(Dyϕ), ∆ΓhϕΓ := dy(DyϕΓ), or ∆ΓhϕΓ := dx(DxϕΓ). (3.21)

Figure 4. Profiles of ϕ1 with a quadratic interaction between solid walls and mixture com-
ponents along the contact angle of a two-phase coexisting mixture in equilibrium. The snap-
shots denote the profiles of component 1, i.e., ϕ1, with different values of g1 and g2. We
observe that the interaction between ϕ2 and a solid wall mainly influences the contact angle.
The basic parameter values used in this case are as follows: κ1Γ = κ2Γ = 0, κ1 = κ2 = 0,
h1 = h2 = γ = 0, χ12 = −1, χ23 = 0, χ13 = 2.5.
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The discrete norm in the bulk and surface are defined as follows:

||ϕ||c = hxhy

Nx∑
i=1

Ny∑
j=1

ϕi, j, ||∇ϕ||v = hxhy

Nx∑
i=1

Ny∑
j=1

[
axDxϕi+1/2, j + ayDyϕi, j+1/2

]
, (3.22)

||ϕ||c,Γ = hy

Ny∑
j=1

ϕ jΓ, ||∇ϕ||v,Γ = hy

Ny∑
j=1

[
ayDyϕi, j+1/2

]
. (3.23)

The fully discrete numerical scheme:{
∂n+1

t ϕ1 = dxAx(M1(ϕ̄1
n+1/2
, ϕ̄2

n+1/2)Dxµ
n+1/2
1 + dyAy(M1(ϕ̄1

n+1/2
, ϕ̄2

n+1/2))Dyµ
n+1/2
1

+ dxAx(M12(ϕ̄1
n+1/2
, ϕ̄2

n+1/2)Dxµ
n+1/2
2 + dyAy(M12(ϕ̄1

n+1/2
, ϕ̄2

n+1/2))Dyµ
n+1/2
2

}∣∣∣∣
i, j
, (3.24){

∂n+1
t ϕ2 = dxAx(M2(ϕ̄1

n+1/2
, ϕ̄2

n+1/2)Dxµ
n+1/2
2 + dyAy(M2(ϕ̄1

n+1/2
, ϕ̄2

n+1/2))Dyµ
n+1/2
2

+ dxAx(M12(ϕ̄1
n+1/2
, ϕ̄2

n+1/2)Dxµ
n+1/2
1 + dyAy(M12(ϕ̄1

n+1/2
, ϕ̄2

n+1/2))Dyµ
n+1/2
1

}∣∣∣∣
i, j
, (3.25)

{
∂n+1

t q1 =
¯∂q1

∂ϕ1

n+1/2

∂n+1
t ϕ1 +

¯∂q1

∂ϕ2

n+1/2

∂n+1
t ϕ2

}∣∣∣∣
i, j
, (3.26)

where i = 1, · · ·Nx, j = 1, · · ·Ny, with the following boundary conditions:

{
∂n+1

t ϕ1Γ = −Γ1

[
n · κ̄1dxϕ

n+1/2
1 − κ1Γ∆Γhϕ

n+1/2
1Γ +

∂ fs

∂ϕ1Γ

n+1/2]
(3.27a)

− Γ12

[
n · κ̄2dxϕ

n+1/2
2 − κ2Γ∆Γhϕ

n+1/2
2Γ +

∂ fs

∂ϕ2Γ

n+1/2]}∣∣∣∣ 1
2 or(Nx+

1
2 ), j
,

{
∂n+1

t ϕ2Γ = −Γ2

[
n · κ̄2dxϕ

n+1/2
2 − κ2Γ∆Γhϕ

n+1/2
2Γ +

∂ fs

∂ϕ2Γ

n+1/2]
(3.27b)

− Γ12

[
n · κ̄1dxϕ

n+1/2
1 − κ1Γ∆Γhϕ

n+1/2
1Γ +

∂ fs

∂ϕ1Γ

n+1/2]}∣∣∣∣ 1
2 or(Nx+

1
2 ), j
,

µk|0, j = µk|1, j, µk|Nx, j = µk|Nx+1, j, k = 1, 2. (3.27c)
µk|i,0 = µk|i,1, µk|i,Ny = µk|i,Ny+1, k = 1, 2, (3.27d)

where

µn+1/2
1 |i, j = 2q1|

n+1/2
i, j

¯∂q1

∂ϕ1

n+1/2

|i, j + ω1 − κ1∆hϕ
n+1/2
1 |i, j, (3.28a)

