
Automated organ segmentation in anatomical sectional images of canines is crucial for clinical applications and the study of sectional anatomy. The manual delineation of organ boundaries by experts is a time-consuming and laborious task. However, semi-automatic segmentation methods have shown low segmentation accuracy. Deep learning-based CNN models lack the ability to establish long-range dependencies, leading to limited segmentation performance. Although Transformer-based models excel at establishing long-range dependencies, they face a limitation in capturing local detail information. To address these challenges, we propose a novel ECA-TFUnet model for organ segmentation in anatomical sectional images of canines. ECA-TFUnet model is a U-shaped CNN-Transformer network with Efficient Channel Attention, which fully combines the strengths of the Unet network and Transformer block. Specifically, The U-Net network is excellent at capturing detailed local information. The Transformer block is equipped in the first skip connection layer of the Unet network to effectively learn the global dependencies of different regions, which improves the representation ability of the model. Additionally, the Efficient Channel Attention Block is introduced to the Unet network to focus on more important channel information, further improving the robustness of the model. Furthermore, the mixed loss strategy is incorporated to alleviate the problem of class imbalance. Experimental results showed that the ECA-TFUnet model yielded 92.63% IoU, outperforming 11 state-of-the-art methods. To comprehensively evaluate the model performance, we also conducted experiments on a public dataset, which achieved 87.93% IoU, still superior to 11 state-of-the-art methods. Finally, we explored the use of a transfer learning strategy to provide good initialization parameters for the ECA-TFUnet model. We demonstrated that the ECA-TFUnet model exhibits superior segmentation performance on anatomical sectional images of canines, which has the potential for application in medical clinical diagnosis.
Citation: Yunling Liu, Yaxiong Liu, Jingsong Li, Yaoxing Chen, Fengjuan Xu, Yifa Xu, Jing Cao, Yuntao Ma. ECA-TFUnet: A U-shaped CNN-Transformer network with efficient channel attention for organ segmentation in anatomical sectional images of canines[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18650-18669. doi: 10.3934/mbe.2023827
[1] | Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067 |
[2] | Andrei Korobeinikov, Philip K. Maini . A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences and Engineering, 2004, 1(1): 57-60. doi: 10.3934/mbe.2004.1.57 |
[3] | Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297 |
[4] | Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369 |
[5] | Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227 |
[6] | Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya . Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences and Engineering, 2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347 |
[7] | Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang . Dynamic analysis of an age structure model for oncolytic virus therapy. Mathematical Biosciences and Engineering, 2023, 20(2): 3301-3323. doi: 10.3934/mbe.2023155 |
[8] | C. Connell McCluskey . Global stability of an SIR epidemic model with delay and general nonlinear incidence. Mathematical Biosciences and Engineering, 2010, 7(4): 837-850. doi: 10.3934/mbe.2010.7.837 |
[9] | Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372 |
[10] | Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . Mathematical analysis for an age-structured SIRS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 6071-6102. doi: 10.3934/mbe.2019304 |
Automated organ segmentation in anatomical sectional images of canines is crucial for clinical applications and the study of sectional anatomy. The manual delineation of organ boundaries by experts is a time-consuming and laborious task. However, semi-automatic segmentation methods have shown low segmentation accuracy. Deep learning-based CNN models lack the ability to establish long-range dependencies, leading to limited segmentation performance. Although Transformer-based models excel at establishing long-range dependencies, they face a limitation in capturing local detail information. To address these challenges, we propose a novel ECA-TFUnet model for organ segmentation in anatomical sectional images of canines. ECA-TFUnet model is a U-shaped CNN-Transformer network with Efficient Channel Attention, which fully combines the strengths of the Unet network and Transformer block. Specifically, The U-Net network is excellent at capturing detailed local information. The Transformer block is equipped in the first skip connection layer of the Unet network to effectively learn the global dependencies of different regions, which improves the representation ability of the model. Additionally, the Efficient Channel Attention Block is introduced to the Unet network to focus on more important channel information, further improving the robustness of the model. Furthermore, the mixed loss strategy is incorporated to alleviate the problem of class imbalance. Experimental results showed that the ECA-TFUnet model yielded 92.63% IoU, outperforming 11 state-of-the-art methods. To comprehensively evaluate the model performance, we also conducted experiments on a public dataset, which achieved 87.93% IoU, still superior to 11 state-of-the-art methods. Finally, we explored the use of a transfer learning strategy to provide good initialization parameters for the ECA-TFUnet model. We demonstrated that the ECA-TFUnet model exhibits superior segmentation performance on anatomical sectional images of canines, which has the potential for application in medical clinical diagnosis.
