Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

TS-GCN: A novel tumor segmentation method integrating transformer and GCN

  • Received: 15 May 2023 Revised: 29 May 2023 Accepted: 30 May 2023 Published: 21 September 2023
  • As one of the critical branches of medical image processing, the task of segmentation of breast cancer tumors is of great importance for planning surgical interventions, radiotherapy and chemotherapy. Breast cancer tumor segmentation faces several challenges, including the inherent complexity and heterogeneity of breast tissue, the presence of various imaging artifacts and noise in medical images, low contrast between the tumor region and healthy tissue, and inconsistent size of the tumor region. Furthermore, the existing segmentation methods may not fully capture the rich spatial and contextual information in small-sized regions in breast images, leading to suboptimal performance. In this paper, we propose a novel breast tumor segmentation method, called the transformer and graph convolutional neural (TS-GCN) network, for medical imaging analysis. Specifically, we designed a feature aggregation network to fuse the features extracted from the transformer, GCN and convolutional neural network (CNN) networks. The CNN extract network is designed for the image's local deep feature, and the transformer and GCN networks can better capture the spatial and context dependencies among pixels in images. By leveraging the strengths of three feature extraction networks, our method achieved superior segmentation performance on the BUSI dataset and dataset B. The TS-GCN showed the best performance on several indexes, with Acc of 0.9373, Dice of 0.9058, IoU of 0.7634, F1 score of 0.9338, and AUC of 0.9692, which outperforms other state-of-the-art methods. The research of this segmentation method provides a promising future for medical image analysis and diagnosis of other diseases.

    Citation: Haiyan Song, Cuihong Liu, Shengnan Li, Peixiao Zhang. TS-GCN: A novel tumor segmentation method integrating transformer and GCN[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18173-18190. doi: 10.3934/mbe.2023807

    Related Papers:

    [1] Yao Fu, Sisi Zhou, Xin Li, Feng Rao . Multi-assets Asian rainbow options pricing with stochastic interest rates obeying the Vasicek model. AIMS Mathematics, 2023, 8(5): 10685-10710. doi: 10.3934/math.2023542
    [2] Zhidong Guo, Xianhong Wang, Yunliang Zhang . Option pricing of geometric Asian options in a subdiffusive Brownian motion regime. AIMS Mathematics, 2020, 5(5): 5332-5343. doi: 10.3934/math.2020342
    [3] Kung-Chi Chen, Kuo-Shing Chen . Pricing green financial options under the mixed fractal Brownian motions with jump diffusion environment. AIMS Mathematics, 2024, 9(8): 21496-21523. doi: 10.3934/math.20241044
    [4] Boling Chen, Guohe Deng . Analytic approximations for European-style Asian spread options. AIMS Mathematics, 2024, 9(5): 11696-11717. doi: 10.3934/math.2024573
    [5] Xinyi Wang, Jingshen Wang, Zhidong Guo . Pricing equity warrants under the sub-mixed fractional Brownian motion regime with stochastic interest rate. AIMS Mathematics, 2022, 7(9): 16612-16631. doi: 10.3934/math.2022910
    [6] Chao Yue, Chuanhe Shen . Fractal barrier option pricing under sub-mixed fractional Brownian motion with jump processes. AIMS Mathematics, 2024, 9(11): 31010-31029. doi: 10.3934/math.20241496
    [7] Zhe Li, Xiao-Tian Wang . Valuation of bid and ask prices for European options under mixed fractional Brownian motion. AIMS Mathematics, 2021, 6(7): 7199-7214. doi: 10.3934/math.2021422
    [8] Jiajia Zhao, Zuoliang Xu . Calibration of time-dependent volatility for European options under the fractional Vasicek model. AIMS Mathematics, 2022, 7(6): 11053-11069. doi: 10.3934/math.2022617
    [9] Javed Hussain, Saba Shahid, Tareq Saeed . Pricing forward-start style exotic options under uncertain stock models with periodic dividends. AIMS Mathematics, 2024, 9(9): 24934-24954. doi: 10.3934/math.20241215
    [10] Min-Ku Lee, Jeong-Hoon Kim . Pricing vanilla, barrier, and lookback options under two-scale stochastic volatility driven by two approximate fractional Brownian motions. AIMS Mathematics, 2024, 9(9): 25545-25576. doi: 10.3934/math.20241248
  • As one of the critical branches of medical image processing, the task of segmentation of breast cancer tumors is of great importance for planning surgical interventions, radiotherapy and chemotherapy. Breast cancer tumor segmentation faces several challenges, including the inherent complexity and heterogeneity of breast tissue, the presence of various imaging artifacts and noise in medical images, low contrast between the tumor region and healthy tissue, and inconsistent size of the tumor region. Furthermore, the existing segmentation methods may not fully capture the rich spatial and contextual information in small-sized regions in breast images, leading to suboptimal performance. In this paper, we propose a novel breast tumor segmentation method, called the transformer and graph convolutional neural (TS-GCN) network, for medical imaging analysis. Specifically, we designed a feature aggregation network to fuse the features extracted from the transformer, GCN and convolutional neural network (CNN) networks. The CNN extract network is designed for the image's local deep feature, and the transformer and GCN networks can better capture the spatial and context dependencies among pixels in images. By leveraging the strengths of three feature extraction networks, our method achieved superior segmentation performance on the BUSI dataset and dataset B. The TS-GCN showed the best performance on several indexes, with Acc of 0.9373, Dice of 0.9058, IoU of 0.7634, F1 score of 0.9338, and AUC of 0.9692, which outperforms other state-of-the-art methods. The research of this segmentation method provides a promising future for medical image analysis and diagnosis of other diseases.