µn+1/2
2 |i, j = 2q1|

n+1/2
i, j

¯∂q1

∂ϕ2

n+1/2

|i, j + ω2 − κ2∆hϕ
n+1/2
2 |i, j. (3.28b)

The fully discrete numerical scheme satisfies the conditions of the total mass conservation law and the
total energy dissipation rate at the discrete level.
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Theorem 3.3. Mass conservation law at discrete level: Based on the discrete boundary conditions
given by (3.27),

Nx∑
i=1

Ny∑
j=1

ϕn+1
1 |i, j − ϕ

n
1|i, j

∆t
=

Nx∑
i=1

Ny∑
j=1

[
∇ · M1∇µ

n+1/2
1 |i, j + ∇ · M12∇µ

n+1/2
2 |i, j

]
= 0; (3.29)

it is the same as for the total mass of ϕ2.

Figure 5. Profiles of ϕ2 with a quadratic interaction between solid walls and mixture com-
ponents along the contact angle of a two-phase coexisting mixture in equilibrium. The snap-
shots denote the profiles of component 2, i.e., ϕ2, with different values of g1 and g2. We
find that the interaction between ϕ1 and a solid surface changes the profiles of ϕ2 near the
surface, while the contact angle is determined by the interaction between ϕ1 and a solid wall.
The basic parameter values used in this case are as follows: κ1Γ = κ2Γ = 0, κ1 = κ2 = 1,
h1 = h2 = γ = 0, χ12 = −1, χ23 = 0, χ13 = 2.5.
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Theorem 3.4. Unconditional energy stability at discrete level: The discrete energy of the system is
defined as

En+1 = En+1
bulk + En+1

surf , (3.30)

where

En+1
bulk = || fb(ϕ1, ϕ2)n+1||c +

κ1
2
||∇ϕn+1

1 ||
2
v +
κ2
2
||∇ϕn+1

2 ||
2
v , (3.31)

En+1
surf = || fs(ϕ1Γ, ϕ2Γ)n+1||c,Γ +

κ1Γ
2
||∇ϕn+1

1Γ ||
2
v,Γ +

κ2Γ
2
||∇ϕn+1

2Γ ||
2
v,Γ. (3.32)

The total energy at the discrete level decreases with respect to time, i.e.,

En+1 ≤ En. (3.33)

proof: Using the definition of reformulated total energy at the discrete level given by (3.30) and the
formula (a2 − b2) = (a + b)(a − b), we obtain

En+1 − En

∆t
=||2 ·

qn+1
1 − qn

1

∆t
qn+1

1 + qn
1

2
+ ω1

ϕn+1
1 − ϕn

1

∆t
+ ω2

ϕn+1
2 − ϕn

2

∆t
||c

+
κ1
2
||2 ·
∇ϕn+1

1 − ∇ϕn
1

∆t
∇ϕn+1

1 + ∇ϕn
1

2
||v +
κ2
2
||2 ·
∇ϕn+1

2 − ∇ϕn
2

∆t
∇ϕn+1

2 + ∇ϕn
2

2
||v

+
κ1Γ
2
||2 ·
∇||ϕ

n+1
1Γ − ∇||ϕ

n
1Γ

∆t
∇||ϕ

n+1
1Γ + ∇||ϕ

n
1Γ

2
||v,Γ

+
κ2Γ
2
||2 ·
∇||ϕ

n+1
2Γ − ∇||ϕ

n
2Γ

∆t
∇||ϕ

n+1
2Γ + ∇||ϕ

n
2Γ

2
||v,Γ

+ h1||
ϕn+1

1 − ϕn
1

∆t
||c + g1||2 ·

ϕn+1
1 − ϕn

1

∆t
ϕn+1

1 + ϕn
1

2
||c

+ h2||
ϕn+1

2 − ϕn
2

∆t
||c + g2||

ϕn+1
2 − ϕn

2

∆t
ϕn+1

2 + ϕn
2

2
||c

+ γ||
ϕn+1

1 + ϕn
1

2
ϕn+1

2 − ϕn
2

∆t
||c + γ||

ϕn+1
2 + ϕn

2

2
ϕn+1

1 − ϕn
1

∆t
||c. (3.34)

