Citation: Sukun Tian, Ning Dai, Linlin Li, Weiwei Li, Yuchun Sun, Xiaosheng Cheng. Three-dimensional mandibular motion trajectory-tracking system based on BP neural network[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5709-5726. doi: 10.3934/mbe.2020307
[1] | A. P. Pinheiro, A. A. Pereira, A. O. Andrade, D. Bellomo, Measurement of jaw motion: the proposal of a simple and accurate method, J. Med. Eng. Technol., 35 (2011), 125-133. |
[2] | I. C. Santos, J. M. Tavares, J. Mendes, M. P. Paulo, Acquisition and analysis of 3D mandibular movement using a device based on electromagnetic sensors and a neural network, J. Med. Eng. Technol., 33 (2009), 437-441. |
[3] | A. Boccaccio, P. J. Prendergast, C. Pappalettere, D. J. Kelly, Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period, Med. Biol. Eng. Comput., 46 (2008), 283-298. |
[4] | B. Wiesinger, B. Haggmanhenrikson, A. Wanman, M. Lindkvist, F. Hellstrom, Jaw-opening accuracy is not affected by masseter muscle vibration in healthy men, Exp. Brain Res., 232 (2014), 3501-3508. |
[5] | P. F. Pinheiro, D. A. Cunha, M. G. Filho, A. S. Caldas, T. M. Melo, H. J. Silva, The Use of Electrognathography in Jaw Movement Research: A Literature Review, CRANIO, 30 (2012), 293-303. |
[6] | M. O. Ahlers, O. Bernhardt, H. A. Jakstat, B. Kordas, J. C. Turp, H. J. Schindler, et al., Motion analysis of the mandible: guidelines for standardized analysis of computer-assisted recording of condylar movements, Int. J. Comput. Dent., 18 (2015), 201-223. |
[7] | J. P. Baeyens, H. Gilomen, B. Erdmann, R. Clijsen, J. Cabri, D. Vissers, In vivo measurement of the 3D kinematics of the temporomandibular joint using miniaturized electromagnetic trackers: technical report, Med. Biol. Eng. Comput., 51 (2013), 479-484. |
[8] | B. Jankelson, G. M. Hoffman, J. A. Hendron, The physiology of the stomatognathic system, J. Am. Dent. Assoc., 46 (1953), 375-386. |
[9] | W. E. Walker, Movements of the mandibular condyles and dental articulation, JADA, 6 (1897), 254-259. |
[10] | F. P. M. Oliveira, T. C. Pataky, J. M. R. S. Tavares, Registration of pedobarographic image data in the frequency domain, Comput. Methods Biomech. Biomed. Eng., 13 (2010), 731-740. |
[11] | T. C. S. Azevedo, J. M. R. S. Tavares, M. A. P. Vaz, Three-dimensional reconstruction and characterization of human external shapes from two-dimensional images using volumetric methods, Comput. Method Biomec., 13 (2010), 359-369. |
[12] | C. C. Chen, Y. J. Chen, S.C. Chen, H. S. Lin, T. W. Lu, Evaluation of soft-tissue artifacts when using anatomical and technical markers to measure mandibular motion, J. Dent. Sci., 6 (2011), 95-101. |
[13] | I. C. T. Santos, J. M. R. S. Tavares, J. Mendes, M. P. F. Paulo, A prototype system for acquisition and analysis of 3D mandibular movement, Int. J. Mech. Mater. Des., 4 (2008), 173-180. |
[14] | D. Kim, S. Choi, S. Lee, M. Heo, K. Huh, S. Hwang, et al., Correlation between 3-dimensional facial morphology and mandibular movement during maximum mouth opening and closing, Oral Surg. Oral Med. O., 110 (2010), 648-658. |
[15] | M. M. O. Mazzetto, M. M. A. Anacleto, M. C. A. Rodrigues, R. M. F. Braganca, G. Paiva, M. L. V. Magri, Comparison of mandibular movements in TMD by means of a 3D ultrasonic system and digital caliper rule, CRANIO, 35 (2017), 46-51. |
