In this paper, we successfully combine convolution with a wave function to build an effective and efficient classifier for traffic signs, named the wave interference network (WiNet). In the WiNet, the feature map extracted by the convolutional filters is refined into many entities from an input image. Each entity is represented as a wave. We utilize Euler's formula to unfold the wave function. Based on the wave-like information representation, the model modulates the relationship between the entities and the fixed weights of convolution adaptively. Experiment results on the Chinese Traffic Sign Recognition Database (CTSRD) and the German Traffic Sign Recognition Benchmark (GTSRB) demonstrate that the performance of the presented model is better than some other models, such as ResMLP, ResNet50, PVT and ViT in the following aspects: 1) WiNet obtains the best accuracy rate with 99.80% on the CTSRD and recognizes all images exactly on the GTSRB; 2) WiNet gains better robustness on the dataset with different noises compared with other models; 3) WiNet has a good generalization on different datasets.
Citation: Qiang Weng, Dewang Chen, Yuandong Chen, Wendi Zhao, Lin Jiao. Wave interference network with a wave function for traffic sign recognition[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 19254-19269. doi: 10.3934/mbe.2023851
[1] | Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding . The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28(4): 1395-1418. doi: 10.3934/era.2020074 |
[2] | Shu Wang, Mengmeng Si, Rong Yang . Dynamics of stochastic 3D Brinkman-Forchheimer equations on unbounded domains. Electronic Research Archive, 2023, 31(2): 904-927. doi: 10.3934/era.2023045 |
[3] | Lingrui Zhang, Xue-zhi Li, Keqin Su . Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D. Electronic Research Archive, 2023, 31(11): 6881-6897. doi: 10.3934/era.2023348 |
[4] | Pan Zhang, Lan Huang, Rui Lu, Xin-Guang Yang . Pullback dynamics of a 3D modified Navier-Stokes equations with double delays. Electronic Research Archive, 2021, 29(6): 4137-4157. doi: 10.3934/era.2021076 |
[5] | Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao . Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29(3): 2489-2516. doi: 10.3934/era.2020126 |
[6] | Wei Shi, Xinguang Yang, Xingjie Yan . Determination of the 3D Navier-Stokes equations with damping. Electronic Research Archive, 2022, 30(10): 3872-3886. doi: 10.3934/era.2022197 |
[7] | Keqin Su, Rong Yang . Pullback dynamics and robustness for the 3D Navier-Stokes-Voigt equations with memory. Electronic Research Archive, 2023, 31(2): 928-946. doi: 10.3934/era.2023046 |
[8] | Nisachon Kumankat, Kanognudge Wuttanachamsri . Well-posedness of generalized Stokes-Brinkman equations modeling moving solid phases. Electronic Research Archive, 2023, 31(3): 1641-1661. doi: 10.3934/era.2023085 |
[9] | Zhiqing Li, Wenbin Zhang, Yuanfei Li . Structural stability for Forchheimer fluid in a semi-infinite pipe. Electronic Research Archive, 2023, 31(3): 1466-1484. doi: 10.3934/era.2023074 |
[10] | Wenlong Sun . The boundedness and upper semicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay. Electronic Research Archive, 2020, 28(3): 1343-1356. doi: 10.3934/era.2020071 |
In this paper, we successfully combine convolution with a wave function to build an effective and efficient classifier for traffic signs, named the wave interference network (WiNet). In the WiNet, the feature map extracted by the convolutional filters is refined into many entities from an input image. Each entity is represented as a wave. We utilize Euler's formula to unfold the wave function. Based on the wave-like information representation, the model modulates the relationship between the entities and the fixed weights of convolution adaptively. Experiment results on the Chinese Traffic Sign Recognition Database (CTSRD) and the German Traffic Sign Recognition Benchmark (GTSRB) demonstrate that the performance of the presented model is better than some other models, such as ResMLP, ResNet50, PVT and ViT in the following aspects: 1) WiNet obtains the best accuracy rate with 99.80% on the CTSRD and recognizes all images exactly on the GTSRB; 2) WiNet gains better robustness on the dataset with different noises compared with other models; 3) WiNet has a good generalization on different datasets.
The delay effect originates from the boundary controllers in engineering. The dynamics of a system with boundary delay could be described mathematically by a differential equation with delay term subject to boundary value condition such as [20]. There are many results available in literatures on the well-posedness and pullback dynamics of fluid flow models with delays especially the 2D Navier-Stokes equations, which can be seen in [1], [2], [8] and references therein. Inspired by these works, in this paper, we study the stability of pullback attractors for 3D Brinkman-Forchheimer (BF) equation with delay, which is also a continuation of our previous work in [6]. The existence and structure of attractors are significant to understand the large time behavior of solutions for non-autonomous evolutionary equations. Furthermore, the asymptotic stability of trajectories inside invariant sets determines many important properties of trajectories. The 3D Brinkman-Forchheimer equation with delay is given below:
{∂u∂t−νΔu+αu+β|u|u+γ|u|2u+∇p=f(t,ut)+g(x,t),∇⋅u=0, u(t,x)|∂Ω=0,u|t=τ=uτ(x), x∈Ω,uτ(θ,x)=u(τ+θ,x)=ϕ(θ), θ∈(−h,0), h>0. | (1) |
Here,
(1). a general delay
or
(2). the special application of
f(t,ut)=F(u(t−ρ(t))) | (2) |
for a smooth function
The BF equation describes the conservation law of fluid flow in a porous medium that obeys the Darcy's law. The physical background of 3D BF model can be seen in [14], [9], [18], [19]. For the dynamic systems of problem
(a) For problem (1) with delay
(b) For problem (1) with special application of
(c) The asymptotic stability of trajectories inside pullback attractors is further research of the results established in [6]. However, the stability of pullback attractors for (1) with infinite delay is still unknown.
In this section, we give some notations and the equivalent abstract form of (1) in this section.
Denoting
By the Helmholz-Leray projection defined above, (1) can be transformed to the abstract equivalent form
{∂u∂t+νAu+P(αu+β|u|u+γ|u|2u)=Pf(t,ut)+Pg(t,x),u|∂Ω=0,u|t=τ=uτ(x),uτ(θ,x)=ϕ(θ,x) for θ∈(−h,0), | (3) |
then we show our results for (3) with
We also define some Banach spaces on delayed interval as
‖ϕ‖CH=supθ∈[−h,0]‖ϕ(θ)‖H, ‖ϕ‖CV=supθ∈[−h,0]‖ϕ(θ)‖V, |
respectively. The Lebesgue integrable spaces on delayed interval can be denoted as
Some assumptions on the external forces and parameters which will be imposed in our main results are the following:
‖f(t,ξ)−f(t,η)‖H≤Lf‖ξ−η‖CH, for ξ,η∈CH. |
∫tτ‖f(r,ur)−f(r,vr)‖2Hdr≤C2f∫tτ−h‖u(r)−v(r)‖2Hdr, for τ≤t. | (4) |
∫t−∞eηs‖g(s,⋅)‖2V′ds<∞. | (5) |
holds for any
Lemma 3.1. (The Gronwall inequality with differential form) Let
ddtm(t)≤v(t)m(t)+h(t), m(t=τ)=mτ, t≥τ. | (6) |
Then
m(t)≤mτe∫tτv(s)ds+∫tτh(s)e∫tsv(σ)dσds, t≥τ. | (7) |
In this part, we shall present some retarded integral inequalities from Li, Liu and Ju [5]. Consider the following retarded integral inequalities:
‖y(t)‖X≤E(t,τ)‖yτ‖X+∫tτK1(t,s)‖ys‖Xds+∫∞tK2(t,s)‖ys‖Xds+ρ, ∀ t≥τ, | (8) |
where
Let
κ(K1,K2)=supt≥τ(∫tτK1(t,s)ds+∫∞tK2(t,s)ds). |
We assume that
limt→+∞E(t+s,s)=0 | (9) |
uniformly with respect to
Lemma 3.2. (The retarded Gronwall inequality) Denoting
(1) If
‖yt‖X<μρ+ε, | (10) |
for
(2) If
‖yt‖X≤M‖y0‖Xe−λt+γρ, t≥τ | (11) |
for all bounded functions
(3) If
Proof. See Li, Liu and Ju [5].
Remark 1. (The special case:
The minimal family of pullback attractors will be stated here in preparation for our main result.
Lemma 3.3. (1) (See [7], [11]) Assume that
(|a|β−2a−|b|β−2b)⋅(a−b)≥γ0|a−b|β, |
where
(2) The following
|xq−yq|≤Cq(|x|q−1+|y|q−1)|x−y| |
for the integer
Theorem 3.4. Assume that the external forces
Proof. Step 1. Existence of local approximate solution.