According to the discrete chemical potentials defined in (3.28) and discrete boundary conditions given
by (3.27), we have

En+1 − En

∆t
= ||µn+1/2

1 · (∇M1·∇µ
n+1/2
1 + ∇M12·∇µ

n+1/2
2 )||v

+ ||µn+1/2
2 · (∇M2·∇µ

n+1/2
2 + ∇M12·∇µ

n+1/2
1 )||v

+ ||µn+1/2
1Γ · (−Γ1µ

n+1/2
1Γ − Γ12µ

n+1/2
2Γ )||v,Γ

+ ||µn+1/2
2Γ · (−Γ2µ

n+1/2
2Γ − Γ12µ

n+1/2
1Γ )||v,Γ

= −||M1|∇µ
n+1/2
1 |2 + 2M12∇µ

n+1/2
1 · ∇µn+1/2

2 + M2|∇µ
n+1/2
2 |2||v

− ||Γ1|µ
n+1/2
1Γ |2 + 2Γ12µ

n+1/2
1Γ µn+1/2

2Γ + Γ2|µ
n+1/2
2Γ |2||2v,Γ ≤ 0, (3.35)

i.e., (3.33) is obtained.
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4. Physical phenomenon investigation by numerical simulations

Taking advantage of the ability to vary parameters in a controlled manner and over a wide range of
scales in numerical simulations, we investigate several physical phenomena in this section, including
the wettability of multi-component droplets on solid surfaces, the effects of wall-mixture interactions
on patterns in the bulk and the role of cross-coupling relaxation rates in controlling kinetic processes
in both the bulk and surface.

According to the Gibbs rule, a ternary mixture system can have at most three coexisting phases in
a system (see Appendix for details). In this section, we will evidence our points in both two-phase and
three-phase coexisting scenarios.

Figure 6. Profiles of ϕ1 and ϕ2 with a nonlinear coupling interaction between ϕ1 and ϕ2 in
equilibrium. Plots (a, b, c) represent the concentration profiles of ϕ1, while plots (d, e, f)
represent the concentration profiles of ϕ2. We observe that, as the negative coupling interac-
tion between ϕ1 and ϕ2 becomes stronger, the contact angle decreases until the condensate
(yellow) completely wets on the solid surface (plots (a, d). Here, we only investigate the
negative coupling interaction since the positive coupling interaction will lead to nonphysi-
cal solutions. The basic parameter values used in this case are as follows: κ1Γ = κ2Γ = 0,
κ1 = κ2 = 1, h1 = h2 = g1 = g2 = 0, χ12 = −1, χ23 = 0, χ13 = 2.5.

4.1. Contact angle is determined by the additive effects of wall-mixture interaction

The contact angle is a measure of the wetting behavior of a liquid on a solid surface. It is determined
by the balance of forces between the solid phase and two other liquid phases on the top of the solid
surface. The wall-mixture interaction plays a significant role in determining the contact angle.
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Figure 7. Profiles of ϕ1 with a quadratic interaction between the solid wall and mixture
components along the contact angle of a three-phase coexisting mixture at equilibrium. With
the interaction parameter values χ12 = χ23 = χ13 = 3, the ternary mixture has three coexisting
phases (respectively denoted by red numbers 1, 2, 3 in plot e). We changed the strength of
the quadratic interaction, i.e., the values of gi, i = 1, 2. We observe that the contact angle of
droplets 1 and 2 are mainly determined by the interaction between the dominant component
and the solid wall, i.e., ϕ1 in droplet 1 and ϕ2 in droplet 2. Other basic parameter values used
in this case are as follows: κ1Γ = κ2Γ = 0, κ1 = κ2 = 1, h1 = h2 = γ = 0.