    In 1973, the classic Black-Scholes (BS) model [1] provided an effective method for pricing financial derivatives and greatly simplifying the pricing process. Since then, many scholars have conducted research and promoted the model [2,3]. Asian options, a special type of financial derivative, are appealing due to their unique valuation method, which relies on the mean value of the underlying asset over a set contract period.

    However, the BS model may not align with actual financial markets and could fail to provide accurate pricing for complex financial derivatives. In 1968, Mandelbrot and Van Ness [4] proposed a stochastic process: fractional Brownian motion (fBm). If the Hurst parameter H12, the fractional Brownian motion is not a semi-martingale, which implies that there must be arbitrage opportunities [5,6]. Bojdecki et al. [7] advanced that sub-fractional Brownian motion (sfBm), which not only possesses similar properties to fractional Brownian motion but also features non-stationary increments with weaker correlations on non-overlapping intervals and a faster decay of covariance, aligns better with financial market dynamics. Based on this, Tubor [8] investigated new properties of sfBm. Xu and Li [9] tackled the valuation conundrum linked to compound options. For further applications of sfBm in financial models, please refer to [10,11,12]. Despite these advancements, the use of sfBm as a stochastic driver may still result in arbitrage opportunities akin to those associated with fBm. Zhang and Xiao [13] showed that the Black-Scholes model driven by fractional Gaussian processes allows for arbitrage opportunities. Since sub-fractional Brownian motion is a more general Gaussian process and is also not a semi-martingale, the application of this model to financial markets necessitates the study of arbitrage possibilities. EI-Nouty and Zili [14] proposed the concept of mixed sub-fractional Brownian motion (msfBm), which lies between Brownian motion and sfBm. The mixed sub-fractional Brownian motion incorporates the semi-martingale condition when H(34,1), making this stochastic process more suitable for inclusion in option pricing models [15]. Furthermore, constructing an appropriate portfolio can enable models with the Hurst parameter H(0,1) to avoid arbitrage in financial markets [16]. For example, Guo et al. [17] combined the fractal option pricing model with a new intelligent algorithm to predict the implied volatility in financial assets. Cai et al. [18] found the LSE of the drift parameter of mixed sub-fractional O-U process.