By the property of the Stokes operator
Awi=λiwi, i=1,2,⋯. | (12) |
Let
{(∂tum,wj)+ν(∇um,∇wj)+(αum+β|um|um+γ|um|2um,wj)=(f(t,umt),wj)+⟨g,wj⟩,um(τ)=Pmuτ=uτm,umτ(θ,x)=Pmϕ(θ)=ϕm(θ) for θ∈[−h,0], | (13) |
Then it is easy to check that (13) is equivalent to an ordinary differential equations with unknown variable function
Step 2. Uniform estimates of approximate solutions.
Multiplying (13) by
12ddt‖um‖2H+ν‖um‖2V+α‖um‖2H+β‖um‖3L3(Ω)+γ‖um‖4L4(Ω)≤|(g(t)+f(s,umt(s)),um)|≤α‖um‖2H+ν2‖um‖2V+12ν‖g(t)‖2V′+14α‖f(t,umt)‖2H. | (14) |
Integrating in time, using the hypotheses on
‖um‖2H+ν∫tτ‖um‖2Vds+2β∫tτ‖um‖3L3(Ω)ds+2γ∫tτ‖um‖4L4(Ω)ds≤‖uτ‖2H+C2f4α∫0−h‖ϕ(s)‖2Hds+12ν∫tτ‖g(s)‖2V′ds+C2f4α∫tτ‖um‖2Hds. | (15) |
Using the Gronwall Lemma of integrable form, we conclude that
{um} is bounded in the spaceL∞(τ,T;H)∩L2(τ−h,T;V)∩L3(τ,T;L3(Ω))∩L4(τ,T;L4(Ω)). |
Step 3. Compact argument and passing to limit for deriving the global weak solutions.
In this step, we shall prove
dumdt=−νAum−αum−β|um|um−γ|um|2um+P(g(t)+f(t,umt) | (16) |
and assumptions
By virtue of the Aubin-Lions Lemma, we obtain that
{um(t)⇀u(t) weakly * in L∞(τ,T;H),um(t)→u(t) stongly in L2(τ,T;H),um(t)⇀u(t) weakly in L2(τ,T;V),dum/dt⇀du/dt weakly in L2(τ,T;V′),f(⋅,um⋅)⇀f(⋅,u⋅) weakly in L2(τ,T;H),um⇀u(t) weakly in L3(τ,T;L3(Ω)),um⇀u(t) weakly in L4(τ,T;L4(Ω)) | (17) |
which coincides with the initial data
For the purpose of passing to limit in (13), denoting
∫Tτ(β|um|um−β|u|u,wj)ds≤Cλ1β‖um‖4L4(τ,T;L4(Ω))‖um−u‖4L4(τ,T;L4(Ω))+Cβ‖um−u‖L∞(τ,T;H)‖u‖2L2(τ−h,T;H) |
and
∫Tτ(γ|um|2um−γ|u|2u,wj)ds≤Cγ‖um‖2L2(τ,T;V)‖um−u‖4L4(τ,T;L4(Ω))+Cγ‖um−u‖4L4(τ,T;L4(Ω))(‖u‖2L2(τ−h,T;V)+‖um‖4L4(τ,T;L4(Ω))) | (18) |
and the convergence of delayed external force
Thus, passing to the limit of (13), we conclude that
Proposition 1. Assume that the external forces
Proof. Taking inner product of (3) with
12ddt‖A1/2u‖2H+ν‖Au‖2H+α‖A1/2u‖2H+β∫Ω|u|u⋅Audx+γ∫Ω|u|2u⋅Audx=(f(t,ut),Au)+(g(t),Au). | (19) |
According to Lemma 3.3, the nonlinear terms have the following estimates
|β(|u|u,Au)|≤ν2‖Au‖2H+β4ν‖u‖4L4 | (20) |
and
γ∫Ω|u|2u⋅Audx=γ2∫Ω|∇(|u|2)|2dx+γ∫Ω|u|2|∇u|2dx | (21) |
and
(f(t,ut),Au)+(g(t),Au)≤12ν‖f(t,ut)‖2H+12ν‖g(t)‖2H+ν2‖Au‖2H, | (22) |
hence, we conclude that
ddt‖A1/2u‖2H+2α‖A1/2u‖2H+γ∫Ω|∇(|u|2)|2dx+2γ∫Ω|u|2|∇u|2dx≤β2ν‖u‖4L4+1ν‖f(t,ut)‖2H+1ν‖g(t)‖2H. | (23) |
Letting
‖A1/2u(t)‖2H+2α∫ts‖A1/2u(r)‖2Hdr≤‖A1/2u(s)‖2H+β2ν∫ts‖u(r)‖4L4dr+2ν∫ts‖f(r,ur)‖2Hdr+2ν∫ts‖g(r)‖2Hdr | (24) |
and
∫ts‖f(r,ur)‖2Hdr≤L2f‖ϕ(θ)‖2L2H+L2f∫ts‖u(r)‖2Hdr. | (25) |
Then integrating with
‖A1/2u(t)‖2H≤∫tt−1‖A1/2u(s)‖2Hds+β2ν∫tt−1‖u(r)‖4L4dr+2L2fν‖ϕ(θ)‖2L2H+2L2fν∫tτ‖u(r)‖2Hdr+2ν∫tt−1‖g(r)‖2Hdr≤C[‖ϕ‖2L2H+‖uτ‖2H]+C∫tτ‖g‖2Hds+2L2fνλ1∫tτ‖u(r)‖2Vdr, | (26) |
which means the uniform boundedness of the global weak solution
Proposition 2. Assume the hypotheses in Theorem 3.4 hold. Then the global weak solution
Proof. Using the same energy estimates as above, we can deduce the uniqueness easily, here we skip the details.
To description of pullback attractors, the functional space
∫tτeηs‖f(s,us)‖2Hds<C2f∫tτ−heηs‖u(s)‖2Hds. | (27) |
for any
Proposition 3. For given
Lemma 3.5. Assume that
‖u(t)‖2H≤e−8ηCfα(t−τ)(‖uτ‖2H+Cf‖ϕ(r)‖2L2H)+e−8ηCfαtν−ηλ−1∫tτeηr‖g(r)‖2V′dr | (28) |
and
ν∫ts‖u(r)‖2Vdr≤‖u(s)‖2H+8Cfα‖us‖2L2H+1ν∫ts‖g(r)‖2V′dr+8Cfα∫ts‖u(r)‖2Hdr, | (29) |
β∫ts‖u(r)‖3L3(Ω)dr≤‖u(s)‖2H+8Cfα‖us‖2L2H+1ν∫ts‖g(r)‖2V′dr+8Cfα∫ts‖u(r)‖2Hdr, | (30) |
γ∫ts‖u(r)‖4L4(Ω)dr≤‖u(s)‖2H+8Cfα‖us‖2L2H+1ν∫ts‖g(r)‖2V′dr+8Cfα∫ts‖u(r)‖2Hdr. | (31) |
Proof. By the energy estimate of (1) and using Young's inequality, we arrive at
ddt‖u‖2H+2ν‖u‖2V+2α‖u‖2H+2β‖u‖3L3(Ω)+2γ‖u‖2L4(Ω)≤1ν−ηλ−1‖g‖2V′+(ν−ηλ−1)‖u‖2V+2α‖u‖2H+8α‖f(t,ut)‖2H, | (32) |
where
Multiplying the above inequality by
ddt(eηt‖u‖2H)+eηtνλ1‖u‖2H+2βeηt‖u‖3L3(Ω)+2γeηt‖u‖2L4(Ω)≤1ν−ηλ−1eηt‖g‖2V′+8Cfαeηt‖f(t,ut)‖2H. |
Thus integrating with respect to time variable, it yields
eηt‖u‖2H+νλ1∫tτeηr‖u(r)‖2Hdr≤eητ(‖uτ‖2H+Cf∫0−h‖ϕ(r)‖2Hdr)+1ν−ηλ−1∫tτeηr‖g(r)‖2V′dr+8Cfα∫tτeηr‖u(r)‖2Hdr | (33) |
and by the Gronwall Lemma, we can derive the estimate in our theorem.
Using the energy estimate of (1) again, we can check that
ddt‖u‖2H+2ν‖u‖2V+2α‖u‖2H+2β‖u‖3L3(Ω)+2γ‖u‖2L4(Ω)≤1ν‖g‖2V′+ν‖u‖2V+2α‖u‖2H+8α‖f(t,ut)‖2H, | (34) |
Integrating from
Based on Lemma 3.5, we can present the pullback dissipation based on the following universes for the tempered dynamics.
