
Formulating mathematical models that estimate tumor growth under therapy is vital for improving patient-specific treatment plans. In this context, we present our recent work on simulating non-small-scale cell lung cancer (NSCLC) in a simple, deterministic setting for two different patients receiving an immunotherapeutic treatment. At its core, our model consists of a Cahn-Hilliard-based phase-field model describing the evolution of proliferative and necrotic tumor cells. These are coupled to a simplified nutrient model that drives the growth of the proliferative cells and their decay into necrotic cells. The applied immunotherapy decreases the proliferative cell concentration. Here, we model the immunotherapeutic agent concentration in the entire lung over time by an ordinary differential equation (ODE). Finally, reaction terms provide a coupling between all these equations. By assuming spherical, symmetric tumor growth and constant nutrient inflow, we simplify this full 3D cancer simulation model to a reduced 1D model. We can then resort to patient data gathered from computed tomography (CT) scans over several years to calibrate our model. Our model covers the case in which the immunotherapy is successful and limits the tumor size, as well as the case predicting a sudden relapse, leading to exponential tumor growth. Finally, we move from the reduced model back to the full 3D cancer simulation in the lung tissue. Thereby, we demonstrate the predictive benefits that a more detailed patient-specific simulation including spatial information as a possible generalization within our framework could yield in the future.
Citation: Andreas Wagner, Pirmin Schlicke, Marvin Fritz, Christina Kuttler, J. Tinsley Oden, Christian Schumann, Barbara Wohlmuth. A phase-field model for non-small cell lung cancer under the effects of immunotherapy[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18670-18694. doi: 10.3934/mbe.2023828
[1] | Jingya Wang, Ye Zhu . L2−L∞ control for memristive NNs with non-necessarily differentiable time-varying delay. Mathematical Biosciences and Engineering, 2023, 20(7): 13182-13199. doi: 10.3934/mbe.2023588 |
[2] | Kseniia Kravchuk, Alexander Vidybida . Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness. Mathematical Biosciences and Engineering, 2014, 11(1): 81-104. doi: 10.3934/mbe.2014.11.81 |
[3] | Tianqi Yu, Lei Liu, Yan-Jun Liu . Observer-based adaptive fuzzy output feedback control for functional constraint systems with dead-zone input. Mathematical Biosciences and Engineering, 2023, 20(2): 2628-2650. doi: 10.3934/mbe.2023123 |
[4] | Gonzalo Robledo . Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences and Engineering, 2009, 6(3): 629-647. doi: 10.3934/mbe.2009.6.629 |
[5] | Linni Li, Jin-E Zhang . Input-to-state stability of stochastic nonlinear system with delayed impulses. Mathematical Biosciences and Engineering, 2024, 21(2): 2233-2253. doi: 10.3934/mbe.2024098 |
[6] | Xiaoxiao Dong, Huan Qiao, Quanmin Zhu, Yufeng Yao . Event-triggered tracking control for switched nonlinear systems. Mathematical Biosciences and Engineering, 2023, 20(8): 14046-14060. doi: 10.3934/mbe.2023627 |
[7] | Tong Guo, Jing Han, Cancan Zhou, Jianping Zhou . Multi-leader-follower group consensus of stochastic time-delay multi-agent systems subject to Markov switching topology. Mathematical Biosciences and Engineering, 2022, 19(8): 7504-7520. doi: 10.3934/mbe.2022353 |
[8] | Dong Xu, Xinling Li, Weipeng Tai, Jianping Zhou . Event-triggered stabilization for networked control systems under random occurring deception attacks. Mathematical Biosciences and Engineering, 2023, 20(1): 859-878. doi: 10.3934/mbe.2023039 |
[9] | Yue Song, Yi Zhang, Song Yang, Na Li . Investigation on stability and controller design for singular bio-economic systems with stochastic fluctuations. Mathematical Biosciences and Engineering, 2021, 18(3): 2991-3005. doi: 10.3934/mbe.2021150 |
[10] | Xiaofeng Chen . Double-integrator consensus for a switching network without dwell time. Mathematical Biosciences and Engineering, 2023, 20(7): 11627-11643. doi: 10.3934/mbe.2023516 |
Formulating mathematical models that estimate tumor growth under therapy is vital for improving patient-specific treatment plans. In this context, we present our recent work on simulating non-small-scale cell lung cancer (NSCLC) in a simple, deterministic setting for two different patients receiving an immunotherapeutic treatment. At its core, our model consists of a Cahn-Hilliard-based phase-field model describing the evolution of proliferative and necrotic tumor cells. These are coupled to a simplified nutrient model that drives the growth of the proliferative cells and their decay into necrotic cells. The applied immunotherapy decreases the proliferative cell concentration. Here, we model the immunotherapeutic agent concentration in the entire lung over time by an ordinary differential equation (ODE). Finally, reaction terms provide a coupling between all these equations. By assuming spherical, symmetric tumor growth and constant nutrient inflow, we simplify this full 3D cancer simulation model to a reduced 1D model. We can then resort to patient data gathered from computed tomography (CT) scans over several years to calibrate our model. Our model covers the case in which the immunotherapy is successful and limits the tumor size, as well as the case predicting a sudden relapse, leading to exponential tumor growth. Finally, we move from the reduced model back to the full 3D cancer simulation in the lung tissue. Thereby, we demonstrate the predictive benefits that a more detailed patient-specific simulation including spatial information as a possible generalization within our framework could yield in the future.
In many industrial applications, due to the ubiquity of stochastic noise and nonlinear [1,2], real systems are often modelled by stochastic differential equations, which attracts researchers to pay more and more attention to the control of stochastic systems. Using the state-feedback, a closed-loop pole can be arbitrarily configured to improve the performance of the control systems. Therefore, some scholars research the problem of state-feedback stabilization for stochastic systems, e.g., reference [3] focuses on the cooperative control problem of multiple nonlinear systems perturbed by second-order moment processes in a directed topology. Reference [4] considers the case where the diffusion term and the drift term are unknown parameters for stochastic systems with strict feedback. Reference [5] studies stochastic higher-order systems with state constraints and [6] discusses output constrained stochastic systems with low-order and high-order nonlinear and stochastic inverse dynamics. However, it is often difficult to obtain all the state variables of the system directly, it is unsuitable for direct measurement or the measurement equipment is limited in economy and practicality, so the physical implementation of state-feedback is difficult. One of the solutions to this difficulty is to reconstruct the state of the system. At this time, scholars use an observer to investigate the output-feedback stabilization, e.g., reference [7] investigates the prescribed-time stability problem of stochastic nonlinear strict-feedback systems. Reference [8] focuses on stochastic strict feedback systems with sensor uncertainties. In addition, based on output-feedback, for nonlinear multiagent systems, a distributed output-feedback tracking controller is proposed in [9].
