In this paper, it is assumed that the Forchheimer flow goes through a semi-infinite cylinder. The nonlinear boundary condition is satisfied on the finite end of the cylinder, and the homogeneous boundary condition is satisfied on the side of the cylinder. Using the method of energy estimate, the structural stability of the solution in the semi-infinite cylinder is obtained.
Citation: Zhiqing Li, Wenbin Zhang, Yuanfei Li. Structural stability for Forchheimer fluid in a semi-infinite pipe[J]. Electronic Research Archive, 2023, 31(3): 1466-1484. doi: 10.3934/era.2023074
In this paper, it is assumed that the Forchheimer flow goes through a semi-infinite cylinder. The nonlinear boundary condition is satisfied on the finite end of the cylinder, and the homogeneous boundary condition is satisfied on the side of the cylinder. Using the method of energy estimate, the structural stability of the solution in the semi-infinite cylinder is obtained.
[1] | D. A. Nield, A. Bejan, Convection in Porous Media, Springer Press, New York, 1992. |
[2] | B. Straughan, Mathematical Aspects of Penetrative Convection, Pitman Research Notes in Mathematics Series, CRC Press: Boca Raton, FL, USA, (1993), 288. |
[3] | L. E. Payne, J. C. Song, Spatial decay bounds for the Forchheimer equations, Int. J. Eng. Sci., 40 (2002), 943–956. https://doi.org/10.1016/S0020-7225(01)00102-1 doi: 10.1016/S0020-7225(01)00102-1 |
[4] | C. O. Horgan, L. T. Wheeler, Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow, SIAM J. Appl. Math., 35 (1978), 97–116. https://doi. org/10.1137/0135008 |
[5] | J. C. Song, Spatial decay estimates in time-dependent double-diffusive darcy plane flow, J. Math. Anal. Appl., 267 (2002), 76–88. https://doi.org/10.1006/jmaa.2001.7750 doi: 10.1006/jmaa.2001.7750 |
[6] | L. E. Payne, J. C. Song, Spatial decay bounds for double diffusive convection in Brinkman flow, J. Differ. Equations, 244 (2008), 413–430. https://doi.org/10.1016/j.jde.2007.10.003 doi: 10.1016/j.jde.2007.10.003 |
[7] | Y. F. Li, X. J. Chen, Phragmén-Lindelöf type alternative results for the solutions to generalized heat conduction equations, Phys. Fluids, 34 (2022), 091901. https://doi.org/10.1063/5.0118243 doi: 10.1063/5.0118243 |
[8] | X. J. Chen, Y. F. Li, Spatial properties and the influence of the Soret coefficient on the solutions of time-dependent double-diffusive Darcy plane flow, Electron. Res. Arch., 31 (2022), 421–441. https://doi.org/10.3934/era.2023021 doi: 10.3934/era.2023021 |
[9] | Y. F. Li, X. J. Chen, Phragmén-Lindelöf alternative results in time-dependent double-diffusive Darcy plane flow, Math. Methods Appl. Sci., 45 (2022), 6982–6997. https://doi.org/10.1002/mma.8220 doi: 10.1002/mma.8220 |
[10] | M. W. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, 1974. |
[11] | N. L. Scott, Continuous dependence on boundary reaction terms in a porous medium of Darcy type, J. Math. Anal. Appl., 399 (2013), 667–675. https://doi.org/10.1016/j.jmaa.2012.10.054 doi: 10.1016/j.jmaa.2012.10.054 |
[12] | Y. Liu, S. Z. Xiao, Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain, Nonlinear Anal. Real World Appl., 42 (2018), 308–333. https://doi.org/10.1016/j.nonrwa.2018.01.007 doi: 10.1016/j.nonrwa.2018.01.007 |
[13] | B. Straughan, Heated and salted below porous convection with generalized temperature and solute boundary conditions, Transp. Porous Media, 131 (2020), 617–631. https://doi.org/10.1007/s11242-019-01359-y |
[14] | Y. F. Li, S. Z. Xiao, P. Zeng, The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere, J. Math. Inequal., 15 (2021), 293–304. https://doi.org/10.1007/s11242-019-01359-y doi: 10.1007/s11242-019-01359-y |
[15] | Y. Liu, X. L. Qin, J. C. Shi, W. J. Zhi, Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in $\mathbb{R}^2$, Appl. Math. Comput., 411 (2021), 126488. https://doi.org/10.1016/j.amc.2021.126488 doi: 10.1016/j.amc.2021.126488 |
[16] | N. L. Scott, B. Straughan, Continuous dependence on the reaction terms in porous convection with surface reactions, Q. Appl. Math., 71 (2013), 501–508. https://doi.org/10.1090/S0033-569X-2013-01289-X doi: 10.1090/S0033-569X-2013-01289-X |
[17] | M. Gentile, B. Straughan, Structural stability in resonant penetrative convection in a Forchheimer porous material, Nonlinear Anal. Real World Appl., 14 (2013), 397–401. https://doi. org/10.1016/j.nonrwa.2012.07.003 |
[18] | R. Quintanilla, Convergence and structural stability in thermoelasticity, Appl. Math. Comput., 135 (2003), 287–300. https://doi.org/10.1016/S0096-3003(01)00331-9 doi: 10.1016/S0096-3003(01)00331-9 |
[19] | B. Straughan, Continuous dependence and convergence for a Kelvin-Voigt fluid of order one, Ann. Univ. Ferrara, 68 (2022), 49–61. https://doi.org/10.1007/s11565-021-00381-7 doi: 10.1007/s11565-021-00381-7 |
[20] | Y. F. Li, C. H. Lin, Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe, Appl. Math. Comput., 244 (2014), 201–208. https://doi.org/10.1016/j.amc.2014.06.082 doi: 10.1016/j.amc.2014.06.082 |
[21] | J. C. Song, Spatial decay bounds for a temperature dependent Stokes flow, J. Korean Math. Soc., 49 (2012), 1163–1174. http://dx.doi.org/10.4134/JKMS.2012.49.6.1163 doi: 10.4134/JKMS.2012.49.6.1163 |
[22] | H. A. Levine, An estimate for the best constant in a Sobolev inequality involving three integral norms, Ann. Mat. Pura Appl., 4 (1980), 181–197. https://doi.org/10.1007/BF01795392 doi: 10.1007/BF01795392 |
[23] | G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353–372. https://doi.org/10.1007/BF02418013 doi: 10.1007/BF02418013 |