Definition 3.6. (Universe). (1) We will denote by
limτ→−∞(eητsup(ξ,ζ)∈D(τ)‖(ξ,ζ)‖2MH)=0. | (35) |
(2)
Remark 2. The universes
Proposition 4. (The
D0(t)=¯BH(0,ρH(t))×(¯BL2V(0,ρL2H(t))∩¯BCH(0,ρCH(t))) |
is the pullback
ρ2H(t)=1+e−8ηCfα(t−h)ν−ηλ−1∫t−∞eηr‖g(r)‖2V′dr,ρ2L2V(t)=1ν[1+‖uτ‖2H+8Cfα‖ϕ‖2L2H+‖g(r)‖2L2(t−h,t;V′)ν+8Cfhαρ2H(t)]. |
Moreover, the pullback
Proof. Using the estimates in Lemma 3.5, choosing any
‖u(t,τ;uτ,ϕ)‖2H≤ρ2H(t)=1+e−8ηCfα(t−h)ν−ηλ−1∫t−∞eηr‖g(r)‖2V′dr | (36) |
holds for any
Theorem 3.7. Assume that
Proof. Step 1. Weak convergence of the sequence
For arbitrary fixed
By using the similar energy estimate in Theorem 3.4 and technique in Proposition 4, there exists a pullback time
‖(un)′‖L2(t−h−1,t;V′)≤ν‖un‖L2(t−h−1,t;V)+αλ−11‖un‖L2(t−h−1,t;V)+β‖un‖L4(t−h−1,t;L4(Ω))+Cλ1,|Ω|γ‖un‖L2(t−h−1,t;V)+Cα‖f(t,unt)‖L2(t−h−1,t;H)+Cν‖g‖L2(t−h−1,t;V′). | (37) |
From the hypotheses
{un⇀u weakly * in L∞(t−3h−1,t;H),un⇀u weakly in L2(t−2h−1,t;V),(un)′⇀u′ weakly in L2(t−h−1,t;V′),um⇀u(t) weakly in L3(t−2h−1,t;L3(Ω)),um⇀u(t) weakly in L4(t−2h−1,t;L4(Ω)),un→u stongly in L2(t−h−1,t;H),un(s)→u(s) stongly in H, a.e. s∈(t−h−1,t). | (38) |
By Theorem 3.4, from the hypothesis on
f(⋅,un⋅)⇀f(⋅,u⋅) weakly in L2(t−h−1,t;H). | (39) |
Thus, from (38) and (39), we can conclude that
From the uniform bounded estimate of
un→u strongly in C([t−h−1,t];H). | (40) |
Therefore, we can conclude that
un(sn)⇀u(s) weakly in H | (41) |
for any
lim infn→∞‖un(sn)‖H≥‖u(s)‖H. | (42) |
Step 2. The strong convergence of corresponding sequences via energy equation method:
The asymptotic compactness of sequence
‖un(sn)−u(s)‖H→0 as n→+∞, | (43) |
which is equivalent to prove (42) combining with
lim supn→∞‖un(sn)‖H≤‖u(s)‖H | (44) |
for a sequence
Using the energy estimate to all
‖un(s2)‖2H+ν∫s2s1‖un(r)‖2Vdr+2β∫s2s1‖un(r)‖3L4(Ω)dr+2γ∫s2s1‖un(r)‖4L4(Ω)≤2C2fα∫s2s2‖unr‖2Hdr+8ν∫s2s1‖g(r)‖2V′dr | (45) |
and
‖u(s2)‖2H+ν∫s2s1‖u(r)‖2Vdr+2β∫s2s1‖u(r)‖3L4(Ω)dr+2γ∫s2s1‖u(r)‖4L4(Ω)≤2C2fα∫s2s2‖ur‖2Hdr+8ν∫s2s1‖g(r)‖2V′dr. | (46) |
Then, we define the functionals
Jn(s)=12‖un‖2H−∫st−h−1⟨g(r),un(r)⟩dr−∫st−h−1(f(r,unr),un(r))dr | (47) |
and
J(t)=12‖u(s)‖2H−∫st−h−1⟨g(r),u(r)⟩dr−∫st−h−1(f(r,ur),u(r))dr. | (48) |
Combining the convergence in (38), observing that
∫tt−h−1⟨g(r),un(r)⟩dr→2∫tt−h−1⟨g(r),u(r)⟩dr | (49) |
and
∫tt−h−1(f(r,unr),un(r))dr→2∫tt−h−1(f(r,ur),u(r))dr | (50) |
as
Jn(s)→J(s) a.e.s∈(t−h−1,t), | (51) |
i.e., for
|Jn(sk)−J(sk)|≤ε2. | (52) |
Since
|J(sk)−J(s)|≤ε2, | (53) |
Choosing
|Jn(sn)−J(s)|≤|Jn(sn)−J(sn)|+|J(sn)−J(s)|<ε. | (54) |
Therefore, for any
lim supn→∞Jn(sn)≤J(s), | (55) |
which implies
lim supn→∞‖un(sn)‖H≤‖u(s)‖H. | (56) |
we conclude the strong convergence
Step 3. The strong convergence:
Combining the energy estimates in (45) and (46), noting the energy functionals
‖un(s)‖L2(t−h,t;V)→‖u(s)‖L2(t−h,t;V). | (57) |
Hence jointing with the weak convergence in (38), we can derive that
Step 4. The
By using the results from Steps 2 to 4 and noting the definition of universe, we can conclude that the processes is
Remark 3. Using the similar technique, we can derive the processes
Theorem 3.8. Assume that
ADMHF(t)⊂ADMHη(t). | (58) |
Proof. From Proposition 3, we observe that the process
Based on the universes defined in Definition 3.6, the relation between
Definition 3.9. The pullback attractors is asymptotically stable if the trajectories inside attractor reduces to a single orbit as
Theorem 3.10. Assume that
G(t)≤K0, |
where
K0={[ν2λ1(2νλ1+α)]/[4C|Ω|β(L2fα2−L2fα1−2L2fα+1α)]}1/2, |
here
Proof. Let
u(τ+θ)|θ∈[−h,0]=ϕ(θ), u|t=τ=uτ | (59) |
and
\begin{eqnarray} v(\tau+\theta)|_{\theta\in [-h,0]} = \tilde{\phi}(\theta), \ \ v|_{t = \tau} = \tilde{u}_{\tau} \end{eqnarray} | (60) |
respectively. Denoting
\begin{eqnarray} (u,u_t) = U(t,\tau)(u_{\tau},\varphi)\ \ \mbox{and}\ \ (v,v_t) = U(t,\tau)(\tilde{u}_{\tau},\tilde{\varphi}) \end{eqnarray} | (61) |
as two trajectories inside the pullback attractors, letting
\begin{equation} \begin{cases} \frac{\partial w}{\partial t}+\nu A w +P\Big(\alpha w+\beta(|u|u-|v|v)+\gamma (|u|^2u-|v|^2v)\Big)&\\ \quad = P(f(t, u_t)-f(t,v_t)),& \\ w|_{\partial\Omega} = 0,& \\ w(t = \tau) = u_{\tau}-\tilde{u}_{\tau},&\\ w(\tau+\theta) = \phi(\theta)-\tilde{\phi}(\theta),\ \theta\in [-h,0].& \end{cases} \end{equation} | (62) |
Taking inner product of (62) with
\begin{eqnarray} \gamma(|u|^2u-|v|^2v, u-v)\geq \gamma \gamma_0 \|u-v\|^4_{\bf{L}^4} \end{eqnarray} | (63) |
and
\begin{eqnarray} &&\frac{1}{2}\frac{d}{d t}\|w\|^2_H+\nu\|w\|^2_V+\alpha \|w\|_H^2+\gamma \gamma_0 \|w\|^4_{\bf{L}^4}\\ &\leq& \Big|\beta(|u|u-|v|v,w)\Big|+\Big|(f(t,u_t)-f(t,v_t),w)\Big|\\ &\leq&\beta\Big(\int_{\Omega}|u|^2|w|dx+\int_{\Omega}|w||v|^2dx\Big)+\frac{\alpha}{2}\|w\|^2_H+\frac{L_f^2}{2\alpha}\|w_t\|^2_H \end{eqnarray} |
\begin{eqnarray} &\leq& \beta(\|u\|^2_{\bf{L}^4}+\|v\|^2_{\bf{L}^4})\|w\|^2_{H}+\frac{\alpha}{2}\|w\|^2_H+\frac{L_f^2}{2\alpha}\|w_t\|^2_H\\ &\leq& C_{|\Omega|}\beta(\|u\|^2_{V}+\|v\|^2_{V})\|w\|^2_{H}+\frac{\alpha}{2}\|w\|^2_H+\frac{L_f^2}{2\alpha}\|w_t\|^2_H. \end{eqnarray} | (64) |
Using the Poincaré inequality and Lemma 3.1, noting that if
\begin{eqnarray} 2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V) > 0, \end{eqnarray} | (65) |
then we can obtain
\begin{eqnarray} \|w\|^2_H&\leq& e^{\int^t_{\tau}[2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)-(2\nu\lambda_1+\alpha)]ds}\Big[\|u_{\tau}-\tilde{u}_{\tau}\|^2_H+\\ &&+\frac{L_f^2}{\alpha}\int^t_{\tau}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma}\|w_t\|^2_Hds\Big]. \end{eqnarray} | (66) |
Denoting
\begin{eqnarray} E(t,\tau) = e^{-\int^t_{\tau}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]ds} \end{eqnarray} | (67) |
and