Mathematical models for the spread of epidemic infectious diseases in populations have been studied for a long time [1]. One of the most classical epidemic models is the SIR epidemic model in which the total population is divided into three classes called susceptible, infected and removed [2]. Some types of SIR epidemic models without age structure are nonlinear systems of ordinary differential equations, and it is relatively easy to show that the long time behavior of its solution is completely determined by a threshold value
Some types of SIR epidemic models with age structure are nonlinear systems of partial differential equations, and the mathematical analysis for them is generally more difficult than that for the models without age structure. The most classical SIR epidemic model studied by Kermack and McKendrick [2] has the structure of infection age (time elapsed since the infection), and the complete global stability analysis for an infection age-structured SIR epidemic model was recently done by Magal et al, [5]. That is, they showed that the disease-free equilibrium in their model is globally asymptotically stable if
In basic epidemic models, the incidence rate is often assumed to take the bilinear form such as
In [27], Bentout and Touaoula established an infection age-structured SIR epidemic model with a general incidence rate. They proved for their model that if
The organization of this paper is as follows. In Section 2, we establish our main model. In Section 3, we define the basic reproduction number
Let
{dS(t)dt=A−μS(t)−f(S(t),J(t)),∂i(t,a)∂t+∂i(t,a)∂a=−(μ+θ(a))i(t,a),a>0,i(t,0)=f(S(t),J(t))+k∫+∞0θ(a)i(t,a)da+δR(t),dR(t)dt=(1−k)∫+∞0θ(a)i(t,a)da−(μ+δ)R(t), | (2.1) |
where
J(t)=∫+∞0β(a)i(t,a)da,t>0. |
The system (2.1) is completed by the following boundary and initial conditions,
{i(0,⋅)=i0(⋅)∈L1(R+,R+),S(0)=S0∈R+andR(0)=r0∈R+. | (2.2) |
For instance, diseases with relapse such as herpes simplex virus type 2 (HSV-2) [28] can be modeled by system (2.1). Throughout this paper, we make the following hypotheses on
● The function
● The parameters
The boundedness of
● (H0) The function
● (H1) For all
● (H2) The function
● (H3) The function
|f(S2,J2)−f(S1,J1)|≤L(|S2−S1|+|J2−J1|), | (2.3) |
whenever
Now, let us define the functional space
‖(S,i,R)‖X=|S|+∫+∞0|i(a)|da+|R|,S,R∈R,i∈L1(R+). |
We put
Theorem 2.1. Let consider an initial condition belonging to
We omit the proof of Theorem 2.1 as it is similar to the proof of [27,Theorem 2.2] except for a simple modification. We set,
N′(t)=A−μN(t). |
So, for
N(t)≤max{N(0),Aμ}, |
with
limt→+∞N(t)=Aμ. | (2.4) |
On the other hand, we can check that (
lim inft→+∞S(t)≥Aμ+L. |
In this section, we show the local and the global stability of the disease-free equilibrium. First, we begin by studying the local stability. We denote by
π(a)=e−∫a0(μ+θ(s))ds,a≥0. | (3.1) |
We can estimate the basic reproduction number by renewal process, which is the spectral radius of the next generation matrix. For more details, we refer the reader to [3]. The basic reproduction number
R0=∂f∂J(Aμ,0)∫+∞0β(a)π(a)da+((1−k)δμ+δ+k)∫+∞0θ(a)π(a)da. |
For the system (2.1), it is easy to see that the disease-free steady state always exists and it is given by
{dS(t)dt=−μS(t)−S(t)∂f∂S(Aμ,0)−J(t)∂f∂J(Aμ,0),∂i(t,a)∂t+∂i(t,a)∂a=−(μ+θ(a))i(t,a),a>0,i(t,0)=S(t)∂f∂S(Aμ,0)+J(t)∂f∂J(Aμ,0)+k∫+∞0θ(a)i(t,a)da+δR(t),dR(t)dt=(1−k)∫+∞0θ(a)i(t,a)da−(μ+δ)R(t). | (3.2) |
Next, the characteristic equation of (3.2) at
|λ+μ+∂f∂S(Aμ,0)P(λ)0−∂f∂S(Aμ,0)Q(λ)−δ0G(λ)λ+μ+δ|=0, |
where
P(λ):=∂f∂J(Aμ,0)∫+∞0β(a)π(a)e−λada, |
Q(λ):=1−∂f∂J(Aμ,0)∫+∞0β(a)π(a)e−λada−k∫+∞0θ(a)π(a)e−λada, |
and
G(λ):=−(1−k)∫+∞0θ(a)π(a)e−λada. |
We have the following theorem.
Theorem 3.1. If
Proof. The characteristic equation of the disease free equilibrium
(λ+μ)H(λ)=0, | (3.3) |
where
H(λ)=(λ+μ+δ)(1−∂f∂J(Aμ,0)∫+∞0β(a)π(a)e−λada−k∫+∞0θ(a)π(a)e−λada)−δ(1−k)∫+∞0θ(a)π(a)e−λada. |
Obviously, we can see that
|λ0+μ+δ|=|δ(1−k)∫+∞0θ(a)π(a)e−λ0ada1−∫+∞0β(a)π(a)e−λ0ada∂f∂J(Aμ,0)−k∫+∞0θ(a)π(a)e−λ0ada|. |
Since
μ+δ≤|δ(1−k)∫+∞0θ(a)π(a)e−λ0ada||1−∫+∞0β(a)π(a)e−λ0ada∂f∂J(Aμ,0)−k∫+∞0θ(a)π(a)e−λ0ada|. |
Then,
δ(1−k)μ+δ|∫+∞0θ(a)π(a)e−λ0ada|≥1−|∫+∞0β(a)π(a)e−λ0ada∂f∂J(Aμ,0)−k∫+∞0θ(a)π(a)e−λ0ada|,≥1−|∫+∞0β(a)π(a)e−λ0ada∂f∂J(Aμ,0)|−k|∫+∞0θ(a)π(a)e−λ0ada|. |
Therefore,
R0≥|∫+∞0β(a)π(a)e−λ0ada∂f∂J(Aμ,0)|+(k+δ(1−k)μ+δ)|∫+∞0θ(a)π(a)e−λ0ada|≥1. |
We obtain that
H(0)=(μ+δ)(1−R0)<0andlimλ→+∞H(λ)=+∞. |
This ensures to the existence of a positive real root of (3.3). Hence,
Now, we focus on the global stability of
dˆi(h)dh=−[μ+ˆθ(h)]ˆi(h). |
Hence,
i(t+h,a+h)=i(t,a)e−∫h0(μ+θ(a+s))ds. |
Considering two cases
i(t,a)={i(t−a,0)e−∫a0(μ+θ(s))ds,a<t,i(0,a−t)e−∫t0(μ+θ(a−t+s))ds,a≥t. |
Hence, we obtain
i(t,a)={π(a)B(t−a),a<t,π(a)π(a−t)i0(a−t),a≥t, | (3.4) |
with
B(t)=f(S(t),J(t))+k∫t0θ(a)π(a)B(t−a)da+∫∞tθ(a)π(a)π(a−t)i0(a−t)da+δR(t), | (3.5) |
J(t)=∫t0β(a)π(a)B(t−a)da+∫∞tβ(a)π(a)π(a−t)i0(a−t)da, | (3.6) |
and
R′(t)=(1−k)∫t0θ(a)π(a)B(t−a)da+(1−k)∫∞tθ(a)π(a)π(a−t)i0(a−t)da−(μ+δ)R(t). | (3.7) |
We prove the following theorem.
Theorem 3.2. The disease-free equilibrium
Proof. It suffices to prove the global attractivity of
lim supt→+∞(S(t),B(t),R(t))=(S∞,B∞,R∞)andlim supt→+∞J(t)=J∞. |
By using the fluctuation lemma (see [37], Lemma A.14), there exist
R∞≤(1−k)∫+∞0θ(a)π(a)daμ+δB∞. | (3.8) |
Similarly using (3.5), (3.6) and the hypothesis (H0), we obtain
{B∞≤f(S∞,J∞)+kB∞∫+∞0θ(a)π(a)da+δR∞,J∞≤B∞∫+∞0β(a)π(a)da. | (3.9) |
Now, combining (3.8), (3.9) and the fact that
B∞≤f(S∞,J∞)+kB∞∫+∞0θ(a)π(a)da+δ(1−k)∫+∞0θ(a)π(a)daμ+δB∞. |
Since
B∞≤f(Aμ,J∞)+kB∞∫+∞0θ(a)π(a)da+δ(1−k)∫+∞0θ(a)π(a)daμ+δB∞. | (3.10) |
Next, from (H1), we easily obtain
f(Aμ,J∞)≤J∞∂f∂J(Aμ,0). | (3.11) |
By combining (3.10) with (3.11) and the second equation of (3.9), we get
B∞≤R0B∞. |
Since
In this section, we prove the existence of a compact attractor of all bounded subset of
Φ(t,(S0,i0(⋅),r0))=(S(t),i(t,⋅),R(t)),(S0,i0(⋅),r0)∈X+, | (4.1) |
which is generated by the unique solution of system (2.1). So, it is not difficult to show that this semiflow is continuous.