It should be noted that all of the above results [7,8,9], Markovian switching is not considered in the design of output-feedback controller. However, as demonstrated by [10], switching system is a complex hybrid system, which consists of a series of subsystems and switching rules that coordinate the order of each subsystem. In real life, due to the aging of internal components, high temperature, sudden disturbance of external environment, operator error and other inevitable factors, the structure of many systems changes suddenly. Such systems can be reasonably modelled as differential equation with Markovian switching, see [11,12]. Recently, references [13] and [14] discuss the adaptive tracking problem and output tracking problem with Markovian switching respectively. Besides, as shown in [15], the power of the system changes because of factors such as the aging of the springs inside the boiler-turbine unit. Therefore, the research on the stability of stochastic nonlinear systems with time-varying powers has important practical significance. Reference [16] investigates the optimality and stability of high-order stochastic systems with time-varying powers. However, these results do not address the output-feedback stabilization for higher-order stochastic systems with both Markovian switching and time-varying powers.
Based on these discussions, we aim to resolve the output-feedback stabilization for higher-order stochastic nonlinear systems with both Markovian switching and time-varying powers. The main contributions and characteristics of this paper are two-fold:
1) The system model we take into account is more applicable than the existing results [7,8,9] and [12,13,14]. Different from the previous results [7,8,9], the stochastic system with Markovian switching is studied in this paper. Unlike previous studies in [12,13,14], we investigate the power is time-varying. The simultaneous existence of the Markov process and time-varying order makes the controller design process more complicated and difficult. More advanced stochastic analysis techniques are needed.
2) We propose a new observer. The existence of Markovian switching and nondifferentiable time-varying power makes the observer constructed in [7,8,9] invalid. We use the time-varying power's bounds to construct a new observer, which can effectively observe the unmeasurable state and can deal with the nonlinear growth rate, while the existing observer can only deal with constant growth rate.
The rest of this paper is listed as follows. The problem is formulated in Section 2. In Section 3, an output-feedback controller is designed. Section 4 is the stability analysis. A simulation is given in Section 5. The conclusions are collected in Section 6.
Notations: R2 denotes the 2-dimensional space and the set of nonnegative real numbers is represented by R+. X denotes the matrix or vector, its transpose is represented by XT. |X| denotes the Euclidean norm of a vector X. When X is square, Tr{X} denotes its trace. The set of all functions with continuous ith partial derivatives is represented by Ci. Let C2,1(R2×R+×S;R+) represent all nonnegative functions V on R2×R+×S which are C2 in x and C1 in t.
This paper studies the output-feedback stabilization for stochastic nonlinear systems with both Markovian switching and time-varying powers described by:
dζ1=[ζ2]m(t)dt,dζ2=[u]m(t)dt+fTγ(t)(ˉζ2)dω,y=ζ1, | (2.1) |
where ζ=ˉζ2=(ζ1,ζ2)T∈R2, y∈R and u∈R are the system state, control output and the input, respectively. The state ζ2 is unmeasurable. The function m(t):R+→R+ is continuous and bounded, which satisfies 1≤m_≤m(t)≤ˉm with m_ and ˉm being constants. The powers sign function [⋅]α is defined as [⋅]α:=sign(⋅)|⋅|α with α∈(0,+∞). The functions fγ(t) is assumed to be smooth, and for all t≥0, the locally Lipschitz continuous in x uniformly. fγ(t)(t,0)=0. ω is an r−dimensional standard Wiener process, which is defined on the complete probability space (Ω,F,Ft,P) with the filtration Ft satisfying the general conditions. γ(t) is a homogeneous Markov process on the probability space taking values in a space S={1,2,...,N}, which the generator Γ=(λij)N×N given by
Pij(t)=P{γ(t+s)=i|γ(s)=j}={λijt+o(t)ifi≠j,1+λijt+o(t)ifi=j, | (2.2) |
where λij>0 is the transition rate from i to j if i≠j while λii=−ΣNj=1,i≠jλij for any s,t≥0. Suppose the Markov process γ(t) is irrelevant to the ω(t).
To implement the controller design, we need the following assumption.
Assumption 2.1. There exists a non-negative smooth function ˜f(ζ1) such that
|fγ(t)(ˉζ2)|≤(|ζ1|m(t)+12+|ζ2|m(t)+12)˜f(ζ1). | (2.3) |
Remark 2.1. As we know, the existing results for stochastic systems with time-varying powers (e.g., [16]), neither the state-feedback control nor the output-feedback control, has considered Markovian switching. However, the structure of many physical systems in the actual system often mutates, which makes it necessary to study systems with both Markovain switching and time-varying powers. Therefore, compared with [16], the model we consider is more practical and more general.
Remark 2.2. In Assumption 2.1, we can see that the power m(t) is time-varying and the growth rate ˜f(ζ1) is a nonlinear function. When m(t)=1 and ˜f(ζ1) is a constant, Assumption 2.1 is a linear growth condition. However, we consider that ˜f(ζ1) is a nonlinear function, which includes the constant case as a special case. The growth condition of Assumption 2.1 is broader than the linear growth condition. The time-varying power m(t) makes the design in [7,8,9] for time-invariant power invalid. In addition, the nonlinear growth rate ˜f(ζ1) makes the design in [7,8,9,17,18] for constant growth rate fail. A new design scheme should be proposed.
In this section, we develop an output-feedback controller design for system (2.1). The process is divided into two steps:
∙ Firstly, we assume that all states are measurable and develop a state-feedback controller using backstepping technique.
∙ Secondly, we construct a reduced-order observer with a dynamic gain, and design an output-feedback controller.
In this part, under Assumption 2.1, our objective is to develop a state-feedback controller design for the system (2.1).
Step 1. Introducing the coordinate transformation ξ1=ζ1 and choosing V1=14ξ41, by using the infinitesimal generator defined in section 1.8 of [11], we have
LV1≤ξ31[ζ2]m(t)+IIV1≤ξ31([ζ2]m(t)−[ζ∗2]m(t))+ξ31[ζ∗2]m(t)+IIV1. | (3.1) |
If we choose ζ∗2 as
ζ∗2=−c1/m_1ξ1:=−α1ξ1, | (3.2) |
we get
ξ31[ζ∗2]m(t)=−αm(t)1ξm(t)+31≤−c1|ξ1|m(t)+3, | (3.3) |
where α1=c1/m_1≥1 is a constant with c1≥1 being a design parameter.