\begin{eqnarray} K_1(t,s) = \frac{L_f^2}{\alpha}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma} \end{eqnarray} | (68) |
and
\begin{eqnarray} \Theta = \sup\limits_{t\geq s\geq \tau}E(t,s),\ \ \ \ \kappa(K_1,0) = \sup\limits_{t\geq\tau}\int^t_{\tau}K_1(t,s)ds, \end{eqnarray} | (69) |
by virtue of Lemma 3.2, choosing
\begin{eqnarray} \|w_t\|^2_H&\leq& M\|u_{\tau}-\tilde{u}_{\tau}\|^2_H e^{-\lambda (t-\tau)}. \end{eqnarray} | (70) |
Substituting (70) into (64), using Lemma 3.1 again, we can conclude the following estimate
\begin{eqnarray} \|w\|^2_H &\leq& \|u_{\tau}-\tilde{u}_{\tau}\|^2_He^{-\int^t_{\tau}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]ds}\\ &&+\frac{L_f^2}{\alpha}M\|u_{\tau}-\tilde{u}_{\tau}\|^2_H e^{-\lambda (t-\tau)}\int^t_{\tau}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma}ds.\\ \end{eqnarray} | (71) |
From (70) and (71), if we fixed
\begin{equation} 2\nu\lambda_1+\alpha > 2C_{|\Omega|}\beta \langle \|u\|^2_V+\|v\|^2_V\rangle_{\leq t}, \end{equation} | (72) |
where
\begin{equation} \langle h \rangle_{\leq t} = \limsup\limits_{\tau\rightarrow -\infty}\frac{1}{t-\tau}\int^t_{\tau}h(r)dr. \end{equation} | (73) |
Since
\begin{eqnarray} &&\frac{1}{2}\frac{d}{dt}\|u\|^2_H+\nu\|A^{1/2}u\|^2_H+\alpha\|u\|^2_H+\beta \|u\|^3_{\bf{L}^3}+\gamma \|u\|^4_{\bf{L}^4}\\ &\leq&\alpha \|u\|^2_H+\frac{1}{2\alpha}\Big[\|f(t,u_t)\|^2_H+\|g\|^2_{H}\Big]\\ &\leq&\alpha \|u\|^2_H+\frac{L_f^2}{2\alpha}\|u_t\|^2_H+\frac{1}{2\alpha}\|g\|^2_{H}. \end{eqnarray} | (74) |
Using the Poincaré inequality and Lemma 3.1, then we can obtain
\begin{eqnarray} \|u\|^2_H&\leq& e^{-2\nu\lambda_1(t-\tau)}\|u_{\tau}\|^2_H+\\ &&+\frac{L_f^2}{\alpha}\int^t_{\tau}e^{-2\nu\lambda_1(t-s)}\|u_s\|^2_Hds+\frac{1}{\alpha}\int^t_{\tau}e^{-2\nu\lambda_1(t-s)}\|g\|^2_Hds. \end{eqnarray} | (75) |
Denoting
\begin{eqnarray} E(t,\tau) = e^{-2\nu\lambda_1(t-\tau)} \end{eqnarray} | (76) |
and
\begin{eqnarray} K_1(t,s) = \frac{L_f^2}{\alpha}e^{-2\nu\lambda_1(t-s)} \end{eqnarray} | (77) |
and
\begin{equation} \rho = \frac{1}{\alpha}\int^t_{\tau}e^{-2\nu\lambda_1(t-s)}\|g\|^2_Hds, \end{equation} | (78) |
letting
\begin{eqnarray} \Theta = \sup\limits_{t\geq s\geq \tau}E(t,s),\ \ \ \ \kappa(K_1,0) = \sup\limits_{t\geq\tau}\int^t_{\tau}K_1(t,s)ds, \end{eqnarray} | (79) |
by virtue of Lemma 3.2, choosing
\begin{eqnarray} \|u_t\|^2_H&\leq& \hat{M}\|u_{\tau}\|^2_H e^{-\lambda (t-\tau)}+\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}\int^t_{\tau}e^{-2\nu\lambda_1(t-s)}\|g\|^2_Hds\\ &\leq& \hat{M}\|u_{\tau}\|^2_H e^{-\lambda (t-\tau)}+\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}\int^t_{\tau}\|g\|^2_Hds. \end{eqnarray} | (80) |
Substituting (80) into (75), using Lemma 3.1 again, we can conclude the following estimate
\begin{eqnarray} \|u\|^2_H &\leq& C\|u_{\tau}\|^2_He^{-\lambda (t-\tau)}+\Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\int^t_{\tau}\|g\|^2_Hds. \end{eqnarray} | (81) |
Integrating (74) from
\begin{eqnarray} &&\|u\|^2_H+2\nu\int^t_{\tau}\|u\|^2_Vds+2\beta\int^t_{\tau} \|u\|^3_{\bf{L}^3}ds+2\gamma \int^t_{\tau}\|u\|^4_{\bf{L}^4}ds\\ &\leq& \Big[\frac{1}{\alpha}\|\phi\|^2_{L^2_H}+\|u_{\tau}\|^2_H\Big]+\frac{L_f^2}{\alpha}\int^{t}_{\tau}\|u_t(s)\|^2_Hds+\frac{1}{\alpha}\int^t_{\tau}\|g\|^2_{H}ds. \end{eqnarray} | (82) |
By the estimate of (80) and (81), we derive
\begin{eqnarray} \int^t_{\tau}\|u(r)\|^4_{\bf{L}^4}dr\leq C\Big[\frac{1}{\alpha}\|\phi\|^2_{L^2_H}+\|u_{\tau}\|^2_H\Big]+\Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\int^t_{\tau}\|g\|^2_{H}ds \end{eqnarray} | (83) |
and
\begin{eqnarray} \int^t_{\tau}\|u(r)\|^2_{V}dr\leq C\Big[\frac{1}{\alpha}\|\phi\|^2_{L^2_H}+\|u_{\tau}\|^2_H\Big]+\Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\int^t_{\tau}\|g\|^2_{H}ds. \end{eqnarray} | (84) |
Combining (72), (73) with (84), we conclude that
\begin{eqnarray} && \langle \|u\|^2_V+\|v\|^2_V\rangle|_{\leq t}\leq 2 \Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\langle \|g\|^2_H\rangle|_{\leq t} \end{eqnarray} | (85) |
and hence the asymptotic stability holds provided that
\begin{eqnarray} 4C_{|\Omega|}\beta \Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\langle \|g\|^2_H\rangle|_{\leq t} \leq 2\nu\lambda_1+\alpha. \end{eqnarray} | (86) |
If we define the generalized Grashof number as
\begin{eqnarray} G(t)\leq \Big\{(2\nu\lambda_1+\alpha)\Big/\Big[4C_{|\Omega|}\nu^2\beta\lambda_1 \Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\Big]\Big\}^{1/2} = K_0, \end{eqnarray} | (87) |
which completes the proof for our first result.
Remark 4. Theorem 3.10 is a further research for the existence of pullback attractor in [6].
We first state some hypothesis on the external forces and sub-linear operator.
\Big|\frac{d\rho}{dt}\Big|\leq\rho^{\ast} < 1, \ \ \forall t\geq 0. |
\begin{eqnarray} \|F(y)\|^2_H\leq a(t)\|y\|^2_H+b(t), \ \ \forall t\geq\tau, y\in H. \end{eqnarray} | (88) |
\begin{eqnarray} \|F(u)-F(v)\|_H\leq L(R)\kappa^\frac{1}{2}(t)\|u-v\|_H, \ u,v\in H. \end{eqnarray} | (89) |
holds for
\begin{eqnarray} \int^{t}_{-\infty}e^{ms}\|g(s,\cdot)\|^{2}_Hds < \infty, \ \ \forall t\in\mathbb{R}. \end{eqnarray} | (90) |
\begin{eqnarray} \frac{\nu}{2}-\frac{\|a\|_{L^q_{loc}(\mathbb{R})}}{1-\rho^\ast} > 0. \end{eqnarray} | (91) |
In this part, the well-posedness and pullback attractors for problem (1) with sub-linear operator will be stated for our discussion in sequel.
Assume that the initial date
\begin{equation} \begin{cases} u(t)+\int^t_\tau P(\nu Au+\alpha u+\beta|u|u+\gamma |u|^2u)ds &\\ \quad = u(\tau) +\int^t_\tau P\Big(F\big(u(s-\rho(s))\big)+g(s,x)\Big)ds,& \\ w|_{\partial\Omega} = 0,& \\ u(t = \tau) = u_{\tau},&\\ u(\tau+t) = \phi(t),\ t\in [-h,0],& \end{cases} \end{equation} | (92) |
which possesses a global mild solution as the following theorem.