[16] | R. Enciso, A. Memon, D. Fidaleo, U. Neumann, J. Mah, The virtual craniofacial patient: 3D jaw modeling and animation, Studies Health Technol. Inf., 94 (2003), 65-71. |
[17] | H. J. Yoon, K. D. Zhao, J. Rebellato, K. N. An, E. E.Keller, Kinematic study of the mandible using an electromagnetic tracking device and custom dental appliance: introducing a new technique, J. Biomech., 39 (2006), 2325-2330. |
[18] | D. A. Furtado, A. A. Pereira, A. O. Andrade, D. P. Junior, M. R. Silva, A specialized motion capture system for real-time analysis of mandibular movements using infrared cameras, Biomed. Eng. Online, 12 (2013), 1-17. |
[19] | I. C. T. Santos, J. M. R. S. Tavares, J. Mendes, M. P. F. Paulo, A system for analysis of the 3D mandibular movement using magnetic sensors and neuronal networks, Proceedings of the 2nd International Workshop on Artificial Neural Networks and Intelligent Information Processing, 2006. Available from: https://www.scitepress.org. |
[20] | F. S. Yuan, H. X. Sui, Z. K. Li, H. F. Yang, P. J. Lu, Y. Wang, et al., A Method of Three-Dimensional Recording of Mandibular Movement Based on Two-Dimensional Image Feature Extraction, Plos One, 10 (2015), e0137507. |
[21] | T. Zhao, H. F. Yang, H. X. Sui, S. S. Salvi, Y. Wang, Y. C. Sun, Computerized, Binocular, Three-Dimensional Trajectory-Tracking Device for Recording Functional Mandibular Movements, Plos One, 11 (2016), e0163934. |
[22] | J. J. Fang, T. H. Kuo, Modelling of mandibular movement, Comput. Biol. Med., 38 (2008), 1152-1162. |
[23] | N. Mostashiri, J. S. Dhupia, A. Verl, W. L. Xu, A Novel Spatial Mandibular Motion-Capture System Based on Planar Fiducial Markers, IEEE Sens. J., 18 (2018), 10096-10104. |
[24] | C. C. Chen, C. C. Lin, Y. J. Chen, S. W. Hong, T. W. Lu, A method for measuring three-dimensional mandibular kinematics in vivo using single-plane fluoroscopy, Dentomaxillofacial Radiol., 42 (2012), 95958184-95958184. |
[25] | Y. Tanaka, T. Yamada, Y. Maeda, K. Ikebe, Markerless three-dimensional tracking of masticatory movement, J. Biomech., 49 (2016), 442-449. |
[26] | L. L. Li, Y. C. Sun, Y. Wang, W. W. Li, N. Dai, S. K. Tian, et al., Accuracy of a novel virtual articulator for recording three-dimensional dentition, Int. J. Prosthodont., 33 (2020), 441-451. |
[27] | C. Cheng, X. S. Cheng, N. Dai, X. T. Jiang, Y. C. Sun, W. W. Li, Prediction of facial deformation after complete denture prosthesis using BP neural network, Comput. Biol. Med., 66 (2015), 103-112. |
[28] | K. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks, 2 (1989), 183-192. |
[29] | C. John, A Computational Approach to Edge Detection - Readings in Computer Vision, IEEE T. Pattern. Anal., 8 (1986), 679-698. |
[30] | S. K. Tian, N. Dai, X. S. Cheng, L. L. Li, Y. C. Sun, H. H Cui, Relative trajectory-driven virtual dynamic occlusal adjustment for dental restorations, Med. Biol. Eng. Comput., 57 (2019), 59-70. |
[31] | C. D. Zhang, T. T. Liu, W. H. Liao, T. Yang, L. Y. Jiang, Computer-aided design of dental inlay restoration based on dual-factor constrained deformation, Adv. Eng. Soft., 114 (2017), 71-84. |