Substituting (3.3) into (3.1) yields
LV1≤−c1|ξ1|m(t)+3+ξ31([ζ2]m(t)−[ζ∗2]m(t))+IIV1. | (3.4) |
Step 2. Introducing the coordinate transformation ξ2=ζ2−ζ∗2, and using Itô's differentiation rule, we get
dξ2=([u]m(t)−∂ζ∗2∂ζ1[ζ2]m(t))dt+fTγ(t)(ˉζ2)dω. | (3.5) |
Choose V2=V1+14ξ42. From (3.4) and (3.5), we obtain
LV2≤−c1|ξ1|m(t)+3+ξ31([ζ2]m(t)−[ζ∗2]m(t))+ξ32[u]m(t)−ξ32∂ζ∗2∂ζ1[ζ2]m(t)+32ξ22|fTγ(t)(ˉζ2)|2+IIV2. | (3.6) |
By (3.2) and using Lemma 1 in [19], we have
ξ31([ζ2]m(t)−[ζ∗2]m(t))≤ˉm(2ˉm−2+2)(|ξ1|3|ξ2|m(t)+αˉm−11|ξ1|m(t)+2|ξ2|). | (3.7) |
By using Lemma 2.1 in [20], we get
ˉm(2+2ˉm−2)|ξ1|3|ξ2|m(t)≤16|ξ1|3+m(t)+β211|ξ2|3+m(t),ˉm(2+2ˉm−2)αˉm−11|ξ1|m(t)+2|ξ2|≤16|ξ1|3+m(t)+β212|ξ2|3+m(t), | (3.8) |
where
β211=ˉmm_+3(ˉm(2+2ˉm−2))3+ˉmm_(3+m_18)−3ˉm,β212=1m_+3(ˉm(2+2ˉm−2)αˉm−11)ˉm+3(m_+36(ˉm+2))−(ˉm+2). | (3.9) |
Substituting (3.8) into (3.7) yields
ξ31([ζ2]m(t)−[ζ∗2]m(t))≤13|ξ1|3+m(t)+β21|ξ2|3+m(t), | (3.10) |
where β21=β211+β212 is a positive constant.
By (3.2) and using Lemma 5 in [21], we get
|ζ2|m(t)=|ξ2+ζ∗2|m(t)≤(|ξ2|+|α1ξ1|)m(t)≤2ˉm−1(|ξ2|m(t)+|α1ξ1|m(t))≤2ˉm−1αˉm1(|ξ2|m(t)+|ξ1|m(t)), | (3.11) |
which means that
|ζ1|m(t)+|ζ2|m(t)≤φ1(|ξ2|m(t)+|ξ1|m(t)), | (3.12) |
where φ1=2ˉm−1αˉm1+1≥0 is a constant.
By (3.11) and using Lemma 1 in [19], we have
ξ32∂ζ∗2∂ζ1[ζ2]m(t)≤|ξ32||∂ζ∗2∂ζ1|2ˉm−1αˉm1(|ξ2|m(t)+|ξ1|m(t))≤2ˉm−1αˉm1|∂ζ∗2∂ζ1|(|ξ2|m(t)+3+|ξ32||ξ1|m(t)). | (3.13) |
By using Lemma 2.1 in [20], we get
2ˉm−1αˉm1|∂ζ∗2∂ζ1||ξ32||ξ1|m(t)≤13|ξ1|3+m(t)+β221(ζ1)|ξ2|3+m(t), | (3.14) |
where
β221(ζ1)=3m_+3(2ˉm−1αˉm1|∂ζ∗2∂ζ1|)ˉm+33(m_+33ˉm)−ˉm3. | (3.15) |
Substituting (3.14) into (3.13) yields
ξ32∂ζ∗2∂ζ1[ζ2]m(t)≤13|ξ1|3+m(t)+β22(ζ1)|ξ2|3+m(t), | (3.16) |
where β22(ζ1)=2ˉm−1αˉm1|∂ζ∗2∂ζ1|+β221(ζ1) is a smooth function irrelevant to m(t).
By (3.12), using Assumption 2.1 and Lemma 1 in [19], we get
32ξ22|fTγ(t)(ˉζ2)|2≤3˜f2(ζ1)|ξ2|2(|ζ1|m(t)+1+|ζ2|m(t)+1)≤3˜f2(ζ1)φ2(|ξ2|m(t)+3+|ξ2|2|ξ1|m(t)+1), | (3.17) |
where φ2=2ˉmαˉm+11+1≥0 is a constant.
From Lemma 2.1 in [20], we obtain
3˜f2(ζ1)φ2|ξ2|2|ξ1|m(t)+1≤13|ξ1|m(t)+3+β231(ζ1)|ξ2|m(t)+3, | (3.18) |
where
β231(ζ1)=2m_+3(3˜f2(ζ1)φ2)ˉm+32(m_+33(ˉm+1))−ˉm+12. | (3.19) |
Substituting (3.18) into (3.17) yields
32ξ22|fTγ(t)(ˉζ2)|2≤13|ξ1|m(t)+3+β23(ζ1)|ξ2|m(t)+3, | (3.20) |
where β23(ζ1)=3˜f2(ζ1)φ2+β231(ζ1)≥0 is a smooth function irrelevant to m(t).
By using (3.6), (3.10), (3.16) and (3.20), we obtain
LV2≤−(c1−1)|ξ1|m(t)+3+ξ32([u]m(t)−[x∗3]m(t))+ξ32[x∗3]m(t)+β2(ζ1)|ξ2|m(t)+3+IIV2, | (3.21) |
where β2(ζ1)=β21(ζ1)+β22(ζ1)+β23(ζ1) is a smooth function irrelevant to m(t).
Constructing the virtual controller as
x∗3=−(c2+β2(ζ1))1m_:=−α2(ζ1)ξ2, | (3.22) |
we have
ξ32[x∗3]m(t)=−αm(t)2(ζ1)ξm(t)+32≤−(c2+β2(ζ1))ξm(t)+32, | (3.23) |
where c2>0 is a constant and α2(ζ1)≥0 is a smooth function irrelevant to m(t).
Substituting (3.23) into (3.21) yields
LV2≤−(c1−1)|ξ1|m(t)+3−c2|ξ2|m(t)+3+ξ32([u]m(t)−[x∗3]m(t))+IIV2. | (3.24) |
In this part, we first design a reduced-order observer with a dynamic gain, then we design an output-feedback controller.
Since ζ2 are unmeasurable, we construct the following observer
dη=([u]m(t)−∂L(ζ1)∂ζ1[η+L(ζ1)]m(t))dt, | (3.25) |
where L(ζ1) is a smooth function, and ∂L(ζ1)∂ζ1>0 is irrelevant to m(t).