Theorem 4.1. The semiflow
Proof. Following Theorem 2.33 in [37], we need to check some properties of the semiflow
Ψ1(t,(S0,i0(⋅),r0))=(0,u(t,⋅),0) and Ψ2(t,(S0,i0(⋅),r0))=(S(t),v(t,⋅),R(t)), |
where
u(t,a)={0,a<t,π(a)π(a−t)i0(a−t),a>t, |
and
v(t,a)={π(a)B(t−a),a<t,0,a>t. |
Let
M1:=sup{S0+‖i0‖L1+r0,(S0,i0,r0)∈C} and M2:=max{M1,Aμ}. | (4.2) |
Using the same arguments as in Theorem 2.1 in [18], we have
∫+∞0|v(t,a+h)−v(t,a)|da=∫t−h0|π(a+h)B(t−a−h)−π(a)B(t−a)|da+∫tt−h|π(a)B(t−a)|da. | (4.3) |
Notice that, for
|B(t)|≤f(S(t),J(t))+k∫+∞0θ(a)i(t,a)da+δR(t),≤f(M2,‖β‖∞M2)+k‖θ‖∞M2+δM2, | (4.4) |
for all initial data in
Ih(t):=∫t−h0|π(a+h)B(t−a−h)−π(a)B(t−a)|da,≤∫t−h0|π(a)(B(t−a−h)−B(t−a))|da+∫t−h0|B(t−a−h)(π(a+h)−π(a)|da. | (4.5) |
From the system (2.1) and (4.2), we have, for
|S′(t)|≤A+μM2+f(M2,‖β‖∞M2), | (4.6) |
and
|R′(t)|≤(1−k)‖θ‖∞M2+(μ+δ)M2. | (4.7) |
Now, let us define
Ah(t,a):=|B(t−a−h)−B(t−a)|≤|f(S(t−a−h),J(t−a−h))−f(S(t−a),J(t−a))|+k|∫+∞0θ(σ)i(t−a−h,σ)dσ−∫+∞0θ(σ)i(t−a,σ)dσ|+δ|R(t−a−h)−R(t−a)|. |
Using the fact that the function
Ah≤L|S(t−a−h)−S(t−a)|+L|J(t−a−h)−J(t−a))|+k|∫+∞0θ(σ)i(t−a−h,σ)dσ−∫+∞0θ(σ)i(t−a,σ)dσ|+δ|R(t−a−h)−R(t−a)|. |
By (4.6) and (4.7), we can easily show that the first and the last term of
A1h(t,a):=L|J(t−a−h)−J(t−a)|+k|∫+∞0θ(σ)i(t−a−h,σ)dσ−∫+∞0θ(σ)i(t−a,σ)dσ|. | (4.8) |
For
J1(t)=∫t0β(a)π(a)f(S(t−a),J(t−a))daandJ2(t)=∫+∞0β(a+t)π(a+t)π(a)i0(a)da. | (4.9) |
Thus, for
|J(s+h)−J(s)|≤|J1(s+h)−J1(s)|+|J2(s+h)−J2(s)|. |
After a change of variable in (4.9), we obtain
J1(t)=∫t0β(t−σ)π(t−σ)f(S(σ),J(σ))dσ. |
Therefore, for
|J1(s+h)−J1(s)|≤∫s+hsβ(s+h−σ)π(s+h−σ)f(S(σ),J(σ))dσ+∫s0|β(s+h−σ)π(s+h−σ)−β(s−σ)π(s−σ)|f(S(σ),J(σ))dσ,≤‖β‖∞f(M2,‖β‖∞M2)h+f(M2,‖β‖∞M2)∫s0|β(s+h−σ)π(s+h−σ)−β(s−σ)π(s−σ)|dσ. |
Consequently, we can readily checked that these last terms tend to
|J2(s+h)−J2(s)|≤|∫+∞0β(a+s+h)π(a+s+h)π(a)i0(a)da−∫+∞0β(a+s)π(a+s)π(a)i0(a)da|,≤∫+∞0|β(a+s+h)−β(a+s)|π(a+s)π(a)i0(a)da+∫+∞0β(a+s+h)i0(a)|π(a+s+h)π(a)−π(a+s)π(a)|da. |
Using the fact that
|∫+∞0θ(σ)i(t−a−h,σ)dσ−∫+∞0θ(σ)i(t−a,σ)dσ|→0, |
as
Next, we describe the total trajectories of system (2.1). Let
{S′(t)=A−μS−f(S(t),J(t)),i(t,a)=π(a)B(t−a),B(t)=f(S(t),J(t))+k∫+∞0θ(a)i(t,a)da+δR(t),R′(t)=(1−k)∫+∞0θ(a)i(t,a)da−(μ+δ)R(t),J(t)=∫+∞0β(a)π(a)B(t−a)da. | (4.10) |
The following lemma gives some estimates on the total trajectories.
Lemma 4.2. For all
S(t)>Aμ+L,S(t)+∫+∞0i(t,a)da+R(t)≤Aμandi(t,a)≤ξπ(a),a≥0. |
with
Proof. We set,
I(t):=∫+∞0i(t,a)da=∫+∞0π(a)B(t−a)da. |
After a change of variable, for
I(t)=∫t−∞π(t−a)B(a)da. |
By differentiating
I′(t)=B(t)−∫+∞0(μ+θ(a))π(a)B(t−a)da. |
Combining this equation with the system (4.10), we obtain,
S′(t)+I′(t)+R′(t)≤A−μ(S(t)+I(t)+R(t)), |
Thus, for
S(t)+I(t)+R(t)≤Aμ. | (4.11) |
Moreover, from the equation of
S′(t)≥A−μS−LS(t), |
so,
S(t)≥Aμ+L,t∈R. |
On the other hand, using the fact that
i(t,a)=π(a)(f(S(t),J(t))+k∫+∞0θ(a)i(t,a)da+δR(t)),≤π(a)(LJ(t)+k‖θ‖∞I(t)+δR(t)), |
According to (4.11), we conclude that
i(t,a)≤ξπ(a),a>0, |
where
The main purpose of this section is to study the global asymptotic stability of the endemic equilibrium. We first need to prove the strong uniform persistence of the solution of problem (4.10).
We begin by the following lemma which concern the existence of a positive equilibria.