    The aforementioned studies collectively presupposed fixed short-term interest rates, which do not reflect the dynamic nature of real interest rates that exhibit mean reversion. The Vasicek model [19], a fundamental interest rate model in finance, describes the evolution of interest rates and has become a cornerstone in the analysis and management of interest rate risks. It provides a theoretical framework that aids in making informed financial decisions and developing sophisticated risk management strategies. Ewald et al. [20] priced options for Asian commodity futures contracts by incorporating stochastic convenience yields, stochastic interest rates, and commodity spot prices, and considered the scenario with jumps. More related studies can be found in [21,22,23,24,25] to further understand the importance of stochastic interest rate models in option pricing. Building on these studies, in this paper, a model for pricing geometric average Asian options is formulated under the msfBm regime, while the short rate follows the Vasicek process.

    Then, in Section 2, we state the necessary foundational knowledge. In Section 3, we provide the formula for a zero-coupon bond under the msfBm, based on certain assumptions. In Section 4, we give the solution for valuing geometric average Asian options with fixed strike price. In Section 5, we present relevant numerical calculations and an empirical study to further explore the effects of varying parameters on the model.

    The Vasicek model is recognized as a significant model for the short rate that can be combined with other pricing models. The incorporation of mixed sub-fractional Brownian motion can offer more comprehensive risk management solutions. Now, we introduce the relevant knowledge of msfBm, which is covered in [7,14,26].

    Definition 2.1. The Gaussian process ξH={ξH(t),t0} defined on a probability space (Ω,F,P) that satisfies the following conditions

    (1) ξH(0)=0,

    (2) E(ξH(t)ξH(s))=s2H+t2H12[(s+t)2H+|ts|2H],

    is called a sub-fractional Brownian motion, where H is the Hurst parameter with a value range of (0,1), and BH(t) is a standard Brownian motion when H=12.

    Definition 2.2. Let (Ω,F,P) be a probability space. The mixed sub-fractional Brownian motion Mβ,γ,H={Mβ,γ,Ht,t0}is a stochastic process with H(0,1), defined by

    Mβ,γ,H=βB(t)+γξH(t),β0,γ0,

    where B(t) is a Brownian motion and ξH(t) is a sub-fractional Brownian motion. We have

    E(Mβ,γ,HtMβ,γ,Hs)=β2min

    where M_t^{\beta, \gamma, H} is a sfBm when \beta = 0 and \gamma = 1 , M_t^{\beta, \gamma, H} is a standard Brownian motion when \beta = 1 and \gamma = 0 or when \beta = 0 , \gamma = 1 and H = \frac{1}{2} .

    Definition 2.3. Asian options are divided into geometric average Asian options and arithmetic average Asian options. Taking fixed strike Asian call options as an example, the payoff is {\left({{J_T} - K} \right)^ + } , where K is the strike price, T is the expiration date, and {J_t} is the average price of the underlying asset over the predetermined interval. In continuous time, the arithmetic average is represented by

    {J_t} = \frac{1}{t}\int_0^t {{S_\tau }} {\text{d}}\tau ,

    the geometric average is represented by

    {J_t} = \exp \left( {\frac{1}{t}\int_0^t {\ln {S_\tau }{\text{d}}\tau } } \right).

    Then, we present some basic assumptions of this paper.

    (ⅰ) Short selling is allowed without penalty; there are no taxes and friction; stocks do not pay dividends; investors borrow and lend at the risk-free rate.

    (ⅱ) The stock price S\left(t \right) satisfies the mixed sub-fractional Brownian motion of risk neutrality, given by

    {\text{d}}S\left( t \right) = r\left( t \right)S\left( t \right){\text{d}}t + {\sigma _{{S_1}}}S\left( t \right){\text{d}}{B^S}\left( t \right) + {\sigma _{{S_2}}}S\left( t \right){\text{d}}\xi _H^S\left( t \right), (2.1)

    where r\left(t \right) is a short rate and satisfies the following msfBm-Vasicek model

    {\text{d}}r\left( t \right) = a\left( {b - r\left( t \right)} \right){\text{d}}t + {\sigma _{{r_1}}}{\text{d}}{B^r}\left( t \right) + {\sigma _{{r_2}}}{\text{d}}\xi _H^r\left( t \right), (2.2)

    where {\sigma _{{S_1}}} , {\sigma _{{S_2}}} , {\sigma _{{r_1}}} , and {\sigma _{{r_2}}} are constants, {B^S}\left(t \right) , \xi _H^S\left(t \right) , {B^r}\left(t \right) , and \xi _H^r\left(t \right) are independent of each other.