Defining e=ζ2−L(ζ1)−η and by the construction of the observer, we have
de=∂L(ζ1)∂ζ1([η+L(ζ1)]m(t)−[ζ2]m(t))dt+fTγ(t)(ˉζ2)dω. | (3.26) |
Choose U=14e4. From (3.26), we get
LU=e3∂L(ζ1)∂ζ1([η+L(ζ1)]m(t)−[ζ2]m(t))+32e2|fTγ(t)(ˉζ2)|2+IIU. | (3.27) |
By definition of e and lemma 2.2 in [22], we have
e3∂L(ζ1)∂ζ1([η+L(ζ1)]m(t)−[ζ2]m(t))≤−12ˉm−1∂L(ζ1)∂ζ1em(t)+3. | (3.28) |
From (3.12), (3.17) and Assumption 2.1, we get
32e2|fTγ(t)(ˉζ2)|2≤3˜f2(ζ1)|e|2(|ζ1|m(t)+1+|ζ2|m(t)+1)≤3˜f2(ζ1)φ2(|e|2|ξ2|m(t)+1+|e|2|ξ1|m(t)+1). | (3.29) |
By using Lemma 2.1 in [20], we have
3˜f2(ζ1)φ2|e|2|ξ1|1+m(t)≤|ξ1|3+m(t)+β31(ζ1)|e|3+m(t),3˜f2(ζ1)φ2|e|2|ξ2|1+m(t)≤12|ξ2|3+m(t)+β32(ζ1)|e|3+m(t), | (3.30) |
where
β31(ζ1)=2m_+3(3˜f2(ζ1)φ2)ˉm+32(m_+3ˉm+1)−ˉm+12,β32(ζ1)=2m_+3(3˜f2(ζ1)φ2)ˉm+32(3+m_2(1+ˉm))−1+ˉm2. | (3.31) |
Substituting (3.30) into (3.29) yields
32e2|fTγ(t)(ˉζ2)|2≤|ξ1|m(t)+3+12|ξ2|m(t)+3+β3(ζ1)|e|m(t)+3, | (3.32) |
where β3(ζ1)=β31(ζ1)+β32(ζ1)≥0 is a smooth function irrelevant to m(t).
Substituting (3.28), (3.32) into (3.27) yields
LU≤|ξ1|m(t)+3+12|ξ2|m(t)+3−(12ˉm−1∂L(ζ1)∂ζ1−β3(ζ1))|e|m(t)+3+IIU. | (3.33) |
Since ζ2 is unmeasurable, replace ζ2 in virtual controller x∗3 with η+L(ζ1), and we can get the controller as follows
u=−α2(ζ1)(η+L(ζ1)+α1ζ1). | (3.34) |
By (3.22), (3.24) and (3.34), we obtain
LV2≤−(c1−1)|ξ1|m(t)+3−c2|ξ2|m(t)+3+ξ32αˉm2(ζ1)([ξ2]m(t)−[ξ2−e]m(t))+IIV2. | (3.35) |
By using Lemma 1 in [19], we have
ξ32αˉm2(ζ1)([ξ2]m(t)−[ξ2−e]m(t))≤αˉm2(ζ1)ˉm(2ˉm−2+2)(|ξ2|3|e|m(t)+|e||ξ2|m(t)+2). | (3.36) |
By using Lemma 2.1 in [20], we get
αˉm2(ζ1)ˉm(2ˉm−2+2)|ξ2|3|e|m(t)≤14|ξ2|3+m(t)+β41(ζ1)|e|3+m(t),αˉm2(ζ1)ˉm(2ˉm−2+2)|e||ξ2|2+m(t)≤14|ξ2|3+m(t)+β42(ζ1)|e|3+m(t), | (3.37) |
where
β41(ζ1)=ˉmm_+3(αˉm2(ζ1)ˉm(2ˉm−2+2))ˉm+3m_(m_+312)−3ˉm,β42(ζ1)=1m_+3(αˉm2(ζ1)ˉm(2ˉm−2+2))ˉm+3(m_+34(ˉm+2))−(ˉm+2). | (3.38) |
Substituting (3.37) into (3.36) yields
ξ32αˉm2(ζ1)([ξ2]m(t)−[ξ2−e]m(t))≤12|ξ2|3+m(t)+β4(ζ1)|e|3+m(t), | (3.39) |
where β4(ζ1)=β41(ζ1)+β42(ζ1)≥0 is a smooth function irrelevant to m(t).
By using (3.39) and (3.35), we have
LV2≤−(c1−1)|ξ1|m(t)+3−(c2−12)|ξ2|m(t)+3+β4(ζ1)|e|m(t)+3+IIV2. | (3.40) |
Choosing V(ξ1,ξ2,e)=V2(ξ1,ξ2)+U(e), by (3.33) and (3.40), we obtain
LV≤−(c1−2)|ξ1|m(t)+3−(c2−1)|ξ2|m(t)+3−(12ˉm−1∂L(ζ1)∂ζ1−β3(ζ1)−β4(ζ1))|e|m(t)+3+IIV. | (3.41) |
Let
L(ζ1)=12ˉm−1(c3ζ1+∫ζ10(β3(s)+β4(s))ds), | (3.42) |
and the controller as
u=−α2(ζ1)(η+12ˉm−1(c3ζ1+∫ζ10(β3(s)+β4(s))ds)+α1ζ1), | (3.43) |
where c3>0 is a design parameter.
By using (3.41) and (3.42), we can obtain
LV≤−(c1−2)|ξ1|m(t)+3−(c2−1)|ξ2|m(t)+3−c3|e|m(t)+3+IIV. | (3.44) |
Remark 3.1. If m(t) is time-invariant and the growth rate is a constant rather than a smooth function, such as those in [7,8,9], from (3.32) and (3.39), β3 and β4 are constants irrelevant to ζ1. Then, the dynamic gain L(ζ) is a linear function of ζ1. We can design L(ζ1)=cζ1 by choosing the right parameter c to make LV in (3.41) negative definite. However, in this paper, the growth rate ˜f(ζ1) is a nonnegative smooth function and the m(t) is time-varying and non-differentiable, which makes the deducing of the dynamic gain much more difficult. To solve this problem, we introduce two constants m_ and ˉm, which are reasonably used in the design process, see (3.7) and (3.11). In this way, the dynamic gain (3.42) can be designed irrelevant to m(t), which is crucial to assure the effectiveness of the observer and controller. This is one of the main innovations of this paper.
In this section, for the closed-loop system (2.1), (3.25) and (3.43), we first give a lemma, which is useful to prove the system has a unique solution. Then, we present the main results of the stability analysis.
Lemma 4.1. For ζ∈R, the function g(ζ)=[ζ]m(t) satisfies the locally Lipschitz condition.
Proof. If ζ=0, we can get
h′+(0)=limζ→0+h(ζ)−h(0)ζ=0,h′−(0)=limζ→0−h(ζ)−h(0)ζ=0. | (4.1) |
Then, we have
dhdζ|ζ=0=h′+(0)=h′−(0)=0, | (4.2) |
thus, h(ζ) is differentiable function in ζ=0 and so meets the locally Lipschitz condition in ζ=0.
As ζ>0, we get
h(ζ)=[ζ]m(t)=ζm(t). | (4.3) |
For m(t)≥1, h(ζ) is differentiable function in ζ>0, so meets the locally Lipschitz condition in ζ>0. Similarly, as ζ<0, the conclusion is valid.
Therefore, the conclusion holds for ζ∈R.
Next, we give the stability results.