Lemma 5.1. Assume that
limJ→0+f(A/μ,J)f(S,J)>1,forS∈[0,A/μ). |
If
Proof. Let
Φ(t,(S∗,i∗(.),R∗))=(S∗,i∗(.),R∗), for t≥0. |
From (4.1) and (3.4), we have
i∗(a)={π(a)i∗(0),0<a<t,π(a)π(a−t)i∗(a−t),a>t, | (5.1) |
and
{A=μS∗+f(S∗,J∗),J∗=∫+∞0β(a)i∗(a)da. | (5.2) |
Remark that if we consider
i∗(a−t)=π(a−t)i∗(0),=π(a−t)π(a)i∗(a), |
and thus
i∗(a)=π(a)π(a−t)i∗(a−t),=π(a)π(a−t)π(a−t)i∗(0),=π(a)i∗(0). |
We can proceed by iteration in order to prove the result. Therefore,
i∗(a)=π(a)i∗(0),for alla≥0. | (5.3) |
Combining (5.2) and (5.3), we get
i∗(0)=1Df(S∗,J∗), |
with
D=1−(k+δ(1−k)μ+δ)∫+∞0θ(a)π(a)da, | (5.4) |
thus,
i∗(a)=1Df(S∗,J∗)π(a),∀a≥0. | (5.5) |
Moreover, from (5.2) and (5.5), we obtain
{A=μS∗+f(S∗,J∗),J∗=MDf(S∗,J∗), | (5.6) |
where
Lemma 5.2. Under (H0) and (H1), we have following assertions,
f(.,J)Jis a nonincreasing function with respect toJ, | (5.7) |
and
{xJ∗<f(S,x)f(S,J∗)<1,for0<x<J∗,1<f(S,x)f(S,J∗)<xJ∗,forx>J∗. | (5.8) |
Now we focus on the uniform persistence of the solution of problem (4.10). We define,
ˉθ(a):=∫+∞0θ(a+t)π(a+t)π(a)dt, |
and
ˉβ(a):=∫+∞0β(a+t)π(a+t)π(a)dt. |
We set
X0={(S0,i0(⋅),r0)∈X+|r0+∫∞0i0(a)ˉθ(a)da+∫∞0i0(a)ˉβ(a)da>0}. |
Lemma 5.3. If
Proof. Recall that
B(t)=f(S(t),J(t))+k∫+∞0θ(a)i(t,a)da+δR(t). |
The third equation of system (2.1) implies that, for
R(t)=r0e−(μ+δ)t+(1−k)∫t0e−(μ+δ)(s−t)∫+∞0θ(σ)i(s,σ)dσds. |
We can rewrite
B(t)=f(S(t),J(t))+k∫+∞0θ(a)i(t,a)da+δr0e−(μ+δ)t+(1−k)δ∫t0e−(μ+δ)(s−t)∫+∞0θ(σ)i(s,σ)dσds. |
So, from (3.4),
B(t)=f(S(t),J(t))+k∫t0θ(a)π(a)B(t−a)da+k∫+∞tθ(a)π(a)π(a−t)i0(a−t)da+δr0e−(μ+δ)t+(1−k)δ∫t0e−(μ+δ)(s−t)(∫s0θ(σ)π(σ)B(s−σ)dσ+∫+∞sθ(σ)π(σ)π(σ−s)i0(σ−s)dσ)ds. | (5.9) |
If
I0(t):=∫+∞tθ(a)π(a)π(a−t)i0(a−t)da=∫+∞0θ(a+t)π(a+t)π(a)i0(a)da. | (5.10) |
By integrating
∫+∞0I0(t)dt=∫+∞0i0(a)∫+∞0θ(a+t)π(a+t)π(a)dtda=∫+∞0i0(a)ˉθ(a)da. |
In the following, we will use translations of solutions: for
Br(t)≥k∫t0θ(a)π(a)Br(t−a)da+kI0r(t). |
Since
Now, if
B(t)=f(S(t),J(t))+k∫t0θ(a)π(a)B(t−a)da+k∫+∞tθ(a)π(a)π(a−t)i0(a−t)da+(1−k)δ∫t0e−(μ+δ)(s−t)(∫s0θ(σ)π(σ)B(s−σ)dσ+∫+∞sθ(σ)π(σ)π(σ−s)i0(σ−s)dσ)ds. | (5.11) |
From the definition of the space
B(t)≤L∫t0β(a)π(a)B(t−a)da+k∫t0θ(a)π(a)B(t−a)da+(1−k)δ∫t0e−(μ+δ)(s−t)∫s0θ(σ)π(σ)B(s−σ)dσds. |
We can apply the Fubini's Theorem to the last term and using the assumptions on
B(t)≤(L‖β‖∞+(k+(1−k)δμ+δ)‖θ‖∞)∫t0B(a)da. |
By Gronwall's inequality, we obtain
We define the persistence function
ρ(S0,i0(⋅),r0)=f(S0,J0)+∫+∞0θ(a)i0(a)da+r0. |
By definition, we have,
ρ(Φ(t,(S0,i0(⋅),r0)))=B(t), |
Lemma 5.4. Assume that (5.7) holds. If
lim supt→+∞ρ(Φ(t,x))>ϵ, |
for all solutions of (2.1) provided that
Proof. We suppose that the function
lim supt→+∞ρ(Φ(t,x))<ϵ. |
By Theorem 2.1, we have
lim supt→+∞J(t)<ϵ0. |
Let
0≥A−μS∞−ϵ. |
Therefore,
S∞≥Aμ−ψ(ϵ), |
with
h(ϵ1)=f(Aμ−ψ(ϵ1),ϵ1)ϵ1∫+∞0β(a)π(a)da+(k+(1−k)δϵ1+μ+δ)∫+∞0θ(a)π(a)da>1. | (5.12) |
From system (2.1), we have, for all
R′(t)=(1−k)∫+∞0θ(a)i(t,a)da−(μ+δ)R(t). |
Therefore, for
R′(t)≥(1−k)∫t0θ(a)π(a)B(t−a)da−(μ+δ)R(t). |
Next, we introduce the Laplace transform to this inequality, which is given by, for
λˆR(λ)−R(0)≥(1−k)ˆθ(λ)ˆB(λ)−(μ+δ)ˆR(λ), |
Thus, we get
ˆR(λ)≥(1−k)ˆθ(λ)λ+μ+δˆB(λ). | (5.13) |
where
ˆB(λ)=∫+∞0B(a)e−λadaandˆθ(λ)=∫+∞0θ(a)π(a)e−λada. |
Moreover, since there exists
f(S,J)J≥f(Aμ−ψ(ϵ0),J)J≥f(Aμ−ψ(ϵ0),ϵ0)ϵ0. |
Then, for
B(t)≥f(S(t),J(t))J(t)J(t)+k∫t0θ(a)π(a)B(t−a)da+δR(t), |
so, for
B(t)≥f(Aμ−ψ(ϵ0),ϵ0)ϵ0∫t0β(a)π(a)B(t−a)da+k∫t0θ(a)π(a)B(t−a)da+δR(t). |
Similarly, we apply the Laplace transform to the last inequality, we get, for
ˆB(λ)≥ˆβ(λ)ˆB(λ)f(Aμ−ψ(ϵ0),ϵ0)ϵ0+kˆθ(λ)ˆB(λ)+δˆR(λ), |
where
ˆβ(λ)=∫+∞0β(a)π(a)e−λada. |
By using (5.13), we obtain
ˆB(λ)≥ˆβ(λ)ˆB(λ)f(Aμ−ψ(ϵ0),ϵ0)ϵ0+(k+δ(1−k)λ+μ+δ)ˆθ(λ)ˆB(λ). |
Since,
1≥ˆβ(λ)f(Aμ−ψ(ϵ0),ϵ0)ϵ0+(k+δ(1−k)λ+μ+δ)ˆθ(λ). |
We can choose
1≥h(ϵ0). |
which contradicts (5.12). This completes the proof.
