The chronological age used in demography describes the linear evolution of the life of a living being. The chronological age cannot give precise information about the exact developmental stage or aging processes an organism has reached. On the contrary, the biological age (or epigenetic age) represents the true evolution of the tissues and organs of the living being. Biological age is not always linear and sometimes proceeds by discontinuous jumps. These jumps can be negative (we then speak of rejuvenation) or positive (in the event of premature aging), and they can be dependent on endogenous events such as pregnancy (negative jump) or stroke (positive jump) or exogenous ones such as surgical treatment (negative jump) or infectious disease (positive jump). The article proposes a mathematical model of the biological age by defining a valid model for the two types of jumps (positive and negative). The existence and uniqueness of the solution are solved, and its temporal dynamic is analyzed using a moments equation. We also provide some individual-based stochastic simulations.
Citation: Jacques Demongeot, Pierre Magal. Population dynamics model for aging[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 19636-19660. doi: 10.3934/mbe.2023870
The chronological age used in demography describes the linear evolution of the life of a living being. The chronological age cannot give precise information about the exact developmental stage or aging processes an organism has reached. On the contrary, the biological age (or epigenetic age) represents the true evolution of the tissues and organs of the living being. Biological age is not always linear and sometimes proceeds by discontinuous jumps. These jumps can be negative (we then speak of rejuvenation) or positive (in the event of premature aging), and they can be dependent on endogenous events such as pregnancy (negative jump) or stroke (positive jump) or exogenous ones such as surgical treatment (negative jump) or infectious disease (positive jump). The article proposes a mathematical model of the biological age by defining a valid model for the two types of jumps (positive and negative). The existence and uniqueness of the solution are solved, and its temporal dynamic is analyzed using a moments equation. We also provide some individual-based stochastic simulations.
[1] | E. Bernabeu, D. L. McCartney, D. A. Gadd, R. F. Hillary, A. T. Lu, L. Murphy, et al., Refining epigenetic prediction of chronological and biological age, Genome Med., 5 (2023), 1–15. https://doi.org/10.1186/s13073-023-01161-y doi: 10.1186/s13073-023-01161-y |
[2] | P. Jain, A. M Binder, B. Chen, H. Parada, L. C. Gallo, J. Alcaraz, et al., Analysis of epigenetic age acceleration and healthy longevity among older US women, JAMA Network Open, 5 (2022), e2223285–e2223285. https://doi.org/10.1001/jamanetworkopen.2022.23285 doi: 10.1001/jamanetworkopen.2022.23285 |
[3] | J. R. Poganik, B. Zhang, G. S. Baht, A. Tyshkovskiy, A. Deik, C. Kerepesi, et al., Biological age is increased by stress and restored upon recovery, Cell Metabol., 35 (2023), 807–820. https://doi.org/10.1016/j.cmet.2023.03.015 doi: 10.1016/j.cmet.2023.03.015 |
[4] | J. Demongeot, Biological boundaries and biological age, Acta Biotheoret., 27 (2009), 397–418. https://doi.org/10.1007/s10441-009-9087-8 doi: 10.1007/s10441-009-9087-8 |
[5] | D. Applebaum, Lévy processes and stochastic calculus, Cambridge university press,, 2009. https://doi.org/10.1017/CBO9780511809781 |
[6] | B. Ycart, Modéles et algorithmes markoviens, volume 39. Springer Science & Business Media, Berlin, Heidelberg, 2002. |