Theorem 4.1. Assume that the external forces
\begin{eqnarray} &&\|u(t)\|^{2}_H+2\nu\int^t_{\tau}\|u(s)\|^{2}_Vds+2\alpha \int^t_{\tau}\|u(s)\|^{2}_Hds\\ &&+2\beta\int^t_{\tau}\|u(s)\|^{3}_{\bf{L}^3}ds+2\gamma\int^t_{\tau}\|u(s)\|^{4}_{\bf{L}^4}ds\\ & = &\|u_{\tau}\|^{2}_H+2\int^t_{\tau}\Big[\big(F(u(s-\rho(s))),u(s)\big)+2(g(s,x),u(s))\Big]ds. \end{eqnarray} | (93) |
Moreover, we can define a continuous process
Proof. Using the Galerkin method and compact argument as in Section 3.3, we can easily derive the result.
After obtaining the existence of the global well-posedness, we establish the existence of the pullback attractors to (1) with sub-linear operator.
Theorem 4.2. (The pullback attractors in
Proof. Using the similar technique as in Section3.3, we can obtain the existence of pullback attractors, here we skip the details.
Theorem 4.3. We assume that the external forces
Then the trajectories inside pullback attractors
\begin{equation} \mathit{\mbox{G}}(t)\leq \tilde{K}_0, \end{equation} | (94) |
where
\begin{equation} \tilde{K}_0 = \Big\{(2\nu\lambda_1+\alpha)\Big/\Big[2C_{|\Omega|}\beta\nu\lambda_1 (\frac{1}{\alpha^2(1-\rho^*)}+\|\tilde{a}(t)\|_{L^1})\Big]\Big\}^{1/2} > 0,\nonumber \end{equation} |
here
Proof. Step 1. The inequality for asymptotic stability of trajectories.
Let
\begin{eqnarray} u(\theta+\tau)|_{\theta\in [-h,0]} = \phi(\theta)|_{\theta\in[-h,0]},\ \ u|_{t = \tau} = u_{\tau} \end{eqnarray} | (95) |
and
\begin{eqnarray} v(\theta+\tau)|_{\theta\in [-h,0]} = \tilde{\phi}(\theta)|_{\theta\in[-h,0]},\ \ v|_{t = \tau} = \tilde{u}_{\tau} \end{eqnarray} | (96) |
respectively, then
\begin{eqnarray} (u,u_t) = (U(t,\tau)u_{\tau},U(t,\tau)\phi),\ \ (v,v_t) = (U(t,\tau)\tilde{u}_{\tau},U(t,\tau)\tilde{\phi}). \end{eqnarray} | (97) |
If we denote
\begin{equation} \begin{cases} \frac{\partial w}{\partial t}+\nu A w +P\Big(\alpha w+\beta(|u|u-|v|v)+\gamma (|u|^2u-|v|^2v)\Big)&\\ \quad = P\Big(F\big(u(t-\rho(t))\big)-F\big(v(t-\rho(t))\big)\Big),& \\ w|_{\partial\Omega} = 0,& \\ w(t = \tau) = u_{\tau}-\tilde{u}_{\tau},&\\ w(\tau+\theta) = \phi(\theta)-\tilde{\phi}(\theta),\ \theta\in [-h,0].& \end{cases} \end{equation} | (98) |
Multiplying (98) with
\begin{eqnarray} &&\frac{1}{2}\frac{d}{d t}\|w\|^2_H+\nu\|w\|^2_V+\alpha \|w\|_H^2+\gamma \gamma_0 \|w\|^4_{\bf{L}^4}\\ &\leq& |\beta(|u|u-|v|v,w)|+\Big|\Big(F\big(u(t-\rho(t))\big)-F\big(v(t-\rho(t))\big),w\Big)\Big|\\ &\leq& C_{|\Omega|}\beta(\|u\|^2_{V}+\|u\|^2_{V})\|w\|^2_{H}+\frac{\alpha}{2}\|w\|^2_H\\ &&+\frac{1}{\alpha}\|F\big(u(t-\rho(t))\big)-F\big(v(t-\rho(t))\big)\|^2_H\\ &\leq& C_{|\Omega|}\beta(\|u\|^2_{V}+\|u\|^2_{V})\|w\|^2_{H}+\frac{\alpha}{2}\|w\|^2_H\\ &&+\frac{L^2(R)\kappa(t)}{\alpha}\|w(t-\rho(t))\|^2_H. \end{eqnarray} | (99) |
Using the Poincaré inequality and Lemma 3.1, noting that if
\begin{eqnarray} 2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V) > 0, \end{eqnarray} | (100) |
then we can obtain
\begin{eqnarray} \|w\|^2_H&\leq& e^{\int^t_{\tau}[2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)-(2\nu\lambda_1+\alpha)]ds}\Big[\|u_{\tau}-\tilde{u}_{\tau}\|^2_H+\\ &&+\frac{L^2(R)\|\kappa(t)\|_{L^{\infty}}}{\alpha}\int^t_{\tau}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma}\\ && \quad \times\|w(t-\rho(t))\|^2_Hds\Big]. \end{eqnarray} | (101) |
Denoting
\begin{eqnarray} E(t,\tau) = e^{-\int^t_{\tau}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]ds} \end{eqnarray} | (102) |
and
\begin{eqnarray} K_1(t,s) = \frac{L^2(R)\|\kappa(t)\|_{L^{\infty}}}{\alpha}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma} \end{eqnarray} | (103) |
and
\begin{eqnarray} \Theta = \sup\limits_{t\geq s\geq \tau}E(t,s),\ \ \ \ \kappa(K_1,0) = \sup\limits_{t\geq\tau}\int^t_{\tau}K_1(t,s)ds, \end{eqnarray} | (104) |
by virtue of Lemma 3.2, choosing
\begin{eqnarray} \|w(t-\rho(t))\|^2_H&\leq& \tilde{M}\|u_{\tau}-\tilde{u}_{\tau}\|^2_H e^{-\tilde{\lambda} (t-\tau)}. \end{eqnarray} | (105) |
Substituting (105) into (99), using Lemma 3.1 again, we can conclude the following estimate
\begin{eqnarray} \|w\|^2_H &\leq& \|u_{\tau}-\tilde{u}_{\tau}\|^2_He^{-\int^t_{\tau}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]ds}\\ &&+\frac{L^2(R)\|\kappa(t)\|_{L^{\infty}}}{\alpha}\tilde{M}\|u_{\tau}-\tilde{u}_{\tau}\|^2_H e^{-\tilde{\lambda} (t-\tau)}\\ && \quad \times\int^t_{\tau}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma}ds. \end{eqnarray} | (106) |
From the result in last section, we can find that the pullback attractors is asymptotically stable as
\begin{equation} 2\nu\lambda_1+\alpha > 2C_{|\Omega|}\beta \langle \|u\|^2_V+\|v\|^2_V\rangle_{\leq t}. \end{equation} | (107) |
Step 2.Some energy estimate for (1) with sub-linear operator.