To prove the uniform strong
Lemma 5.5. If
Proof. Assume that
B(t)≤L∫+∞0β(a)i(t,a)da+k∫+∞0θ(a)i(t,a)da+δ∫t0e(μ+δ)(s−t)∫+∞0θ(σ)π(σ)B(s−σ)dσds, |
thus since
B(t)≤L‖β‖∞∫t0B(a)da+k‖θ‖∫t0B(a)da+δ∫t0e(μ+δ)(s−t)∫s0θ(s−σ)π(s−σ)B(σ)dσds. |
So,
B(t)≤L‖β‖∞∫t0B(a)da+k‖θ‖∫t0B(a)da+δ∫t0θ(s−σ)π(s−σ)B(σ)e(μ+δ)(σ−t)dσ. |
Finally, according to Fubini's Theorem,
B(t)≤(L‖β‖∞+k‖θ‖∞+δ‖θ‖∞μ+δ)∫t0B(a)da. |
Applying the Gronwall's inequality, we get
B(t)=0,t>0. |
Lemma 5.6. The following alternative holds: either
Proof. From Lemma 5.5, we can deduce that for each
Bn(t)≥k∫∞0θ(a)π(a)Bn(t−a)da. |
After a change of variable,
Bn(t)≥k∫t−∞θ(t−s)π(t−s)Bn(s)ds, |
where
0=Bn(ϵ)≥k∫ϵ−∞θ(ϵ−s)π(ϵ−s)Bn(s)ds. |
Then,
Now we are ready to prove the strong uniform persistence of the disease.
Theorem 5.7. Assume that
Proof. By Lemmas 5.4, 5.5 and 5.6, we can apply Theorem 5.2 in [37] to conclude that uniform weak
From Theorem 5.7 in [37], we have the following result.
Theorem 5.8. There exists a compact attractor
ρ(Φ(t,(S0,i0(⋅),r0))≥Γ, for all (S0,i0(.),r0)∈A1. | (5.14) |
We will need the following estimates later.
Lemma 5.9. For all
i(t,a)i∗(a)>Γ0,a>0,t∈RandR(t)>η2,t∈R, |
with
Proof. Recall that the compact attractor of bounded set is the union of bounded total trajectories, see Proposition 2.34 in [37]. Thus, there exists a total trajectory
i(t,a)i∗(a)=π(a)B(t−a)π(a)f(S∗,J∗)D>ΓDf(S∗,J∗). |
In addition, from the equation of
R′(t)≥(1−k)Γ∫+∞0θ(a)π(a)da−(μ+δ)R(t). |
Finally, by a straightforward computation, we find
R(t)≥η2,t∈R, |
with
Now, we are ready to prove the global asymptotic stability of the unique positive endemic equilibrium.
Theorem 5.10. Suppose that
Proof. Let
ϕ(a)=∫+∞a[(δR∗∫+∞0θ(a)i∗(a)da+k)θ(σ)+β(σ)J∗f(S∗,J∗)]i∗(σ)dσ, | (5.15) |
and, for
H(y)=y−ln(y)−1. |
Then, for
V1(Ψ(t))=S(t)−S∗−∫S(t)S∗f(S∗,J∗)f(η,J∗)dη, |
V2(Ψ(t))=∫+∞0H(i(t,a)i∗(a))ϕ(a)da, |
and
V3(Ψ(t))=ΩH(R(t)R∗),withΩ:=δR∗2(1−k)∫+∞0θ(a)i∗(a)da. |
First, using the equation of
ddtV1(Ψ(t))=(1−f(S∗,J∗)f(S(t),J∗))(A−f(S(t),J(t))−μS(t)),=μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))+(1−f(S∗,J∗)f(S(t),J∗))(f(S∗,J∗)−f(S(t),J(t))). |
By using the same arguments as in the proof of Lemma 9.18 in [37], we find
ddtV2(Ψ(t))=H(i(t,0)i∗(0))ϕ(0)+∫+∞0H(i(t,a)i∗(0))ϕ′(a)da,=H(Δ1f(S(t),J(t))f(S∗,J∗)+Δ2∫+∞0θ(a)i(t,a)da∫+∞0θ(a)i∗(a)da+Δ3R(t)R∗)ϕ(0)+∫+∞0H(i(t,a)i∗(a))ϕ′(a)da, |
where
Δ1:=f(S∗,J∗)i∗(0),Δ2:=k∫+∞0θ(a)i∗(a)dai∗(0)andΔ3:=δR∗i∗(0). |
In view of the third equation of (4.10), by
i∗(0)=f(S∗,J∗)+k∫+∞0θ(a)i∗(a)da+δR∗, |
we have
ddtV2(Ψ(t))≤[Δ1H(f(S(t),J(t))f(S∗,J∗))+Δ2H(∫+∞0θ(a)i(t,a)da∫+∞0θ(a)i∗(a)da)+Δ3H(R(t)R∗)]ϕ(0)+∫+∞0H(i(t,a)i∗(a))ϕ′(a)da. |
By adding
(V1+V2)′(Ψ(t))≤μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))−f(S,J)+f(S∗,J∗)f(S,J)f(S,J∗)+f(S∗,J∗)(1−f(S∗,J∗)f(S,J∗))+f(S∗,J∗)(f(S,J)f(S∗,J∗)−lnf(S,J)f(S∗,J∗)−1)+Δ2i∗(0)H(∫+∞0θ(a)i(t,a)da∫+∞0θ(a)i∗(a)da)+Δ3i∗(0)H(R(t)R∗)+∫+∞0H(i(t,a)i∗(a))ϕ′(a)da. |
We reorder these terms, and using the fact that
lnf(S,J)f(S∗,J∗)=lnf(S,J)f(S,J∗)+lnf(S,J∗)f(S∗,J∗), |
we obtain
(V1+V2)′(Ψ(t))≤μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))+f(S∗,J∗)(−lnf(S,J∗)f(S∗,J∗)−f(S∗,J∗)f(S,J∗)+1)+f(S∗,J∗)H(f(S,J)f(S,J∗))+Δ2i∗(0)H(∫+∞0θ(a)i(t,a)da∫+∞0θ(a)i∗(a)da)+Δ3i∗(0)H(R(t)R∗)+∫+∞0H(i(t,a)i∗(a))ϕ′(a)da. |
On the other hand,
ddtV3(Ψ(t))=ΩR∗H′(R(t)R∗)((1−k)∫+∞0θ(a)i(t,a)da−(μ+δ)R(t)),=Ω(μ+δ)R∗(1−R∗R)(R∗−R)+Ω(1−k)R∗H′(R(t)R∗)(∫+∞0θ(a)i(t,a)da−∫+∞0θ(a)i∗(a)da). |
By adding and subtracting the same term
Ω(1−k)R∗H′(R(t)R∗)∫+∞0θ(a)i∗(a)daR(t)R∗, |
it yields,
ddtV3(Ψ(t))=Ω(μ+δ)R∗(1−R∗R)(R∗−R)+Ω(1−k)R∗H′(R(t)R∗)∫+∞0θ(a)i∗(a)(i(t,a)i∗(a)−R(t)R∗)da+Ω(1−k)R∗H′(R(t)R∗)(R(t)R∗−1)∫+∞0θ(a)i∗(a)da. |