In the case of a multi-component liquid mixture, the contact angle is determined by the combined
effects of the interactions between the individual component of the mixture and the solid surface. To
grasp these additive effects, we define the surface free energy as the summation of interactions between
individual components and the solid wall.
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Figure 8. Profiles of ϕ2 with a quadratic interaction between the solid wall and mixture
components along the contact angle of a three-phase coexisting mixture at equilibrium. The
basic parameter values used in this case are as follows: κ1Γ = κ2Γ = 0, κ1 = κ2 = 1, h1 = h2 =

γ = 0, χ12 = χ23 = χ13 = 3.

Specifically, the surface free energy is given by

fs(ϕ1Γ, ϕ2Γ) =
kBT
νs

[
h1ϕ1Γ + g1ϕ

2
1Γ + h2ϕ2Γ + g2ϕ

2
2Γ + γϕ1Γϕ2Γ

]
. (4.1)

Here, hiϕi depicts the interaction between the solid wall and i-th component and giϕ
2
i represents the

interaction among i-th component molecules near the solid surface. γϕ1ϕ2 denotes the interaction
between different kinds of molecules.

If all of the interactions mentioned above are mutual, i.e., hi = gi = γ = 0, the contact angle of
droplets on the surface is 90o (see Figure 2e). If the interactions between each component and the solid
wall are all attractive, i.e., hi < 0, gi < 0 or γ < 0, the contact angle will decrease until complete
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wetting is achieved (see Figures 2–4, 5g and 6a,b), while repulsive interactions will lead to a larger
contact angle, i.e., θ > 90o(see Figures 2–4 and 5c). If interactions between individual components and
the solid wall are different, e.g., the interaction between ϕ1 and the solid wall is attractive, while the
interaction between ϕ2 and the solid wall is repulsive, the effective interaction between the droplet and
solid wall is determined by the dominant component with a higher concentration in the droplet (see
Figures 2–4 and 5a,i). These observations can be verified in the coexistence of the three phases (see
Appendix) wetting phenomena (see Figures 7 and 8).

Figure 9. Relaxation of dynamic boundary conditions controls the droplet spreading on
the surface. Plots (a–i) are the snapshots of component 1, i.e., ϕ1. We do not consider the
cross-coupling interaction in this simulation, i.e., Γ12 = 0. The relaxation rate Γi, i = 1, 2
decreases from 1 to 10−4, and the spreading process slows down correspondingly. Other basic
parameter values used in this case are as follows: κ1Γ = κ2Γ = 0, κ1 = κ2 = 1, h1 = 0, h2 =

0, g1 = −1, g2 = 0, γ = 0, χ12 = −1, χ23 = 0, χ13 = 2.5.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2050–2083.



2072

Figure 10. Profiles of ϕ1 during the spontaneous phase separation of the ternary mixture
with three-phase coexistence with various types of wall-mixture interactions. We show the
snapshots of ϕ1 at T = 10, 000. Under the condition of neutral wall-mixture interaction (plot
e, i.e., gi = 0, i = 1, 2), the condensates (yellow) distribute in the bulk homogeneously. How-
ever, under the condition of attractive/repulsive wall-mixture interaction, the condensates
distribute horizontally, parallel with the solid wall (see plots a, b, c, d, f, g, i). The basic
parameter values used in this case are as follows: h1 = h2 = 0, κ1Γ = κ2Γ = 1, κ1 = κ2 = 1,
γ = 0, χ12 = χ23 = χ13 = 3.

4.2. Wall-mixture interaction changes the condensates patterns far away from the surface

The influence of wall-mixture interactions in the formation of condensate patterns in systems ex-
hibiting three-phase coexistence has yet to be extensively investigated. This study aims to bridge this
gap by delving into the phase separation and condensate coarsening processes within such systems,
paying special attention to the varying types of wall-mixture interactions.
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Our numerical studies revealed that interactions between the wall and the mixture exert a profound
effect on the condensate patterns in the bulk, even in regions distant from the surface. We observed
distinct variations in the condensate configurations that are contingent on the nature of the wall-mixture
interactions. For instance, in cases in which strong attractive or repulsive forces were at play, the
resultant patterns manifested as strips running parallel to the solid wall, as evidenced by Figures 10 and
11a–d. Conversely, when the interactions were weak, the patterns that emerged were less structured
and more sporadic, as can be seen in Figures 10 and 11e. These findings underscore the significance
of wall-mixture interactions in determining the arrangement of condensates within the bulk.