[7] | H. X. Huang, M. A. Milevsky, T. S. Salisbury, Retirement spending and biological age, J. Econom. Dynam. Control, 84 (2017), 58–76. https://doi.org/10.1016/j.jedc.2017.09.003 doi: 10.1016/j.jedc.2017.09.003 |
[8] | R. Siddiqui, S. Maciver, A. Elmoselhi, N. C. Soares, N. A. Khan, Longevity, cellular senescence and the gut microbiome: Lessons to be learned from crocodiles, Heliyon, 7 (2021). https://doi.org/10.1016/j.heliyon.2021.e08594 doi: 10.1016/j.heliyon.2021.e08594 |
[9] | P. Talukder, A. Saha, S. Roy, G. Ghosh, D. Dutta Roy, S. Barua, Progeria—a rare genetic condition with accelerated ageing process, Appl. Biochem. Biotechnol., 195 (2023), 2587–2596. https://doi.org/10.1007/s12010-021-03514-y doi: 10.1007/s12010-021-03514-y |
[10] | L. N. Nguyen, T. Kanneganti, PANoptosis in viral infection: The missing puzzle piece in the cell death field, J. Molecular Biol., 434 (2022), 167249. https://doi.org/10.1016/j.jmb.2021.167249 doi: 10.1016/j.jmb.2021.167249 |
[11] | D. S. Knopman, S. D. Edland, R. H. Cha, R. C. Petersen, W. A. Rocca, Incident dementia in women is preceded by weight loss by at least a decade, Neurology, 69 (2007), 739–746. https://doi.org/10.1212/01.wnl.0000267661.65586.33 doi: 10.1212/01.wnl.0000267661.65586.33 |
[12] | L. Hayflick, The serial cultivation of human diploid cell strains, Nephrol. Dialys. Transplant., 11 (1996), 1822–1824. |
[13] | Y. J. Kim, H. S. Kim, Y. R. Seo, Genomic approach to understand the association of dna repair with longevity and healthy aging using genomic databases of oldest-old population, Oxidat. Med. Cellular Longev., 2018. https://doi.org/10.1155/2018/2984730 doi: 10.1155/2018/2984730 |
[14] | E. R. Stead, I. Bjedov, Balancing dna repair to prevent ageing and cancer, Exper. Cell Res., 405 (2021), 112679. https://doi.org/10.1016/j.yexcr.2021.112679 doi: 10.1016/j.yexcr.2021.112679 |
[15] | E. Kashdan, S. Bunimovich-Mendrazitsky, Hybrid discrete-continuous model of invasive bladder cancer, Math. Biosci. Eng., 10 (2013), 729–742. https://doi.org/10.3934/mbe.2013.10.729 doi: 10.3934/mbe.2013.10.729 |
[16] | J. A Sherratt, J. D. Murray, Models of epidermal wound healing, Proceedings of the Royal Society of London, Series B: Biological Sciences, 241 (1990), 29–36. https://doi.org/10.1098/rspb.1990.0061 doi: 10.1098/rspb.1990.0061 |
[17] | P. Gerdhem, K. A. M. Ringsberg, K. Åkesson, K. J. Obrant, Clinical history and biologic age predicted falls better than objective functional tests, J. Clin. Epidemiol., 58 (2005), 226–232. https://doi.org/10.1016/j.jclinepi.2004.06.013 doi: 10.1016/j.jclinepi.2004.06.013 |
[18] | J. W. Shay, W. E. Wright, Hayflick, his limit, and cellular ageing, Nat. Rev. Molecular Cell Biol., 1 (2000), 72–76. https://doi.org/10.1038/35036093 doi: 10.1038/35036093 |
[19] | J. Jylhävä, N. L. Pedersen, S. Hägg, Biological age predictors, EBioMedicine, 521 (2017), 29–36. https://doi.org/10.1016/j.ebiom.2017.03.046 doi: 10.1016/j.ebiom.2017.03.046 |
[20] | D. A Sinclair, M. D. LaPlante, Lifespan: Why We Age—and Why We Don't Have To, Atria books,, 2019. |
[21] | G. F. Webb, Theory of nonlinear age-dependent population dynamics, CRC Press,, 1985. |
[22] | H. R. Thieme, Semiflows generated by lipschitz perturbations of non-densely defined operators, Differ. Integral Equat., 3 (1990), 1035–1066. https://doi.org/10.57262/die/1379101977 doi: 10.57262/die/1379101977 |
[23] | T. Cazenave, A. Haraux, An introduction to semilinear evolution equations, volume 13. Oxford Lecture Mathematics and,, 1998. |
[24] | K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, volume 194. Springer, New York, 2000. |
[25] | P. Magal, S. G. Ruan, Theory and applications of abstract semilinear Cauchy problems, volume 201. Springer, New York, 2018. https://doi.org/10.1007/978-3-030-01506-0 |