Next, by summing
V′(Ψ(t))≤μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))+f(S∗,J∗)(−lnf(S,J∗)f(S∗,J∗)−f(S∗,J∗)f(S,J∗)+1)+f(S∗,J∗)H(f(S,J)f(S,J∗))+∫+∞0H(i(t,a)i∗(a))ϕ′(a)da+Δ2i∗(0)H(∫+∞0θ(a)i(t,a)da∫+∞0θ(a)i∗(a)da)+Δ3i∗(0)H(R(t)R∗)+Ω(1−k)R∗H′(R(t)R∗)∫+∞0θ(a)i∗(a)(i(t,a)i∗(a)−R(t)R∗)da+Ω(μ+δ)R∗(1−R∗R)(R∗−R)+Ω(1−k)R∗H′(R(t)R∗)(R(t)R∗−1)∫+∞0θ(a)i∗(a)da. |
Using the fact
H(∫+∞0θ(a)i(t,a)da∫+∞0θ(a)i∗(a)da)=H(∫+∞0θ(a)i∗(a)∫+∞0θ(a)i∗(a)dai(t,a)i∗(a)da),≤∫+∞0θ(a)i∗(a)∫+∞0θ(a)i∗(a)daH(i(t,a)i∗(a))da. |
Thus, by combining this with the fact that
Ω(1−k)R∗=δR∗∫+∞0θ(a)i∗(a)da, |
we obtain
V′(Ψ(t))≤μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))+f(S∗,J∗)(−lnf(S,J∗)f(S∗,J∗)−f(S∗,J∗)f(S,J∗)+1)+f(S∗,J∗)H(f(S,J)f(S,J∗))+∫+∞0H(i(t,a)i∗(a))ϕ′(a)da+Δ2i∗(0)∫+∞0θ(a)i∗(a)∫+∞0θ(a)i∗(a)daH(i(t,a)i∗(a))da+Δ3i∗(0)H(R(t)R∗)+δR∗∫+∞0θ(a)i∗(a)daH′(R(t)R∗)∫+∞0θ(a)i∗(a)(i(t,a)i∗(a)−R(t)R∗)da. |
Now, for the values of
H(f(S,J)f(S,J∗))<H(J(t)J∗),=H(∫+∞0β(a)i∗(a)∫+∞0β(a)i∗(a)dai(t,a)i∗(a)da),≤∫+∞0β(a)i∗(a)∫+∞0β(a)i∗(a)daH(i(t,a)i∗(a))da,=∫+∞0β(a)i∗(a)J∗H(i(t,a)i∗(a))da. |
This implies that
V′(Ψ(t))≤μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))+f(S∗,J∗)(−lnf(S,J∗)f(S∗,J∗)−f(S∗,J∗)f(S,J∗)+1)+∫+∞0H(i(t,a)i∗(a))[ϕ′(a)+f(S∗,J∗)J∗β(a)i∗(a)+kθ(a)i∗(a)]da+δR∗H(R(t)R∗)+δR∗∫+∞0θ(a)i∗(a)daH′(R(t)R∗)∫+∞0θ(a)i∗(a)(i(t,a)i∗(a)−R(t)R∗)da. |
Finally, in view of the expression of
V′(Ψ(t))≤μ(S∗−S(t))(1−f(S∗,J∗)f(S(t),J∗))+f(S∗,J∗)(−lnf(S,J∗)f(S∗,J∗)−f(S∗,J∗)f(S,J∗)+1)+∫+∞0[H(R(t)R∗)−H(i(t,a)i∗(a))+H′(R(t)R∗)(i(t,a)i∗(a)−R(t)R∗)]δR∗θ(a)i∗(a)∫+∞0θ(a)i∗(a)dada. |
Since
V′(Ψ(t))≤0. |
By applying the same arguments for the values of
i(t,a)i∗(a)=B(t−a)i∗(0)=R(t)R∗, ∀a≥0, | (5.16) |
this implies that
A−μS∗=f(S∗,J(t)). |
Moreover, from equations of equilibrium we know that
A−μS∗=f(S∗,J∗), |
thus we obtain
Now, since
V(Ψ(t))→V(S∗,i∗(.),R∗), as t→±∞. |
On the other hand, we have
limt→+∞V(Ψ(t))≤V(Ψ(t))≤limt→−∞V(Ψ(t)), |
for all
In this section, the results of the previous sections are illustrated by numerical simulations. We use the following numerical method: we discretize our problem by the upwind method for solving hyperbolic partial differential equation. For instance, the approximation
(∂u∂t)n≃un+1i−uniΔt,(∂u∂a)i≃uni−uni−1Δa. |
The equations of susceptible and recover are solving by explicit Euler method for the ODE. The non-local terms are approximated by one of the composite integration formulas.
Let's consider the Beddington-Deangelis functional response defined by
f(S,J)=SJ1+α1S+α2J. |
We note that this function
R0=Aμ+α1A∫+∞0β(a)π(a)da+((1−k)δμ+δ+k)∫+∞0θ(a)π(a)da. |
We consider the following values of parameters
A=2.10−3,μ=1.10−2andδ=1.10−2, |
with the initial conditions
S0=1.10−3,r0=2.10−4andi0(a)=8.10−4e−0.1a. |
The functions
β(a)={0, if a≤τ1,56.10−3(a−τ1)2e−0.2(a−τ1), if a>τ1, |
and
θ(a)={0, if a≤τ2,3.10−2(a−τ2)2e−0.15(a−τ2); if a>τ2, |
with
In first time, we choose
In second time, we take
In this paper, we proposed and analyzed an infection age-structured SIR epidemic model with a general incidence rate. We showed the basic characters of the solution including existence, uniqueness and positivity. We obtained the basic reproduction number
In this paper, we have not considered the case where
The authors would like to thank the associate editor and the anonymous reviewers for their careful reading and helpful comments. TK was supported by Grant-in-Aid for Young Scientists (B) of Japan Society for the Promotion of Science (Grant No. 15K17585).
All authors declare no conflicts of interest in this paper.