Theorem 4.1. Under Assumption 2.1, for the system (2.1), using the observer (3.25) and controller (3.43) with
ci>3−i,i=1,2,3, | (4.4) |
we can get
1) For each ζ(t0)=ζ0∈R2 and γ(t0)=i0∈S, the closed-loop system has an almost surely unique solution on [0,+∞);
2) For any ζ0∈R2 and i0∈S, the closed-loop system is almost surely regulated to the equilibrium at the origin.
Proof. By (2.1), (3.25), (3.43) and using Lemma 4.1, we can conclude that the closed-loop system satisfies the locally Lipschitz condition. By (3.2), (3.22), (3.25) and (3.42), we can get that ξ1,ξ2,η are bounded, which implies that ζ1 is bounded, which means that
VR=inft≥t0,|ζ|>RV(ζ(t))→∞⟺R→∞. | (4.5) |
Through the verification of the controller development process, we choose appropriate design parameters ci to satisfy (4.4), and we can get IIV=0. For each l>0, the first exit time is defined as
σl=inf{t:t≥t0,|ζ(t)|≥l}. | (4.6) |
When t≥t0, choose tl=min{σl,t}. We can obtain that bounded |ζ(t)| on interval [t0,tl] a.s., which means that V(ζ) is bounded in the interval [t0,tl] a.s. By using (3.44), we can get that LV is bounded in the interval [t0,tl] a.s. By using Lemma 1.9 in [11], (3.44) and (4.4), we can obtain
EV(ζ(tl))≤EV(ζ(t0)). | (4.7) |
By (4.5), (4.7) and using Lemma 1 in [23], we can obtain conclusion (1).
From (3.44), (4.5), by using Theorem 2.1 in [24], we can prove conclusion (2).
In this section, a simulation example is given to show the availability of the control method.
Study the stabilization for system with two modes. The Markov process γ(t) belongs to the space S={1,2} with generator Γ=(λij)2×2 given by λ11=2,λ12=−2,λ21=−1 and λ22=1. We have π1=13,π2=23. When γ(t)=1, the systems can be written as
dζ1=[ζ2]32+12sintdt,dζ2=[u]32+12sintdt+ζ1sinζ2dω,y=ζ1, | (5.1) |
where m(t)=32+12sint,m_=1,ˉm=2. When γ(t)=2, the systems are described by
dζ1=[ζ2]2+sintdt,dζ2=[u]2+sintdt+12ζ21sinζ2dω,y=ζ1, | (5.2) |
where m(t)=2+sint,m_=1,ˉm=3. Clearly, system (5.1) and (5.2) satisfy Assumption 2.1.
According to the above design process, when γ(t)=1, the observer is constructed as
dη=([u]32+12sint−∂L(ζ1)∂ζ1[η+L(ζ1)]32+12sint)dt, | (5.3) |
and the control is
u=−(c2+4ζ21)(η+L(ζ1)+c1ζ1), | (5.4) |
where L(ζ1)=12(c3ζ1+6ζ21).
When γ(t)=2, the observer is constructed as
dη=([u]2+sint−∂L(ζ1)∂ζ1[η+L(ζ1)]2+sint)dt, | (5.5) |
and the control is
u=−(c2+4ζ1+12ζ21)(η+L(ζ1)+c1ζ1), | (5.6) |
where L(ζ1)=14(c3ζ1+20ζ1+4ζ21).
For simulation, we select c1=6,c2=6,c3=5, and the initial conditions as ζ1(0)=−1,ζ2(0)=2,η(0)=−5. We can obtain Figure 1, which illustrates that the signals of the closed-loop system (ζ1,ζ2,u,η,e) converge to zero. Specifically, the states and controller of the closed-loop system converge to zero. The observation error also converges to zero, which means that our constructed observer and controller are efficient. Figure 2 illustrates the jump of Markov process γ(t) in 1 and 2.
Remark 5.1. It can be observed from the example that there are time-varying powers and Markovian switching in systems (5.1) and (5.2). For the output-feedback control of the system (5.1) and (5.2), the method in [7,8,9] fails since they can only deal with time-invariant powers without Markovian switching. To solve the difficulties caused by time-varying powers, we introduce constants 1, 2, and 1, 3 so that the design of the observer and controller is irrelevant to the power. This is one of the characteristics of our controller and observer design scheme (5.3)–(5.6).
We investigate the output-feedback stabilization for stochastic nonlinear systems with both Markovian switching and time-varying powers in this paper. Compared with existing work, the system model considered in this paper is more general because it studies the time-varying power and Markovian switching, simultaneously. To achieve stabilization, we first design a state observer with a dynamic gain and an output-feedback controller, then use advanced stochastic analysis techniques to prove that the closed-loop system has an almost surely unique solution and the states are regulated to the origin almost surely. Even though there is no Markovian switching, the results in this paper are also new in the sense that we consider nonlinear growth rate, which is much more general than constant growth rate cases in [7,8,9].
There are many related problems to be considered, such as how to extend the result to impulsive systems [25,26,27] and systems with arbitrary order.
This work is funded by Shandong Province Higher Educational Excellent Youth Innovation team, China (No. 2019KJN017), and Shandong Provincial Natural Science Foundation for Distinguished Young Scholars, China (No. ZR2019JQ22).
The authors declare there is no conflict of interest.