    A zero-coupon bond is issued at a price below its face value and does not pay any interest during the period. Upon maturity at time T , investors are entitled to receive a cash return equivalent to \$ 1. The price of such a bond is influenced by the passage of time and the variability in interest rates. We denote the price of a zero-coupon bond at time t , maturing at time T , as P\left({r, t; T} \right) .

    Theorem 3.1. In the mixed sub-fractional Vasicek process, the price of a zero-coupon bond with maturity T at time t \in \left[{0, T} \right] is given by

    P\left( {r, t;T} \right) = {e^{ - A\left( {t, T} \right) - rB\left( {t, T} \right)}}, (3.1)

    where

    \left\{ \begin{array}{l} A\left( {t, T} \right) = b\left( {T - t} \right) - bB\left( {t, T} \right) - \frac{1}{2}\sigma _{{r_1}}^2\int_t^T {{B^2}\left( {s, T} \right){\text{d}}s} - H\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2\int_t^T {{s^{2H - 1}}{B^2}\left( {s, T} \right){\text{d}}s} , \hfill \\ B\left( {t, T} \right) = \frac{{1 - {e^{ - a(T - t)}}}}{a}, \hfill \end{array} \right.

    Proof. By using the risk hedging formula and Itô formula [19], select two zero-coupon bonds with different maturities, denoted as {P_1} = {P_1}\left({r, t; {T_1}} \right) and {P_2} = {P_2}\left({r, t; {T_2}} \right) , to hedge the risks. Now consider a portfolio \Pi consisting of one unit of {P_1} and \Delta units of {P_2} , we can obtain

    \Pi = {P_1} - \Delta {P_2}.

    The change in the portfolio over the time interval \left({t, t + {\text{d}}t} \right) is given by

    {\text{d}}\Pi = \frac{{\partial {P_1}}}{{\partial t}}{\text{d}}t + \frac{{\partial {P_1}}}{{\partial r}}{\text{d}}r + \frac{1}{2}\frac{{{\partial ^2}{P_1}}}{{\partial {r^2}}}{\left( {{\text{d}}r} \right)^2} - \Delta \left( {\frac{{\partial {P_2}}}{{\partial t}}{\text{d}}t + \frac{{\partial {P_2}}}{{\partial r}}{\text{d}}r + \frac{1}{2}\frac{{{\partial ^2}{P_2}}}{{\partial {r^2}}}{{\left( {{\text{d}}r} \right)}^2}} \right), (3.2)

    where {\left({{\text{d}}r} \right)^2} = \left({\sigma _{{r_1}}^2 + 2H{t^{2H - 1}}\left({2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2} \right){\text{d}}t + o\left({{\text{d}}t} \right).

    Let \Delta = \frac{{\partial {P_1}/\partial r}}{{\partial {P_2}/\partial r}} , Eq (3.2) becomes

    \begin{array}{l} {\text{d}}\Pi = \frac{{\partial {P_1}}}{{\partial t}}{\text{d}}t + \frac{1}{2}\left( {\sigma _{{r_1}}^2 + 2H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2} \right)\frac{{{\partial ^2}{P_1}}}{{\partial {r^2}}}{\text{d}}t \\ - \frac{{\partial {P_1}/\partial r}}{{\partial {P_2}/\partial r}}\left( {\frac{{\partial {P_2}}}{{\partial t}}{\text{d}}t + \frac{1}{2}\left( {\sigma _{{r_1}}^2 + 2H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2} \right)\frac{{{\partial ^2}{P_2}}}{{\partial {r^2}}}{\text{d}}t} \right). \end{array} (3.3)