[1] |
K. Karasawa, M. Oda, T. Kitasaka, K. Misawa, M. Fujiwara, C. W. Chu, et al., Multi-atlas pancreas segmentation: Atlas selection based on vessel structure, Med. Image Anal., 39 (2017), 18–28. https://doi.org/10.1016/j.media.2017.03.006 doi: 10.1016/j.media.2017.03.006
![]() |
[2] |
P. F. Li, P. Liu, C. L. Chen, H. Duan, W. J. Qiao, O. H. Ognami, The 3D reconstructions of female pelvic autonomic nerves and their related organs based on MRI: a first step towards neuronavigation during nerve-sparing radical hysterectomy, Eur. Radiol., 28 (2018), 4561–4569. https://doi.org/10.1007/s00330-018-5453-8 doi: 10.1007/s00330-018-5453-8
![]() |
[3] |
H. S. Park, D. S. Shin, D. H. Cho, Y. W. Jung, J. S. Park, Improved sectioned images and surface models of the whole dog body, Ann. Anat., 196 (2014), 352–359. https://doi.org/10.1016/j.aanat.2014.05.036 doi: 10.1016/j.aanat.2014.05.036
![]() |
[4] |
J. S. Park, Y. W. Jung, Software for browsing sectioned images of a dog body and generating a 3D model, Anat. Rec., 299 (2016), 81–87. https://doi.org/10.1002/ar.23200 doi: 10.1002/ar.23200
![]() |
[5] |
K. Czeibert, G. Baksa, A. Grimm, S. A. Nagy, E. Kubinyi, Ö. Petneházy, MRI, CT and high resolution macro-anatomical images with cryosectioning of a Beagle brain: creating the base of a multimodal imaging atlas, PLoS One, 14 (2019), e0213458. https://doi.org/10.1371/journal.pone.0213458 doi: 10.1371/journal.pone.0213458
![]() |
[6] |
X. Shu, Y. Y. Yang, B. Y. Wu, A neighbor level set framework minimized with the split Bregman method for medical image segmentation, Signal Process., 189 (2021), 108293. https://doi.org/10.1016/j.sigpro.2021.108293 doi: 10.1016/j.sigpro.2021.108293
![]() |
[7] |
X. Shu, Y. Y. Yang, J. Liu, X. J. Chang, B. Y. Wu, ALVLS: Adaptive local variances-Based levelset framework for medical images segmentation, Pattern Recogn., 136 (2023), 109257. https://doi.org/10.1016/j.patcog.2022.109257 doi: 10.1016/j.patcog.2022.109257
![]() |
[8] |
S. K. Zhou, H. Greenspan, C. Davatzikos, J. S. Duncan, B. Van Ginneken, A. Madabhushi, et al., A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises, Proc. IEEE, 109 (2021), 820–838. https://doi.org/10.1109/JPROC.2021.3054390 doi: 10.1109/JPROC.2021.3054390
![]() |
[9] | A. Majumdar, L. Brattain, B. Telfer, C. Farris, J. Scalera, Detecting intracranial hemorrhage with deep learning, in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, (2018), 583–587. https://doi.org/10.1109/EMBC.2018.8512336 |
[10] | J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2015), 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965 |
[11] | G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely connected convolutional networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), 4700–4708. https://doi.org/10.1109/CVPR.2017.243 |
[12] | L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in Proceedings of the European Conference on Computer Vision (ECCV), (2018), 801–818. |
[13] | O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, (2015), 234–241. https://doi.org/10.1007/978-3-319-24574-4_28 |
[14] |
D. Schmid, V. B. Scholz, P. R. Kircher, I. E. Lautenschlaeger, Employing deep convolutional neural networks for segmenting the medial retropharyngeal lymph nodes in CT studies of dogs, Vet. Radiol. Ultrasound, 63 (2022), 763–770. https://doi.org/10.1111/vru.13132 doi: 10.1111/vru.13132
![]() |
[15] |
J. Park, B. Choi, J. Ko, J. Chun, I. Park, J. Lee, et al., Deep-learning-based automatic segmentation of head and neck organs for radiation therapy in dogs, Front. Vet. Sci., 8 (2021), 721612. https://doi.org/10.3389/fvets.2021.721612 doi: 10.3389/fvets.2021.721612
![]() |
[16] | H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, et al., Swin-unet: Unet-like pure transformer for medical image segmentation, in European Conference on Computer Vision, (2021), 205–218. https://doi.org/10.1007/978-3-031-25066-8_9 |
[17] |
Y. Xu, X. He, G. Xu, G. Qi, K. Yu, L. Yin, et al., A medical image segmentation method based on multi-dimensional statistical features, Front. Neurosci., 16 (2022), 1009581. https://doi.org/10.3389/fnins.2022.1009581 doi: 10.3389/fnins.2022.1009581
![]() |
[18] | A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, et al., An image is worth 16x16 words: Transformers for image recognition at scale, preprint, arXiv: 2010.11929. |
[19] | N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-end object detection with transformers, in European Conference on Computer Vision, Springer, (2020), 213–229. https://doi.org/10.1007/978-3-030-58452-8_13 |
[20] | S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, et al., Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), 6881–6890. https://doi.org/10.1109/CVPR46437.2021.00681 |
[21] | J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, et al., Transunet: Transformers make strong encoders for medical image segmentation, preprint, arXiv: 2102.04306. |
[22] |
B. Li, S. Liu, F. Wu, G. Li, M. Zhong, X. Guan, RT‐Unet: An advanced network based on residual network and transformer for medical image segmentation, Int. J. Intell. Syst., 37 (2022), 8565–8582. https://doi.org/10.1002/int.22956 doi: 10.1002/int.22956
![]() |
[23] | H. Wang, P. Cao, J. Wang, O. R. Zaiane, Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer, in Proceedings of the AAAI Conference on Artificial Intelligence, 36 (2022), 2441–2449. https://doi.org/10.1609/aaai.v36i3.20144 |
[24] | Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-Net: Efficient channel attention for deep convolutional neural networks, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020), 11534–11542. https://doi.org/10.1109/CVPR42600.2020.01155 |
[25] |
A. E. Kavur, N. S. Gezer, M. Barış, S. Aslan, P. H. Conze, V. Groza, et al., CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation, Med. Image Anal. , 69 (2021), 101950. https://doi.org/10.1016/j.media.2020.101950 doi: 10.1016/j.media.2020.101950
![]() |
[26] | K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 770–778. |
[27] | A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need, in Advances in Neural Information Processing Systems, 30 (2017). |
[28] | H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), 2881–2890. https://doi.org/10.1109/CVPR.2017.660 |
[29] | J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, et al., Dual attention network for scene segmentation, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2019), 3146–3154. |