[1] |
R. C. Rockne, J. G. Scott, Introduction to mathematical oncology, JCO Clin. Cancer Inform., 3 (2019), 1–4. https://doi.org/10.1200/CCI.19.00010 doi: 10.1200/CCI.19.00010
![]() |
[2] | R. A. Weinberg, The Biology of Cancer, W.W. Norton & Company, (2006). https://doi.org/10.1201/9780203852569 |
[3] |
T. A. Graham, A. Sottoriva, Measuring cancer evolution from the genome, J. Pathol., 241 (2017), 183–191. https://doi.org/10.1002/path.4821 doi: 10.1002/path.4821
![]() |
[4] |
D. Hanahan, R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144 (2011), 646–674. https://doi.org/10.1016/j.cell.2011.02.013 doi: 10.1016/j.cell.2011.02.013
![]() |
[5] |
R. D. Schreiber, L. J. Old, M. J. Smyth, Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion, Science, 331 (2011), 1565–1570. https://doi.org/10.1126/science.1203486 doi: 10.1126/science.1203486
![]() |
[6] |
Y. Zhang, Z. Zhang, The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications, Cell. Mol. Immunol., 17 (2020), 807–821. https://doi.org/10.1038/s41423-020-0488-6 doi: 10.1038/s41423-020-0488-6
![]() |
[7] |
A. Rounds, J. Kolesar, Nivolumab for second-line treatment of metastatic squamous non-small-cell lung cancer, Am. J. Health-Syst. Pharm., 72 (2015), 1851–1855. https://doi.org/10.2146/ajhp150235 doi: 10.2146/ajhp150235
![]() |
[8] |
G. M. Keating, Nivolumab: A review in advanced nonsquamous non-small cell lung cancer, Drugs, 76 (2016), 969–978. https://doi.org/10.1007/s40265-016-0589-9 doi: 10.1007/s40265-016-0589-9
![]() |
[9] |
Y. Iwai, J. Hamanishi, K. Chamoto, T. Honjo, Cancer immunotherapies targeting the PD-1 signaling pathway, J. Biomed. Sci., 24 (2017), 26. https://doi.org/10.1186/s12929-017-0329-9 doi: 10.1186/s12929-017-0329-9
![]() |
[10] |
N. Ghaffari Laleh, C. M. L. Loeffler, J. Grajek, K. Staňková, A. T. Pearson, H. S. Muti, et al., Classical mathematical models for prediction of response to chemotherapy and immunotherapy, PLOS Comput. Biol., 18 (2022), 1–18. https://doi.org/10.1371/journal.pcbi.1009822 doi: 10.1371/journal.pcbi.1009822
![]() |
[11] |
I. Ezhov, K. Scibilia, K. Franitza, F. Steinbauer, S. Shit, L. Zimmer, et al., Learn-Morph-Infer: A new way of solving the inverse problem for brain tumor modeling, Med. Image Anal., 83 (2023), 102672. https://doi.org/10.1016/j.media.2022.102672 doi: 10.1016/j.media.2022.102672
![]() |
[12] |
A. K. Laird, Dynamics of tumour growth: Comparison of growth rates and extrapolation of growth curve to one cell, Br. J. Cancer, 19 (1965), 278–291. https://doi.org/10.1038/bjc.1965.32 doi: 10.1038/bjc.1965.32
![]() |
[13] | L. Norton, A Gompertzian model of human breast cancer growth, Cancer Res., 48 (1988), 7067–7071. |
[14] |
S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. M. L. Ebos, L. Hlatky, et al., Classical mathematical models for description and prediction of experimental tumor growth, PLoS Comput. Biol., 10 (2014), e1003800. https://doi.org/10.1371/journal.pcbi.1003800 doi: 10.1371/journal.pcbi.1003800
![]() |
[15] |
M. Bilous, C. Serdjebi, A. Boyer, P. Tomasini, C. Pouypoudat, D. Barbolosi, et al., Quantitative mathematical modeling of clinical brain metastasis dynamics in non-small cell lung cancer, Sci. Rep., 9 (2019), 13018. https://doi.org/10.1038/s41598-019-49407-3 doi: 10.1038/s41598-019-49407-3
![]() |
[16] |
P. Schlicke, C. Kuttler, C. Schumann, How mathematical modeling could contribute to the quantification of metastatic tumor burden under therapy: Insights in immunotherapeutic treatment of non-small cell lung cancer, Theor. Biol. Med. Model., 18 (2021), 1–15. https://doi.org/10.1186/s12976-021-00142-1 doi: 10.1186/s12976-021-00142-1
![]() |
[17] |
S. Benzekry, C. Sentis, C. Coze, L. Tessonnier, N. André, Development and validation of a prediction model of overall survival in high-risk neuroblastoma using mechanistic modeling of metastasis, JCO Clin. Cancer Inf., 5 (2021), 81–90. https://doi.org/10.1200/CCI.20.00092 doi: 10.1200/CCI.20.00092
![]() |
[18] | S. Benzekry, P. Schlicke, P. Tomasini, E. Simon, Mechanistic modeling of brain metastases in NSCLC provides computational markers for personalized prediction of outcome, medRxiv preprint, 2023. https://doi.org/10.1101/2023.01.10.23284189 |
[19] |
F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA. Cancer J. Clin., 68 (2018), 394–424. https://doi.org/10.3322/caac.21492 doi: 10.3322/caac.21492
![]() |
[20] | C. Zappa, S. A. Mousa, Non-small cell lung cancer: Current treatment and future advances, Transl. Lung Cancer Res., 5 (2016). https://doi.org/10.21037/tlcr.2016.06.07 |
[21] |
W. D. Travis, E. Brambilla, A. G. Nicholson, Y. Yatabe, J. H. Austin, M. B. Beasley, et al., The 2015 world health organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification, J. Thorac. Oncol., 10 (2015), 1243–1260. https://doi.org/10.1097/JTO.0000000000000630 doi: 10.1097/JTO.0000000000000630
![]() |
[22] | J. S. Lowengrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, et al., Nonlinear modelling of cancer: Bridging the gap between cells and tumours, Nonlinearity, 23 (2009). https://doi.org/10.1088/0951-7715/23/1/r01 |
[23] | V. Cristini, J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, (2010). https://doi.org/10.1017/cbo9780511781452 |
[24] |
O. Clatz, M. Sermesant, P. Y. Bondiau, H. Delingette, S. K. Warfield, G. Malandain, et al., Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation, IEEE Trans. Med. Imaging, 24 (2005), 1334–1346. https://doi.org/10.1109/tmi.2005.857217 doi: 10.1109/tmi.2005.857217
![]() |
[25] |
S. Subramanian, A. Gholami, G. Biros, Simulation of glioblastoma growth using a 3D multispecies tumor model with mass effect, J. Math. Biol., 79 (2019), 941–967. https://doi.org/10.1007/s00285-019-01383-y doi: 10.1007/s00285-019-01383-y
![]() |
[26] |
H. J. Bowers, E. E. Fannin, A. Thomas, J. A. Weis, Characterization of multicellular breast tumor spheroids using image data-driven biophysical mathematical modeling, Sci. Rep., 10 (2020), 1–12. https://doi.org/10.1038/s41598-020-68324-4 doi: 10.1038/s41598-020-68324-4
![]() |
[27] |