Multiplying (3) with
\begin{eqnarray} &&\frac{1}{2}\frac{d}{dt}\|u\|^2_H+\nu\|A^{1/2}u\|^2_H+\alpha\|u\|^2_H+\beta \|u\|^3_{\bf{L}^3}+\gamma \|u\|^4_{\bf{L}^4}\\ &\leq&\alpha \|u\|^2_H+\frac{1}{2\alpha}\Big[\|f\big(t,u(t-\rho(t))\big)\|^2_H+\|g\|^2_{H}\Big]. \end{eqnarray} | (108) |
Moreover, let
\begin{equation} d\theta = (1-\rho'(s))ds,\ a(t)\rightarrow \tilde{a}(\bar{t})\in L^p(\tau,T), \end{equation} | (109) |
which means
\begin{align} &\int^t_\tau\|f(s,u(s-\rho(s)))\|^2_Hds\\ \leq&\int^t_\tau a(s)\|u(s-\rho(s))\|^2_Hds+\int^T_\tau b(s)ds\\ \leq& \ \dfrac{1}{1-\rho^*}\int_{\tau-\rho(\tau)}^{t-\rho(t)} \tilde{a}(s)\|u(s)\|^2_Hds+\int^t_\tau b(s)ds\\ \leq& \ \dfrac{1}{1-\rho^*}\left(\int_{-\rho(\tau)}^{0}\tilde{a}(t+\tau)\|\phi(t)\|^2_Hdt +\int^t_\tau\tilde{a}(s)\|u(s)\|^2_Hds\right)+\int^t_\tau b(s)ds\\ \leq& \dfrac{1}{1-\rho^*}\left(\|\phi(t)\|^2_{L^{2q}_{H}}\|\tilde{a}\|_{L^q(\tau-h,\tau)} +\int^t_\tau\tilde{a}(s)\|u(s)\|^2_Hds\right)+\int^t_\tau b(s)ds, \end{align} | (110) |
Integrating (108) with time variable from
\begin{eqnarray} &&\|u\|^2_H+2\nu\int^t_{\tau}\|u\|^2_Vds+2\beta\int^t_{\tau} \|u\|^3_{\bf{L}^3}ds+2\gamma \int^t_{\tau}\|u\|^4_{\bf{L}^4}ds\\ &\leq& \dfrac{\|\tilde{a}\|_{L^q(\tau-h,\tau)}}{\alpha(1-\rho^*)}\|\phi(t)\|^2_{L^{2q}_{H}}+\|u_{\tau}\|^2_H+\frac{1}{\alpha(1-\rho^*)}\int^{t}_{\tau}\tilde{a}(s)\|u(s)\|^2_Hds\\ &&+\frac{1}{\alpha}\int^t_{\tau}\|g\|^2_{H}ds+\frac{1}{\alpha}\int^t_\tau b(s)ds, \end{eqnarray} | (111) |
then we can achieve that
\begin{eqnarray} \|u(t)\|^2_H&\leq& \Big[\dfrac{\|\tilde{a}\|_{L^q(\tau-h,\tau)}}{\alpha(1-\rho^*)}\|\phi(t)\|^2_{L^{2q}_{H}}+\|u_{\tau}\|^2_H\Big]e^{-\chi_{\sigma}(t,\tau)}\\ &&+\frac{1}{\alpha}\int^t_{\tau}\|g\|^2_{H}e^{-\chi_{\sigma}(t,s)}ds+\frac{1}{\alpha}\int^t_{\tau}b(s)e^{-\chi_{\sigma}(t,s)}ds, \end{eqnarray} | (112) |
where the new variable index
\begin{eqnarray} \chi_{\sigma}(t,s) = (2\nu\lambda_1-\sigma)(t-s)-\frac{1}{\alpha(1-\rho^*)}\int^t_{s}\tilde{a}(r)dr, \end{eqnarray} | (113) |
which satisfies the relations
\begin{eqnarray} \chi_{\sigma}(0,t)-\chi_{\sigma}(0,s) = -\chi_{\sigma}(t,s) \end{eqnarray} | (114) |
and
\begin{eqnarray} \chi_{\sigma}(0,r)\leq \chi_{\sigma}(0,t)+\Big(2\nu\lambda_1-\delta\Big)h,\ \ \mbox{if}\ 2\nu\lambda_1+\alpha-\delta > 0 \end{eqnarray} | (115) |
for
Moreover, using the variable index introduced above, we can conclude that
\begin{eqnarray} &&2\nu\int^t_{\tau}\|u(r)\|^2_{V}dr\\ &\leq& \dfrac{\|\tilde{a}\|_{L^q(\tau-h,\tau)}}{\alpha(1-\rho^*)}\|\phi(t)\|^2_{L^{2q}_{H}}+\|u_{\tau}\|^2_H\\ &&+\frac{1}{\alpha}\int^t_{\tau}\|g\|^2_{H}ds+\frac{1}{\alpha}\int^t_\tau b(s)ds\\ &&+\frac{1}{\alpha(1-\rho^*)}\Big[\dfrac{\|\tilde{a}\|_{L^q(\tau-h,\tau)}}{\alpha(1-\rho^*)}\|\phi(t)\|^2_{L^{2q}_{H}}+\|u_{\tau}\|^2_H\Big]\int^t_{\tau}\tilde{a}(s)e^{-\chi_{\sigma}(s,\tau)}ds\\ &&+\frac{1}{\alpha^2(1-\rho^*)}\int^t_{\tau}\|g(s)\|^2_{H}ds\int^t_{\tau}\tilde{a}(s)ds+\frac{\|b\|_{L^1(\tau,T)}}{\alpha^2(1-\rho^*)}\int^t_{\tau}\tilde{a}(s)ds. \end{eqnarray} | (116) |
Step 3. The sufficient condition for asymptotic stability of trajectories inside pullback attractors.
Combining (107) with (116), we conclude that
\begin{eqnarray} &&2C_{|\Omega|}\beta\langle \|u\|^2_V+\|v\|^2_V\rangle|_{\leq t}\\ &\leq& \frac{2C_{|\Omega|}\beta}{\nu}\Big[\Big(\frac{1}{\alpha^2(1-\rho^*)}+\int^t_{\tau}\tilde{a}(s)ds\Big)\langle \|g(t)\|_H^2\rangle|_{\leq t} \\ &&+\frac{1}{\alpha}\langle \|b(t)\|_{L^1}\rangle|_{\leq t}+\frac{\|b\|_{L^1(\tau,T)}}{\alpha^2(1-\rho^*)}\langle \|\tilde{a}(t)\|_{L^1}\rangle|_{\leq t}\Big]. \end{eqnarray} | (117) |
and hence the asymptotic stability holds provided that
\begin{eqnarray} &&\Big(\frac{1}{\alpha^2(1-\rho^*)}+\|\tilde{a}(t)\|_{L^1}\Big)\langle \|g(t)\|_H^2\rangle|_{\leq t}+\frac{1}{\alpha}\langle \|b(t)\|_{L^1}\rangle|_{\leq t}+\frac{\|b\|_{L^1(\tau,T)}}{\alpha^2(1-\rho^*)}\langle \|\tilde{a}(t)\|_{L^1}\rangle|_{\leq t}\\ &&\leq \frac{\nu(2\nu\lambda_1+\alpha)}{2C_{|\Omega|}\beta}. \end{eqnarray} | (118) |
If we define the generalized Grashof number as
\begin{eqnarray} G(t)\leq \Big\{(2\nu\lambda_1+\alpha)\Big/\Big[2C_{|\Omega|}\beta\nu\lambda_1 (\frac{1}{\alpha^2(1-\rho^*)}+\|\tilde{a}(t)\|_{L^1})\Big]\Big\}^{1/2} = \tilde{K}_0, \end{eqnarray} | (119) |
which completes the proof for our first result.
Remark 5. If we denote
\begin{eqnarray} \limsup\limits_{\tau\rightarrow -\infty}\frac{1}{t-\tau}\int^t_{\tau}b(r)dr = b_0\in [0,+\infty) \end{eqnarray} | (120) |
and
\begin{eqnarray} \limsup\limits_{\tau\rightarrow -\infty}\frac{1}{t-\tau}\int^t_{\tau}\tilde{a}(r)dr = \tilde{a}_0\in [0,+\infty), \end{eqnarray} | (121) |
such that there exists some
\begin{eqnarray} \frac{\nu(2\nu\lambda_1+\alpha)}{2C_{|\Omega|}\beta} > \frac{b_0}{\alpha}+\frac{\|b\|_{L^1(\tau,T)}\tilde{\alpha}_0}{\alpha^2(1-\rho^*)}+\delta \end{eqnarray} | (122) |
holds. Then more precise sufficient condition for the asymptotic stability of pullback attractors is
\begin{eqnarray} G(t)\leq \Big[\frac{\frac{\nu(2\nu\lambda_1+\alpha)}{2C_{|\Omega|}\beta}-\frac{b_0}{\alpha}-\frac{\|b\|_{L^1(\tau,T)}\tilde{\alpha}_0}{\alpha^2(1-\rho^*)}}{\nu^2\lambda_1(\frac{1}{\alpha^2(1-\rho^*)}+\|\tilde{a}(t)\|_{L^1})}\Big]^{1/2} \end{eqnarray} | (123) |
which has smaller upper boundedness than (119).
The structure and stability of 3D BF equations with delay are investigated in this paper. A future research in the pullback dynamics of (1) is to study the geometric property of pullback attractors, such as the fractal dimension.
Xin-Guang Yang was partially supported by the Fund of Young Backbone Teacher in Henan Province (No. 2018GGJS039) and Henan Overseas Expertise Introduction Center for Discipline Innovation (No. CXJD2020003). Xinjie Yan was partly supported by Excellent Innovation Team Project of "Analysis Theory of Partial Differential Equations" in China University of Mining and Technology (No. 2020QN003). Ling Ding was partly supported by NSFC of China (Grant No. 1196302).
The authors want to express their most sincere thanks to refrees for the improvement of this manuscript. The authors also want to thank Professors Tomás Caraballo (Universidad de Sevilla), Desheng Li (Tianjin University) and Shubin Wang (Zhengzhou University) for fruitful discussion on this subject.