[26] | M. Z. Darabseh, T. M. Maden-Wilkinson, G. Welbourne, R. C. I. Wüst, N. Ahmed, H. Aushah, et al., Fourteen days of smoking cessation improves muscle fatigue resistance and reverses markers of systemic inflammation, Sci. Rep., 11 (2021), 12286. |
[27] | K. Hijazi, B. Malyszko, K. Steiling, X. H. Xiao, G. Liu, Y. O. Alekseyev, et al., Tobacco-related alterations in airway gene expression are rapidly reversed within weeks following smoking-cessation, Sci. Rep., 9 (2019), 6978. https://doi.org/10.1038/s41598-019-43295-3 doi: 10.1038/s41598-019-43295-3 |
[28] | T. R. Schlam, M. E. Piper, J. W. Cook, M. C. Fiore, T. B. Baker, Life 1 year after a quit attempt: Real-time reports of quitters and continuing smokers, Ann. Behav. Med., 44 (2012), 309–319. https://doi.org/10.1007/s12160-012-9399-9 doi: 10.1007/s12160-012-9399-9 |
[29] | B. W. Heckman, J. Dahne, L. J. Germeroth, A. R. Mathew, E. J. Santa Ana, M. E. Saladin, M. J. Carpenter, Does cessation fatigue predict smoking-cessation milestones? a longitudinal study of current and former smokers, J. Consult. Clin. Psychol., 865 (2018), 903. https://doi.org/10.1037/ccp0000338 doi: 10.1037/ccp0000338 |
[30] | E. Mortaz, M. R. Masjedi, I. Rahman, Outcome of smoking cessation on airway remodeling and pulmonary inflammation in copd patients, Tanaffos, 10 (2011), 7. |
[31] | United States Public Health Service Office of the Surgeon General; National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. Smoking Cessation: A Report of the Surgeon General [Internet]. Washington (DC): US Department of Health and Human Services; 2020.. https://www.ncbi.nlm.nih.gov/books/NBK555591/. |
[32] | M. Houston, Stopping smoking could speed recovery after operations, BMJ, 327 (2003), 360. https://doi.org/10.1136/bmj.327.7411.360-d doi: 10.1136/bmj.327.7411.360-d |
[33] | T. Napso, H. E. J. Yong, J. Lopez-Tello, A. N. Sferruzzi-Perri, The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation, Front. Physiol., 9 (2018), 1091. https://doi.org/10.3389/fphys.2018.01091 doi: 10.3389/fphys.2018.01091 |
[34] | I. M. Conboy, M. J. Conboy, A. J. Wagers, E. R. Girma, I. L. Weissman, T. A Rando, Rejuvenation of aged progenitor cells by exposure to a young systemic environment, Nature, 433 (2005), 760–764. https://doi.org/10.1038/nature03260 doi: 10.1038/nature03260 |
[35] | T. F. Michaeli, N. Laufer, J. Y. Sagiv, A. Dreazen, Z. Granot, E. Pikarsky, et al., The rejuvenating effect of pregnancy on muscle regeneration, Aging Cell, 14 (2015), 698–700. https://doi.org/10.1111/acel.12286 doi: 10.1111/acel.12286 |
[36] | A. H. Shadyab, M. L. S. Gass, M. L. Stefanick, M. E. Waring, C. A Macera, L. C. Gallo, et al., Maternal age at childbirth and parity as predictors of longevity among women in the united states: The women's health initiative, Am. J. Public Health, 107 (2017), 113–119. https://doi.org/10.2105/AJPH.2016.303503 doi: 10.2105/AJPH.2016.303503 |
[37] | C. P. Ryan, M. G. Hayes, N. R. Lee, T. W. McDade, M. J. Jones, M. S. Kobor, et al., Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women, Sci. Rep., 8 (2018), 11100. https://doi.org/10.1038/s41598-018-29486-4 doi: 10.1038/s41598-018-29486-4 |
[38] | J. Lima-Júnior, L. C. M. Arruda, M. de Oliveira, K. C. R. Malmegrim, Thymus rejuvenation after autologous hematopoietic stem cell transplantation in patients with autoimmune diseases, Thymus Transcript.Cell Biol., (2019), 295–309. https://doi.org/10.1007/978-3-030-12040-5_14 doi: 10.1007/978-3-030-12040-5_14 |
[39] | F. Nakagawa, R. K. Lodwick, C. J. Smith, R. Smith, V. Cambiano, J. D. Lundgren, et al., Projected life expectancy of people with HIV according to timing of diagnosis, Aids, 26 (2012), 335–343. https://doi.org/10.1097/QAD.0b013e32834dcec9 doi: 10.1097/QAD.0b013e32834dcec9 |