P. Friedl, D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer, Nat. Rev. Mol. Cell Biol., 10 (2009), 445–457. https://doi.org/10.1038/nrm2720 doi: 10.1038/nrm2720
![]() |
[28] |
H. Garcke, K. F. Lam, E. Sitka, V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport, Math. Models Method Appl. Sci., 26 (2016), 1095–1148. https://doi.org/10.1142/s0218202516500263 doi: 10.1142/s0218202516500263
![]() |
[29] |
S. Frigeri, M. Grasselli, E. Rocca, On a diffuse interface model of tumour growth, Eur. J. Appl. Math., 26 (2015), 215–243. https://doi.org/10.1017/s0956792514000436 doi: 10.1017/s0956792514000436
![]() |
[30] |
H. G. Lee, Y. Kim, J. Kim, Mathematical model and its fast numerical method for the tumor growth, Math. Biosci. Eng., 12 (2015), 1173–1187. https://doi.org/10.3934/mbe.2015.12.1173 doi: 10.3934/mbe.2015.12.1173
![]() |
[31] |
M. Ebenbeck, H. Garcke, Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis, J. Differ. Equations, 266 (2019), 5998–6036. https://doi.org/10.1016/j.jde.2018.10.045 doi: 10.1016/j.jde.2018.10.045
![]() |
[32] |
M. Ebenbeck, H. Garcke, On a Cahn–Hilliard–Brinkman model for tumor growth and its singular limits, SIAM J. Math. Anal., 51 (2019), 1868–1912. https://doi.org/10.1137/18m1228104 doi: 10.1137/18m1228104
![]() |
[33] |
M. Fritz, E. Lima, J. T. Oden, B. Wohlmuth, On the unsteady Darcy–Forchheimer–Brinkman equation in local and nonlocal tumor growth models, Math. Models Method Appl. Sci., 29 (2019), 1691–1731. https://doi.org/10.1142/S0218202519500325 doi: 10.1142/S0218202519500325
![]() |
[34] |
K. F. Lam, H. Wu, Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis, Eur. J. Appl. Math., 29 (2018), 595–644. https://doi.org/10.1017/s0956792517000298 doi: 10.1017/s0956792517000298
![]() |
[35] | G. Lorenzo, A. M. Jarrett, C. T. Meyer, V. Quaranta, D. R. Tyson, T. E. Yankeelov, Identifying mechanisms driving the early response of triple negative breast cancer patients to neoadjuvant chemotherapy using a mechanistic model integrating in vitro and in vivo imaging data, arXiv preprint, (2022), arXiv: 2212.04270. https://doi.org/10.48550/arXiv.2212.04270 |
[36] |
H. Garcke, K. F. Lam, R. Nürnberg, E. Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis, Math. Models Method Appl. Sci., 28 (2018), 525–577. https://doi.org/10.1142/s0218202518500148 doi: 10.1142/s0218202518500148
![]() |
[37] |
J. T. Oden, A. Hawkins, S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Method Appl. Sci., 20 (2010), 477–517. https://doi.org/10.1142/s0218202510004313 doi: 10.1142/s0218202510004313
![]() |
[38] |
S. M. Wise, J. S. Lowengrub, H. B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth – I: Model and numerical method, J. Theor. Biol., 253 (2008), 524–543. https://doi.org/10.1016/j.jtbi.2008.03.027 doi: 10.1016/j.jtbi.2008.03.027
![]() |
[39] |
V. Cristini, X. Li, J. S. Lowengrub, S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching, J. Math. Biol., 58 (2009), 723–763. https://doi.org/10.1007/s00285-008-0215-x doi: 10.1007/s00285-008-0215-x
![]() |
[40] |
H. B. Frieboes, F. Jin, Y. L. Chuang, S. M. Wise, J. S. Lowengrub, V. Cristini, Three-dimensional multispecies nonlinear tumor growth – II: Tumor invasion and angiogenesis, J. Theor. Biol., 264 (2010), 1254–1278. https://doi.org/10.1016/j.jtbi.2010.02.036 doi: 10.1016/j.jtbi.2010.02.036
![]() |
[41] |
E. Lima, J. T. Oden, R. Almeida, A hybrid ten-species phase-field model of tumor growth, Math. Models Method Appl. Sci., 24 (2014), 2569–2599. https://doi.org/10.1142/s0218202514500304 doi: 10.1142/s0218202514500304
![]() |
[42] |
A. Hawkins-Daarud, K. G. van der Zee, J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Meth. Biol., 28 (2012), 3–24. https://doi.org/10.1002/cnm.1467 doi: 10.1002/cnm.1467
![]() |
[43] |
M. Fritz, P. K. Jha, T. Köppl, J. T. Oden, A. Wagner, B. Wohlmuth, Modeling and simulation of vascular tumors embedded in evolving capillary networks, Comput. Methods Appl. Mech. Eng., 384 (2021), 113975. https://doi.org/10.1016/j.cma.2021.113975 doi: 10.1016/j.cma.2021.113975
![]() |
[44] |
M. Fritz, P. K. Jha, T. Köppl, J. T. Oden, B. Wohlmuth, Analysis of a new multispecies tumor growth model coupling 3D phase-fields with a 1D vascular network, Nonlinear Anal. Real World Appl., 61 (2021), 103331. https://doi.org/10.1016/j.nonrwa.2021.103331 doi: 10.1016/j.nonrwa.2021.103331
![]() |
[45] |
G. Lorenzo, M. A. Scott, K. Tew, T. J. Hughes, Y. J. Zhang, L. Liu, et al., Tissue-scale, personalized modeling and simulation of prostate cancer growth, Proc. Natl. Acad. Sci., 113 (2016), E7663–E7671. https://doi.org/10.1073/pnas.1615791113 doi: 10.1073/pnas.1615791113
![]() |
[46] |
G. Song, T. Tian, X. Zhang, A mathematical model of cell-mediated immune response to tumor, Math. Biosci. Eng., 18 (2021), 373–385. https://doi.org/10.3934/mbe.2021020 doi: 10.3934/mbe.2021020
![]() |
[47] |
D. Kirschner, A. Tsygvintsev, On the global dynamics of a model for tumor immunotherapy, Math. Biosci. Eng., 6 (2009), 573–583. https://doi.org/10.3934/mbe.2009.6.573 doi: 10.3934/mbe.2009.6.573
![]() |
[48] |
K. R. Fister, J. H. Donnelly, Immunotherapy: An optimal control theory approach, Math. Biosci. Eng., 2 (2005), 499–510. https://doi.org/10.3934/mbe.2005.2.499 doi: 10.3934/mbe.2005.2.499
![]() |
[49] | A. Soboleva, A. Kaznatcheev, R. Cavill, K. Schneider, K. Stankova, Polymorphic gompertzian model of cancer validated with in vitro and in vivo data, bioRxiv preprint, 2023. https://doi.org/10.1101/2023.04.19.537467 |
[50] |
G. G. Powathil, D. J. Adamson, M. A. Chaplain, Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: Clinical insights from a computational model, PLoS Comput. Biol., 9 (2013), 1–14. https://doi.org/10.1371/journal.pcbi.1003120 doi: 10.1371/journal.pcbi.1003120
![]() |
[51] |
C. Wu, D. A. Hormuth, G. Lorenzo, A. M. Jarrett, F. Pineda, F. M. Howard, et al., Towards patient-specific optimization of neoadjuvant treatment protocols for breast cancer based on image-guided fluid dynamics, IEEE Trans. Biomed. Eng., 69 (2022), 3334–3344. https://doi.org/10.1109/tbme.2022.3168402 doi: 10.1109/tbme.2022.3168402
![]() |
[52] |