[1] |
A. Gudigar, S. Chokkadi, U. Raghavendra, U. Rajendra Acharya, An efficient traffic sign recognition based on graph embedding features, Neural Comput. Appl., 31 (2019), 395–407. https://doi.org/10.1007/s00521-017-3063-z doi: 10.1007/s00521-017-3063-z
![]() |
[2] |
Z. Liang, J. Shao, D. Zhang, L. Gao, Traffic sign detection and recognition based on pyramidal convolutional networks, Neural Comput. Appl., 32 (2020), 6533–6543. https://doi.org/10.1007/s00521-019-04086-z doi: 10.1007/s00521-019-04086-z
![]() |
[3] |
R. Abdel-Salam, R. Mostafa, A. H. Abdel-Gawad, RIECNN: real-time image enhanced CNN for traffic sign recognition, Neural Comput. Appl., 34 (2022), 6085–6096. https://doi.org/10.1007/s00521-021-06762-5 doi: 10.1007/s00521-021-06762-5
![]() |
[4] |
M. Lu, K. Wevers, R. V. D. Heijden, Technical feasibility of advanced driver assistance systems (ADAS) for road traffic safety, Transp. Plann. Technol., 28 (2005), 167–187. https://doi.org/10.1080/03081060500120282 doi: 10.1080/03081060500120282
![]() |
[5] | J. C. McCall, M. M. Trivedi, Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation, IEEE Trans. Intell. Transp. Syst., 7 (2006), 20–37. https://doi.org/10.1109/TITS.2006.869595 |
[6] | M. Haloi, D. B. Jayagopi, A robust lane detection and departure warning system, in 2015 IEEE Intelligent Vehicles Symposium (IV), (2015), 126–131. https://doi.org/10.1109/IVS.2015.7225674 |
[7] |
R. Ayachi, Y. Said, A. B. Abdelaali, Pedestrian detection based on light-weighted separable convolution for advanced driver assistance systems, Neural Process. Lett., 52 (2020), 2655–2668. https://doi.org/10.1007/s11063-020-10367-9 doi: 10.1007/s11063-020-10367-9
![]() |
[8] |
Y. Gu, B. Si, A novel lightweight real-time traffic sign detection integration framework based on YOLOv4, Entropy, 24 (2022), 487. https://doi.org/10.3390/e24040487 doi: 10.3390/e24040487
![]() |
[9] | T. Liang, H. Bao, W. Pan, F. Pan, Traffic sign detection via improved sparse R-CNN for autonomous vehicles, J. Adv. Transp., (2022), 1–16. https://doi.org/10.1155/2022/3825532 |
[10] |
J. Wang, Y. Chen, Z. Dong, M. Gao, Improved YOLOv5 network for real-time multi-scale traffic sign detection, Neural Comput. Appl., 35 (2023), 7853–7865. https://doi.org/10.1007/s00521-022-08077-5 doi: 10.1007/s00521-022-08077-5
![]() |
[11] | M Swathi, K. V. Suresh, Automatic traffic sign detection and recognition: A review, in 2017 International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET), (2017), 1–6. https://doi.org/10.1109/ICAMMAET.2017.8186650 |
[12] | C. Liu, S. Li, F. Chang, Y. Wang, Machine vision based traffic sign detection methods: Review, analyses and perspectives, IEEE Access, 7 (2019), 86578–86596. https://doi.org/10.1109/ACCESS.2019.2924947 |
[13] |
S. Maldonado-Bascon, S. Lafuente-Arroyo, P. Gil-Jimenez, H. Gomez-Moreno, F. Lopez-Ferreras, Road-sign detection and recognition based on support vector machines, IEEE Trans. Intell. Transp. Syst., 8 (2007), 264–278. https://doi.org/10.1109/TITS.2007.895311 doi: 10.1109/TITS.2007.895311
![]() |
[14] |
V. Cherkassky, Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression, Neural Networks, 17 (2004), 113–126. https://doi.org/10.1016/S0893-6080(03)00169-2 doi: 10.1016/S0893-6080(03)00169-2
![]() |
[15] |
A. Ellahyani, M. E. Ansari, I. E. Jaafari, S. Charfi, Traffic sign detection and recognition using features combination and random forests, Int. J. Adv. Comput. Sci. Appl., 7 (2016), 686–693. https://doi.org/10.14569/IJACSA.2016.070193 doi: 10.14569/IJACSA.2016.070193
![]() |
[16] |
K. Lu, Z. Ding, S. Ge, Sparse-representation-based graph embedding for traffic sign recognition, IEEE Trans. Intell. Transp. Syst., 13 (2021), 1515–1524. https://doi.org/10.1109/TITS.2012.2220965 doi: 10.1109/TITS.2012.2220965
![]() |
[17] | Y. Tang, K. Han, J. Guo, C. Xu, Y. Li, C. Xu, et al., An image patch is a wave: Phase-aware vision MLP, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2022), 10935–10944. https://doi.org/10.48550/arXiv.2111.12294 |
[18] |
E. J. Heller, M. F. Crommie, C. P. Lutz, D. M. Eigler, Scattering and absorption of surface electron waves in quantum corrals, Nature, 369 (1994), 464–466. https://doi.org/10.1038/369464a0 doi: 10.1038/369464a0
![]() |
[19] |
H. Touvron, P. Bojanowski, M. Caron, M. Cord, A. El-Nouby, E. Grave, et al., ResMLP: Feedforward networks for image classification with data-efficient training, IEEE Trans. Pattern Anal. Mach. Intell., 45 (2023), 5314–5321. https://doi.org/10.1109/TPAMI.2022.3206148 doi: 10.1109/TPAMI.2022.3206148
![]() |
[20] | W. Wang, E. Xie, X. Li, D. Fan, K. Song, D. Liang, et al., Pyramid vision transformer: A versatile backbone for dense prediction without convolutions, in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), (2021), 568–578. https://doi.org/10.48550/arXiv.2102.12122 |
[21] | A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, An image is worth 16x16 Words: Transformers for image recognition at scale, preprint, arXiv: 2010.11929. |
[22] | O. N. Manzari, A. Boudesh, S. B. Shokouhi, Pyramid transformer for traffic sign detection, in 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE), (2022), 112–116. https://doi.org/10.1109/ICCKE57176.2022.9960090 |
[23] |
Y. Zheng, W. Jiang, Evaluation of vision transformers for traffic sign classification, Wireless Commun. Mobile Comput., 2022 (2022), 14. https://doi.org/10.1155/2022/3041117 doi: 10.1155/2022/3041117
![]() |
[24] |
D. Pei, F. Sun, H. Liu, Supervised low-rank matrix recovery for traffic sign recognition in image sequences, IEEE Signal Process. Lett., 20 (2013), 241–244. https://doi.org/10.1109/LSP.2013.2241760 doi: 10.1109/LSP.2013.2241760
![]() |
[25] | S. Ardianto, C. Chen, H. Hang, Real-time traffic sign recognition using color segmentation and SVM, in 2017 International Conference on Systems, Signals and Image Processing (IWSSIP), (2017), 1–5. https://doi.org/10.1109/IWSSIP.2017.7965570 |
[26] | D. Cireşan, U. Meier, J. Masci, J. Schmidhuber, A committee of neural networks for traffic sign classification, in the 2011 International Joint Conference on Neural Networks, (2011), 1918–1921. https://doi.org/10.1109/IJCNN.2011.6033458. |
[27] | P. Sermanet, Y. LeCun, Traffic sign recognition with multi-scale convolutional networks, in the 2011 International Joint Conference on Neural Networks, (2011), 2809–2813. https://doi.org/10.1109/IJCNN.2011.6033589 |
[28] | M. Haloi, Traffic sign classification using deep inception based convolutional networks, preprint, arXiv: 1511.02992. |
[29] | M. Jaderberg, K. Simonyan, A. Zisserman, K. kavukcuoglu, Spatial transformer networks, in Advances in Neural Information Processing Systems 28 (NIPS 2015), 28 (2015). |
[30] | C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with convolutions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2015), 1–9. https://doi.org/10.1109/CVPR.2015.7298594 |
[31] | J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2018), 7132–7141. https://doi.org/10.48550/arXiv.1709.01507 |
[32] |
Y. Yuan, Z. Xiong, Q. Wang, VSSA-NET: Vertical spatial sequence attention network for traffic sign detection, IEEE Trans. Image Process., 28 (2019), 3423–3434. https://doi.org/10.1109/TIP.2019.2896952 doi: 10.1109/TIP.2019.2896952
![]() |