    Furthermore, since the investment portfolio is risk-free, that is, E\left({{\text{d}}\Pi } \right) = r\left(t \right)\Pi {\text{d}}t , we have

    \begin{array}{l} \left( {\frac{{\partial {P_1}}}{{\partial t}} + \frac{1}{2}\left( {\sigma _{{r_1}}^2 + 2H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2} \right)\frac{{{\partial ^2}{P_1}}}{{\partial {r^2}}} - r{P_1}} \right)/\frac{{\partial {P_1}}}{{\partial r}} \hfill \\ = \left( {\frac{{\partial {P_2}}}{{\partial t}} + \frac{1}{2}\left( {\sigma _{{r_1}}^2 + 2H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2} \right)\frac{{{\partial ^2}{P_2}}}{{\partial {r^2}}} - r{P_2}} \right)/\frac{{\partial {P_2}}}{{\partial r}}. \hfill \end{array} (3.4)

    Then, we can obtain

    \left( {\frac{{\partial P}}{{\partial t}} + \frac{1}{2}\left( {\sigma _{{r_1}}^2 + 2H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2} \right)\frac{{{\partial ^2}P}}{{\partial {r^2}}} - rP} \right)/\frac{{\partial P}}{{\partial r}} = - a\left( {b - r\left( t \right)} \right).

    Thus, the zero-coupon bond P\left({r, t; T} \right) satisfies the following partial differential equation given by

    \left\{ \begin{array}{l} \frac{{\partial P}}{{\partial t}} + a\left( {b - r\left( t \right)} \right)\frac{{\partial P}}{{\partial r}} + \frac{1}{2}\sigma _{{r_1}}^2\frac{{{\partial ^2}P}}{{\partial {r^2}}} + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2\frac{{{\partial ^2}P}}{{\partial {r^2}}} - rP = 0, \hfill \\ P\left( {r, T;T} \right) = 1. \hfill \end{array} \right. (3.5)

    Given that A\left({T, T} \right) = 0 and B\left({T, T} \right) = 0 , it is not difficult to find a solution for the price of a zero-coupon bond at time t of the following form

    \left\{ \begin{array}{l} \frac{{\partial P}}{{\partial t}} = P\left[ { - A'\left( {t, T} \right) - rB'\left( {t, T} \right)} \right], \hfill \\ \frac{{\partial P}}{{\partial r}} = - PB\left( {t, T} \right), \hfill \\ \frac{{{\partial ^2}P}}{{\partial {r^2}}} = P{B^2}\left( {t, T} \right). \hfill \end{array} \right. (3.6)

    Substituting Eq (3.6) into Eq (3.5), we can derive

    - r\left( {B'\left( {t, T} \right) - aB\left( {t, T} \right) + 1} \right) - A'\left( {t, T} \right) - abB\left( {t, T} \right) + \frac{1}{2}\sigma _{{r_1}}^2{B^2}\left( {t, T} \right) + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2{B^2}\left( {t, T} \right) = 0.

    After simplification, we have

    \left\{ \begin{array}{l} B'\left( {t, T} \right) - aB\left( {t, T} \right) + 1 = 0, \hfill \\ A'\left( {t, T} \right) + abB\left( {t, T} \right) - \frac{1}{2}\sigma _{{r_1}}^2{B^2}\left( {t, T} \right) - H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2{B^2}\left( {t, T} \right) = 0. \hfill \end{array} \right.

    Then, we can obtain

    \left\{ \begin{array}{l} A\left( {t, T} \right) = b\left( {T - t} \right) - bB\left( {t, T} \right) - \frac{1}{2}\sigma _{{r_1}}^2\int_t^T {{B^2}\left( {s, T} \right){\text{d}}s} - H\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2\int_t^T {{s^{2H - 1}}{B^2}\left( {s, T} \right){\text{d}}s} , \hfill \\ B\left( {t, T} \right) = \frac{{1 - {e^{ - a(T - t)}}}}{a}. \hfill \end{array} \right.