Figure 11. Profiles of ϕ2 during the spontaneous phase separation of the ternary mixture with
three-phase coexistence with various types of wall-mixture interactions. The basic parameter
values used in this case are as follows: h1 = h2 = 0, κ1Γ = κ2Γ = 1, κ1 = κ2 = 1, γ = 0,
χ12 = χ23 = χ13 = 3.
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4.3. Relaxation rate controls the kinetic process in the bulk and surface

The relaxation rate serves as a pivotal factor that influences the kinetic processes occurring within
the bulk and on the surface of a system. To elucidate the impact of kinetic rates in the spreading of
droplets on a solid surface, we placed a droplet atop the surface and varied the kinetic rates, denoted
as Γi, from 10−4 to 1. Our observations revealed that the surface relaxation rates play a decisive role in
dictating the kinetics of droplet spreading. Specifically, a faster surface relaxation rate accelerates the
spreading of the droplet, as depicted in Figure 9.

Figure 12. Profiles of ϕ1 during spontaneous phase separation evolution at different time
points with different values of the cross-coupling coefficient m12. We find that changing
the cross-coupling coefficient m12 leads to changes in the phase separation and following
coarsening processes. The basic parameter values used in this study are as follows: h1 =

h1 = g1 = g2 = γ = 0, κ1Γ = κ2Γ = 1, κ1 = κ2 = 1, γ = 0, χ12 = χ23 = χ13 = 3.
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Figure 13. Profiles of ϕ2 during spontaneous phase separation evolution at different time
points with different values of cross-coupling coefficient m12. The basic parameter values
used in this case are as follows: h1 = h1 = g1 = g2 = γ = 0, κ1Γ = κ2Γ = 1, κ1 = κ2 = 1,
γ = 0, χ12 = χ23 = χ13 = 3.

The exploration of the effects of cross-coupling coefficients has been limited in previous research.
In this study, we altered the cross-coupling coefficient, m12, in the bulk to investigate its impact on
the phase separation process therein. Our simulations indicate that changes in cross-coupling can
indeed alter the kinetic processes (see Figures 12 and 13 for the snapshots). The total masses of ϕ1

and ϕ2 (see Figure 14) with different cross-coupling coefficient m12 values are constants, as proved
by Theorem 3.3. From the total energy profiles (see Figure 15), it is evident that variations in m12

influence the total energy evolution during the initial stages of spontaneous phase separation. Further,
we adjusted the cross-coupling coefficient on the surface, Γ12, to scrutinize its effects on the kinetics of
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droplet spreading on the solid surface. Our findings suggest that cross-coupling exerts a minimal effect
on droplet spreading and coarsening subsequent to the phase separation process.

Figure 14. Total masses of ϕ1 and ϕ2 in the system during the spontaneous phase separation
process. The basic parameter values used in this case are as follows: h1 = h1 = g1 = g2 =

γ = 0, κ1Γ = κ2Γ = 1, κ1 = κ2 = 1, γ = 0, χ12 = χ23 = χ13 = 3.

Figure 15. Total energy profiles during spontaneous phase separation process with different
values of the cross-coupling coefficient m12. The basic parameter values used in this case
are as follows: h1 = h1 = g1 = g2 = γ = 0, κ1Γ = κ2Γ = 1, κ1 = κ2 = 1, γ = 0,
χ12 = χ23 = χ13 = 3.
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5. Conclusions

In this paper, we have presented a systematic derivation of multi-component, multi-phase mixtures
with dynamic boundary conditions. The governing equations in the models are composed of the mass
conservation and constitutive equations, which are derived by using the Onsager principle to preserve
the energy dissipation rate in time. The gradient flow structure is H−1(Ω) in the bulk and L2(Γ) on the
surface.