A. M. Jarrett, D. A. Hormuth, S. L. Barnes, X. Feng, W. Huang, T. E. Yankeelov, Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results, Phys. Med. Biol., 63 (2018), 105015. https://doi.org/10.1088/1361-6560/aac040 doi: 10.1088/1361-6560/aac040
![]() |
[53] | R. C. Rockne, A. D. Trister, J. Jacobs, A. J. Hawkins-Daarud, M. L. Neal, K. Hendrickson, et al., A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET, J. R. Soc. Interface, 12 (2015). https://doi.org/10.1098/rsif.2014.1174 |
[54] |
P. Colli, H. Gomez, G. Lorenzo, G. Marinoschi, A. Reali, E. Rocca, Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth, Math. Models Method Appl. Sci., 31 (2021), 1419–1468. https://doi.org/10.1142/s0218202521500299 doi: 10.1142/s0218202521500299
![]() |
[55] |
M. Fritz, C. Kuttler, M. L. Rajendran, L. Scarabosio, B. Wohlmuth, On a subdiffusive tumour growth model with fractional time derivative, IMA J. Appl. Math., 86 (2021), 688–729. https://doi.org/10.1093/imamat/hxab009 doi: 10.1093/imamat/hxab009
![]() |
[56] |
S. A. Quezada, K. S. Peggs, Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer, Br. J. Cancer, 108 (2013), 1560–1565. https://doi.org/10.1038/bjc.2013.117 doi: 10.1038/bjc.2013.117
![]() |
[57] |
A. Ribas, Tumor immunotherapy directed at PD-1, N. Engl. J. Med., 366 (2012), 2517–2519. https://doi.org/10.1056/NEJMe1205943 doi: 10.1056/NEJMe1205943
![]() |
[58] |
D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat. Rev. Cancer, 12 (2012), 252–264. https://doi.org/10.1038/nrc3239 doi: 10.1038/nrc3239
![]() |
[59] |
E. N. Rozali, S. V. Hato, B. W. Robinson, R. A. Lake, W. J. Lesterhuis, Programmed death ligand 2 in cancer-induced immune suppression, Clin. Dev. Immunol., 2012 (2012), 1–8. https://doi.org/10.1155/2012/656340 doi: 10.1155/2012/656340
![]() |
[60] |
S. P. Patel, R. Kurzrock, PD-L1 expression as a predictive biomarker in cancer immunotherapy, Mol. Cancer Ther., 14 (2015), 847–856. https://doi.org/10.1158/1535-7163.MCT-14-0983 doi: 10.1158/1535-7163.MCT-14-0983
![]() |
[61] |
Y. Viossat, R. Noble, A theoretical analysis of tumour containment, Nat. Ecol. Evol., 5 (2021), 826–835. https://doi.org/10.1038/s41559-021-01428-w doi: 10.1038/s41559-021-01428-w
![]() |
[62] | T. Hillen, K. J. Painter, M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Method Appl. Sci., 23 (2013), 165–198. |
[63] |
B. Gompertz, On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies, Philos. Trans. R. Soc., 115 (1825), 513–585. https://doi.org/10.1098/rstl.1825.0026 doi: 10.1098/rstl.1825.0026
![]() |
[64] |
K. Erbertseder, J. Reichold, B. Flemisch, P. Jenny, R. Helmig, A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung, PLOS ONE, 7 (2012), 1–17. https://doi.org/10.1371/journal.pone.0031966 doi: 10.1371/journal.pone.0031966
![]() |
[65] |
H. Garcke, K. F. Lam, Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport, Eur. J. Appl. Math., 28 (2017), 284–316. https://doi.org/10.1017/S0956792516000292 doi: 10.1017/S0956792516000292
![]() |
[66] |
H. Garcke, K. F. Lam, Analysis of a Cahn–Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 4277–4308. https://doi.org/10.3934/dcds.2017183 doi: 10.3934/dcds.2017183
![]() |
[67] |
P. Colli, H. Gomez, G. Lorenzo, G. Marinoschi, A. Reali, E. Rocca, Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth, Math. Models Method Appl. Sci., 31 (2021), 1419–1468. https://doi.org/10.1142/s0218202521500299 doi: 10.1142/s0218202521500299
![]() |
[68] |
D. J. Eyre, Unconditionally gradient stable time marching the Cahn–Hilliard equation, MRS Online Proc. Lib., 529 (1998), 39–46. https://doi.org/10.1557/proc-529-39 doi: 10.1557/proc-529-39
![]() |
[69] |
S. C. Brenner, A. E. Diegel, L. Y. Sung, A robust solver for a mixed finite element method for the Cahn–Hilliard equation, J. Sci. Comput., 77 (2018), 1234–1249. https://doi.org/10.1007/s10915-018-0753-3 doi: 10.1007/s10915-018-0753-3
![]() |
[70] | S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, et al., PETSc/TAO} Users Manual, Technical Report ANL-21/39 - Revision 3.18, Argonne National Laboratory, 2022. |
[71] | A. Logg, K. A. Mardal, G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Springer Science & Business Media, (2012). https://doi.org/10.1007/978-3-642-23099-8 |
[72] | R. Kikinis, S. D. Pieper, K. G. Vosburgh, 3D Slicer: A platform for subject-specific image analysis, visualization, and clinical support, in Intraoperative Imaging and Image-guided Therapy, Springer, (2013), 277–289. https://doi.org/10.1007/978-1-4614-7657-3_19 |
[73] | Blender, Accessed: 2022-12-02. Available from: https://www.blender.org/. |
[74] |
C. Geuzaine, J. F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Meth. Eng., 79 (2009), 1309–1331. https://doi.org/10.1002/nme.2579 doi: 10.1002/nme.2579
![]() |
[75] | The Vascular Modeling Toolkit website, Accessed: 2022-12-02. www.vmtk.org. |
[76] |
L. Antiga, M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, D. A. Steinman, An image-based modeling framework for patient-specific computational hemodynamics, Med. Biol. Eng. Comput., 46 (2008), 1097–1112. https://doi.org/10.1007/s11517-008-0420-1 doi: 10.1007/s11517-008-0420-1
![]() |
[77] |
E. Eisenhauer, P. Therasse, J. Bogaerts, L. Schwartz, D. Sargent, R. Ford, et al., New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1), Eur. J. Cancer, 45 (2009), 228–247. https://doi.org/10.1016/j.ejca.2008.10.026 doi: 10.1016/j.ejca.2008.10.026
![]() |
[78] |
L. Hanin, J. Rose, Suppression of metastasis by primary tumor and acceleration of metastasis following primary tumor resection: A natural law, Bull. Math. Biol., 80 (2018), 519–539. https://doi.org/10.1007/s11538-017-0388-9 doi: 10.1007/s11538-017-0388-9
![]() |
1. | Xinling Li, Xueli Qin, Zhiwei Wan, Weipeng Tai, Chaos synchronization of stochastic time-delay Lur'e systems: An asynchronous and adaptive event-triggered control approach, 2023, 31, 2688-1594, 5589, 10.3934/era.2023284 | |
2. | Jingya Wang, Ye Zhu, L2−L∞ control for memristive NNs with non-necessarily differentiable time-varying delay, 2023, 20, 1551-0018, 13182, 10.3934/mbe.2023588 |