[30] | Y. Cao, J. Xu, S. Lin, F. Wei, H. Hu, Gcnet: Non-local networks meet squeeze-excitation networks and beyond, in Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019. https://doi.org/10.1109/ICCVW.2019.00246 |
[31] | Y. Yuan, X. Chen, J. Wang, Object-contextual representations for semantic segmentation, in European Conference on Computer Vision, Springer, (2020), 173–190. https://doi.org/10.1007/978-3-030-58539-6_11 |
[32] | Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, et al., Swin transformer: Hierarchical vision transformer using shifted windows, in Proceedings of the IEEE/CVF International Conference on Computer Vision, (2021), 10012–10022. https://doi.org/10.1109/ICCV48922.2021.00986 |
[33] | E. Z. Xie, W. H. Wang, Z. D. Yu, A. Anandkumar, J. M. Alvarez, P. Luo, SegFormer: Simple and efficient design for semantic segmentation with transformers, in Advances in Neural Information Processing Systems, 34 (2021), 12077–12090. |
[34] |
M. D. Alahmadi, Medical image segmentation with learning semantic and global contextual representation, Diagnostics, 12 (2022), 1548. https://doi.org/10.3390/diagnostics12071548 doi: 10.3390/diagnostics12071548
![]() |
[35] |
J. Fang, C. Yang, Y. Shi, N. Wang, Y. Zhao, External attention based TransUNet and label expansion strategy for crack detection, IEEE Trans. Intell. Transp. Syst., 23 (2022), 19054–19063. https://doi.org/10.1109/TITS.2022.3154407 doi: 10.1109/TITS.2022.3154407
![]() |
[36] | M. H. Guo, C. Z. Lu, Q. Hou, Z. Liu, M. M. Cheng, S. M. Hu, SegNeXt: Rethinking convolutional attention design for semantic segmentation, in Advances in Neural Information Processing Systems, 35 (2022), 1140–1156. |
[37] | H. Bao, L. Dong, S. Piao, F. Wei, BEiT: BERT pre-training of image transformers, preprint, arXiv: 2106.08254. |
1. | Boning Wu, Xuesong Zhou, Youjie Ma, Bus Voltage Control of DC Distribution Network Based on Sliding Mode Active Disturbance Rejection Control Strategy, 2020, 13, 1996-1073, 1358, 10.3390/en13061358 | |
2. | Abdennasser Chekroun, Toshikazu Kuniya, V. Vougalter, V. Volpert, An infection age-space-structured SIR epidemic model with Dirichlet boundary condition, 2019, 14, 0973-5348, 505, 10.1051/mmnp/2019048 | |
3. | Xiaowen Xiong, Yanqiu Li, Bingliang Li, Global stability of age-of-infection multiscale HCV model with therapy, 2021, 18, 1551-0018, 2182, 10.3934/mbe.2021110 | |
4. | Soufiane Bentout, Yuming Chen, Salih Djilali, Global Dynamics of an SEIR Model with Two Age Structures and a Nonlinear Incidence, 2021, 171, 0167-8019, 10.1007/s10440-020-00369-z | |
5. | Soufiane Bentout, Salih Djilali, Abdenasser Chekroun, Global threshold dynamics of an age structured alcoholism model, 2021, 14, 1793-5245, 2150013, 10.1142/S1793524521500133 | |
6. | Soufiane Bentout, Salih Djilali, Sunil Kumar, Tarik Mohammed Touaoula, Threshold dynamics of difference equations for SEIR model with nonlinear incidence function and infinite delay, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01466-0 | |
7. | Han Ma, Qimin Zhang, Threshold dynamics and optimal control on an age-structured SIRS epidemic model with vaccination, 2021, 18, 1551-0018, 9474, 10.3934/mbe.2021465 | |
8. | Salih Djilali, Soufiane Bentout, Sunil Kumar, Tarik Mohammed Touaoula, Approximating the asymptomatic infectious cases of the COVID-19 disease in Algeria and India using a mathematical model, 2022, 13, 1793-9623, 10.1142/S1793962322500283 | |
9. | Naveed Shahid, Muhammad Aziz-ur Rehman, Nauman Ahmed, Dumitru Baleanu, Muhammad Sajid Iqbal, Muhammad Rafiq, Numerical investigation for the nonlinear model of hepatitis-B virus with the existence of optimal solution, 2021, 6, 2473-6988, 8294, 10.3934/math.2021480 | |
10. | Zakya Sari, Tarik Mohammed Touaoula, Bedreddine Ainseba, Mathematical analysis of an age structured epidemic model with a quarantine class, 2021, 16, 0973-5348, 57, 10.1051/mmnp/2021049 | |
11. | Yuqiong Lan, Yanqiu Li, Dongmei Zheng, Global dynamics of an age-dependent multiscale hepatitis C virus model, 2022, 85, 0303-6812, 10.1007/s00285-022-01773-9 | |
12. | Mudhafar F. Hama, Rando R.Q. Rasul, Zakia Hammouch, Kawa A.H. Rasul, Jaouad Danane, Analysis of a stochastic SEIS epidemic model with the standard Brownian motion and Lévy jump, 2022, 37, 22113797, 105477, 10.1016/j.rinp.2022.105477 | |
13. | Soufiane Bentout, Abdessamad Tridane, Salih Djilali, Tarik Mohammed Touaoula, Age-Structured Modeling of COVID-19 Epidemic in the USA, UAE and Algeria, 2021, 60, 11100168, 401, 10.1016/j.aej.2020.08.053 | |
14. | Soufiane Bentout, Salih Djilali, Tarik Mohammed Touaoula, Anwar Zeb, Abdon Atangana, Bifurcation analysis for a double age dependence epidemic model with two delays, 2022, 108, 0924-090X, 1821, 10.1007/s11071-022-07234-8 | |
15. | Manoj Kumar, Syed Abbas, Analysis of steady state solutions to an age structured SEQIR model with optimal vaccination, 2022, 45, 0170-4214, 10718, 10.1002/mma.8414 | |
16. | Vladimir Kozlov, Sonja Radosavljevic, Vladimir Tkachev, Uno Wennergren, Global stability of an age-structured population model on several temporally variable patches, 2021, 83, 0303-6812, 10.1007/s00285-021-01701-3 | |
17. | Jin Yang, Zhuo Chen, Yuanshun Tan, Zijian Liu, Robert A. Cheke, Threshold dynamics of an age-structured infectious disease model with limited medical resources, 2023, 214, 03784754, 114, 10.1016/j.matcom.2023.07.003 | |
18. | Lili Liu, Xiaomin Ma, Yazhi Li, Xianning Liu, Mathematical analysis of global dynamics and optimal control of treatment for an age-structured HBV infection model, 2023, 177, 09600779, 114240, 10.1016/j.chaos.2023.114240 | |
19. | Qiuyun Li, Fengna Wang, An Epidemiological Model for Tuberculosis Considering Environmental Transmission and Reinfection, 2023, 11, 2227-7390, 2423, 10.3390/math11112423 | |
20. | Dongxue Yan, Yu Cao, Rich dynamics of a delayed SIRS epidemic model with two-age structure and logistic growth, 2023, 2023, 2731-4235, 10.1186/s13662-023-03794-0 | |
21. | Nicolò Cangiotti, Marco Capolli, Mattia Sensi, Sara Sottile, A survey on Lyapunov functions for epidemic compartmental models, 2024, 17, 1972-6724, 241, 10.1007/s40574-023-00368-6 | |
22. | Mostafa Adimy, Abdennasser Chekroun, Charlotte Dugourd-Camus, Hanene Meghelli, Global Asymptotic Stability of a Hybrid Differential–Difference System Describing SIR and SIS Epidemic Models with a Protection Phase and a Nonlinear Force of Infection, 2024, 23, 1575-5460, 10.1007/s12346-023-00891-z |