[33] | Y. Liu, Z. Shao, N. Hoffmann, Global attention mechanism: Retain information to enhance channel-spatial interactions, preprint, arXiv: 2112.05561. |
[34] |
S. Liu, J. Li, C. Hu, W. Wang, Traffic sign recognition based on convolutional neural network and ensemble learning, Comput. Mod., 12 (2019), 67. https://doi.org/10.3969/j.issn.1006-2475.2019.12.013 doi: 10.3969/j.issn.1006-2475.2019.12.013
![]() |
[35] |
K. Zhou, Y. Zhan, D. Fu, Learning region-based attention network for traffic sign recognition, Sensors, 21 (2021), 686. https://doi.org/10.3390/s21030686 doi: 10.3390/s21030686
![]() |
[36] |
M. Guo, C. Lu, Z. Liu, M. Cheng, S. Hu, Visual attention network, Visual Media, 9 (2023), 733–752. https://doi.org/10.1007/s41095-023-0364-2 doi: 10.1007/s41095-023-0364-2
![]() |
[37] |
S. Gao, M. Cheng, K. Zhao, X. Zhang, M. Yang, P. Torr, Res2Net: A new multi-scale backbone architecture, IEEE Trans. Pattern Anal. Mach. Intell., 43 (2019), 652–662. https://doi.org/10.1109/TPAMI.2019.2938758 doi: 10.1109/TPAMI.2019.2938758
![]() |
[38] | K. He, X. Zhang, S. Ren, J. Sun, Deep Residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778. https://doi.org/10.1109/CVPR.2016.90 |
[39] | L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 5659–5667. |
[40] |
Z. Zhu, J. Lu, R. R. Martin, S. Hu, An optimization approach for localization refinement of candidate traffic signs, IEEE Trans. Intell. Transp. Syst., 18 (2017), 3006–016. https://doi.org/10.1109/TITS.2017.2665647 doi: 10.1109/TITS.2017.2665647
![]() |
[41] | S. Mehta, C. Paunwala, B. Vaidya, CNN based traffic sign classification using Adam optimizer, in 2019 International Conference on Intelligent Computing and Control Systems (ICCS), (2019), 1293–1298. https://doi.org/10.1109/ICCS45141.2019.9065537 |
[42] |
A. Staravoitau, Traffic sign classification with a convolutional network, Pattern Recognit. Image Anal., 28 (2018), 155–162. https://doi.org/10.1134/S1054661818010182 doi: 10.1134/S1054661818010182
![]() |
[43] |
J. Greenhalgh, M. Mirmehdi, Real-time detection and recognition of road traffic signs, IEEE Trans. Intell. Transp. Syst., 13 (2012), 1498–1506. https://doi.org/10.1109/TITS.2012.2208909 doi: 10.1109/TITS.2012.2208909
![]() |
[44] | G. Overett, L. Petersson, Large scale sign detection using HOG feature variants, in 2011 IEEE Intelligent Vehicles Symposium (IV), (2011), 326–331. https://doi.org/10.1109/IVS.2011.5940549 |
[45] |
A. Mogelmose, M. M. Trivedi, T. B. Moeslund, Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey, IEEE Trans. Intell. Transp. Syst., 13 (2012), 1484–1497. https://doi.org/10.1109/TITS.2012.2209421 doi: 10.1109/TITS.2012.2209421
![]() |
[46] | F. Larsson, M. Felsberg, Using fourier descriptors and spatial models for traffic sign recognition, in SCIA 2011: Image Analysis, 6688 (2011), 238–249. https://doi.org/10.1007/978-3-642-21227-7_23 |
[47] |
J. Stallkamp, M. Schlipsing, J. Salmen, C. Igel, Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition, Neural Networks, 32 (2012), 323–332. https://doi.org/10.1016/j.neunet.2012.02.016 doi: 10.1016/j.neunet.2012.02.016
![]() |
[48] | X. Mao, S. Hijazi, R. Casas, P. Kaul, R. Kumar, C. Rowen, Hierarchical CNN for traffic sign recognition, in 2016 IEEE Intelligent Vehicles Symposium (IV), (2016), 130–135. https://doi.org/10.1109/IVS.2016.7535376 |
[49] | X. Peng, Y. Li, X. Wei, J. Luo, Y. Murphey, Traffic sign recognition with transfer learning, in 2017 IEEE Symposium Series on Computational Intelligence (SSCI), (2017), 1–7. https://doi.org/10.1109/SSCI.2017.8285332 |
[50] |
Y. Jin, Y. Fu, W. Wang, J. Guo. C. Ren, X. Xiang, Multi-feature fusion and enhancement single shot detector for traffic sign recognition, IEEE Access, 8 (2020), 38931–38940. https://doi.org/10.1109/ACCESS.2020.2975828 doi: 10.1109/ACCESS.2020.2975828
![]() |
[51] |
A. Bouti, M. A. Mahraz, J. Riffi, H. Tairi, A robust system for road sign detection and classification using LeNet architecture based on convolutional neural network, Soft Comput., 24 (2020), 6721–6733. https://doi.org/10.1007/s00500-019-04307-6 doi: 10.1007/s00500-019-04307-6
![]() |
[52] | F. J. Moreno-Barea, F. Strazzera, J. M. Jerez, D. Urda, L. Franco, Forward noise adjustment scheme for data augmentation, in 2018 IEEE Symposium Series on Computational Intelligence (SSCI), (2018), 728–734. https://doi.org/10.1109/SSCI.2018.8628917 |
[53] | A. Asuncion, D. Newman, UCI Machine Learning Repository, 2007. Available from: http://archive.ics.uci.edu/ml. |
1. | Qiangheng Zhang, Yangrong Li, Regular attractors of asymptotically autonomous stochastic 3D Brinkman-Forchheimer equations with delays, 2021, 20, 1534-0392, 3515, 10.3934/cpaa.2021117 | |
2. | Pan Zhang, Lan Huang, Rui Lu, Xin-Guang Yang, Pullback dynamics of a 3D modified Navier-Stokes equations with double delays, 2021, 29, 2688-1594, 4137, 10.3934/era.2021076 | |
3. | Shu Wang, Mengmeng Si, Rong Yang, Dynamics of stochastic 3D Brinkman-Forchheimer equations on unbounded domains, 2023, 31, 2688-1594, 904, 10.3934/era.2023045 | |
4. | Yang Liu, Chunyou Sun, Inviscid limit for the damped generalized incompressible Navier-Stokes equations on \mathbb{T}^2 , 2021, 14, 1937-1632, 4383, 10.3934/dcdss.2021124 | |
5. | Shu Wang, Mengmeng Si, Rong Yang, Random attractors for non-autonomous stochastic Brinkman-Forchheimer equations on unbounded domains, 2022, 21, 1534-0392, 1621, 10.3934/cpaa.2022034 | |
6. | Wenjing Liu, Rong Yang, Xin-Guang Yang, Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay, 2021, 20, 1553-5258, 1907, 10.3934/cpaa.2021052 | |
7. | Ling-Rui Zhang, Xin-Guang Yang, Ke-Qin Su, Asymptotic Stability for the 2D Navier–Stokes Equations with Multidelays on Lipschitz Domain, 2022, 10, 2227-7390, 4561, 10.3390/math10234561 | |
8. | Xiaona Cui, Wei Shi, Xuezhi Li, Xin‐Guang Yang, Pullback dynamics for the 3‐D incompressible Navier–Stokes equations with damping and delay, 2021, 44, 0170-4214, 7031, 10.1002/mma.7239 | |
9. | Zhengwang Tao, Xin-Guang Yang, Yan Lin, Chunxiao Guo, Determination of Three-Dimensional Brinkman—Forchheimer-Extended Darcy Flow, 2023, 7, 2504-3110, 146, 10.3390/fractalfract7020146 | |
10. | Yonghai Wang, Minhui Hu, Yuming Qin, Upper semicontinuity of pullback attractors for a nonautonomous damped wave equation, 2021, 2021, 1687-2770, 10.1186/s13661-021-01532-7 | |
11. | Xueli SONG, Xi DENG, Baoming QIAO, Dimension Estimate of the Global Attractor for a 3D Brinkman- Forchheimer Equation, 2023, 28, 1007-1202, 1, 10.1051/wujns/2023281001 | |
12. | Songmao He, Xin-Guang Yang, Asymptotic behavior of 3D Ladyzhenskaya-type fluid flow model with delay, 2024, 0, 1937-1632, 0, 10.3934/dcdss.2024135 | |
13. | Lingrui Zhang, Xue-zhi Li, Keqin Su, Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D, 2023, 31, 2688-1594, 6881, 10.3934/era.2023348 | |
14. | Xinfeng Ge, Keqin Su, Stability of thermoelastic Timoshenko system with variable delay in the internal feedback, 2024, 32, 2688-1594, 3457, 10.3934/era.2024160 | |
15. | Keqin Su, Xin-Guang Yang, Alain Miranville, He Yang, Dynamics and robustness for the 2D Navier–Stokes equations with multi-delays in Lipschitz-like domains, 2023, 134, 18758576, 513, 10.3233/ASY-231845 | |
16. | Lingrui Zhang, Xue-zhi Li, Keqin Su, Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D, 2023, 31, 2688-1594, 6881, 10.3934/era.20233348 |