Moreover, we have presented a second-order, fully discrete, linear and unconditionally energy-
stable numerical scheme for the ternary mixture model with dynamic boundary conditions. First, we
reformulate the model by introducing intermediate variables by implementing the IEQ strategy. Using
the reformulated model equations, we develop a second-order, energy-stable, semi-discrete numerical
scheme in time. Then, we obtain a fully discrete numerical scheme by applying the finite-difference
method to the staggered grid in space, which preserves a fully discrete energy dissipation rate and the
total mass conservation laws.

Beyond theoretical advancements, our work has substantial engineering implications. Utilizing our
efficient and accurate numerical solver, we have investigated the effects of short-ranged interaction be-
tween the mixture components and solid surface on the wettability of the surface, from the perspectives
of both stationary and kinetic solutions. We found that the contact angle of condensates are determined
by the additive effects introduced by the interaction between each component and the solid wall. The
droplet spreading can be affected hugely by the surface relaxation rates, while the cross-coupling relax-
ation rate for the surface does not influence the droplet spreading a lot. Furthermore, the spontaneous
phase separation phenomena of ternary mixtures with two phases and three phases, and subject to dy-
namic boundary conditions, have been explored. Our results suggest that strong attractive/repulsive
coupling between the surface and bulk leads to ordered condensate patterns in the bulk. Moreover, the
cross-coupling in the bulk changes the phase separation process significantly. This insight is invaluable
in fields like semiconductor manufacturing, where surface properties are critical, or in medical device
fabrication, where understanding biofluid interactions with surfaces can lead to better product designs.

Furthermore, our model and the scheme can be readily extended to models of N-component mix-
tures with N > 3. Our work provides a general framework for the study of multi-component mixtures
with dynamic boundary conditions. The multi-component mixtures with more complex boundary con-
ditions, e.g., those developed as Goldstein (1.6), Liu-Wu model (1.7) and KLLM model (1.8), can be
studied based on this framework. This work not only provides a foundational framework for future
study of multi-component mixtures with dynamic boundary conditions for a wide range of applica-
tions, it also exerts a significant influence in the study of complex fluid dynamics.
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Appendix

Phase diagram of ternary mixture

We chose to use a convex hull algorithm to calculate the phase diagram of the ternary mixture. The
interaction parameters values are χ12 = χ23 = χ13 = 3, and the wall-mixture interaction coefficients
and h1 = h2 = g1 = g2 = γ = 0.
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Figure A1. Phase diagrams of the ternary mixture and three-phase coexistence examples.
Plot a is the phase diagram of the ternary mixture. Black region depicts the case with one
homogeneous phase; green region depicts the case with two phases; blue region denotes the
case with three coexisting phases. Plots b.1–b.2, c.1–c.2, d.1–d.2 are snapshots of ϕ1 and
ϕ2 with different sets of the initial composition, which are marked by the color dots in the
blue region. The basic parameter values used in this case are as follows: h1 = 0, h2 = 0,
κ1 = κ2 = 1, g1 = g2 = γ = 0, χ12 = χ23 = χ13 = 3.

In the phase diagram Figure A1, the x axis represents the composition of one of the components ϕ1

in the mixture, while the y axis represents the composition of another component ϕ2. The concentration
of the third component equals 1 − ϕ1 − ϕ2 based on the incomprehensibility assumption. This phase
diagram depicts the behavior of the ternary mixture at equilibrium. The black regions represent the
mixture, which has no phase separation at equilibrium. The ternary mixture, which has the compo-
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sitions shown in the light green regions, will phase-separate into two coexisting phases with different
composition profiles. In the blue region, there are three coexisting phases. The compositions of these
three phases are denoted by the yellow stars in the three corners of the region. Here, we give three
examples of three-phase coexisting ternary mixtures, which are depicted by three colorful dots (red,
magenta, blue). Correspondingly, in Figure A1b.1–d.2, we show the three-phase coexisting system
with phases 1, 2, 3. Specifically, Figure A1b.1,c.1,d.1 show the concentration profiles of ϕ1 in each
case, while Figure A1b.2,c.2,d.2 the concentration profiles of ϕ2. All of the numerical simulations of
three-phase coexisting phenomena in the main text are based on this phase diagram.
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