    Proof is completed.

    In this section, examine a mixed sub-fractional version of the BS model, i.e., a simple financial market consisting of zero-coupon bonds, underlying assets, and options on underlying assets.

    Theorem 4.1. The value of geometric average Asian call options with fixed strike price is denoted as V = V\left({S, J, r, t} \right) . Based on assumptions (2.1) and (2.2), the partial differential equation and boundary conditions are given by

    \left\{ \begin{array}{l} \frac{{\partial V}}{{\partial t}} + \frac{J}{t}\ln \left( {\frac{S}{J}} \right)\frac{{\partial V}}{{\partial J}} + \frac{1}{2}\sigma _{{S_1}}^2{S^2}\frac{{{\partial ^2}V}}{{\partial {S^2}}} + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{S_2}}^2{S^2}\frac{{{\partial ^2}V}}{{\partial {S^2}}}, \hfill \\ + \frac{1}{2}\sigma _{{r_1}}^2\frac{{{\partial ^2}V}}{{\partial {r^2}}} + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2\frac{{{\partial ^2}V}}{{\partial {r^2}}} + a\left( {b - r\left( t \right)} \right)\frac{{\partial V}}{{\partial r}} + rS\frac{{\partial V}}{{\partial S}} - rV = 0, \hfill \\ V\left( {S, J, r, T} \right) = {\left( {J - K} \right)^ + }. \hfill \end{array} \right. (4.1)

    Proof. Considering that the portfolio \Pi consists of one unit option V\left({S, J, r, t} \right) , {\Delta _{1t}} units of underlying assets and {\Delta _{2t}} units of zero-coupon bonds P\left({r, t; T} \right) , the value of the portfolio at time t is given by

    {\Pi _t} = {V_t} - {\Delta _{1t}}{S_t} - {\Delta _{2t}}{P_t}, (4.2)

    Choosing the appropriate {\Delta _{1t}} and {\Delta _{2t}} makes the portfolio risk-free in \left({t, t + {\text{d}}t} \right) , we can obtain

    \begin{array}{l} {\text{d}}{\Pi _t} = {\text{d}}{V_t} - {\Delta _{1t}}{\text{d}}{S_t} - {\Delta _{2t}}{\text{d}}{P_t} \hfill \\ = \left( {\frac{{\partial V}}{{\partial t}} + \frac{J}{t}\ln \left( {\frac{S}{J}} \right)\frac{{\partial V}}{{\partial J}} + \frac{1}{2}\sigma _{{S_1}}^2{S^2}\frac{{{\partial ^2}V}}{{\partial {S^2}}} + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{S_2}}^2{S^2}\frac{{{\partial ^2}V}}{{\partial {S^2}}}} \right){\text{d}}t \hfill \\ + \left( {\frac{1}{2}\sigma _{{r_1}}^2\frac{{{\partial ^2}V}}{{\partial {r^2}}} + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2\frac{{{\partial ^2}V}}{{\partial {r^2}}}} \right){\text{d}}t + \left( {\frac{{\partial V}}{{\partial S}} - {\Delta _{1t}}} \right){\text{d}}S + \left( {\frac{{\partial V}}{{\partial r}} - {\Delta _{2t}}\frac{{\partial P}}{{\partial r}}} \right){\text{d}}r \hfill \\ - {\Delta _{2t}}\left( {\frac{{\partial P}}{{\partial t}} + \frac{1}{2}\sigma _{{r_1}}^2\frac{{{\partial ^2}P}}{{\partial {r^2}}} + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2\frac{{{\partial ^2}P}}{{\partial {r^2}}}} \right){\text{d}}t. \hfill \end{array}

    Let {\Delta _{1t}} = \frac{{\partial V}}{{\partial S}} and {\Delta _{2t}} = \frac{{\partial V/\partial r}}{{\partial P/\partial r}} , using the principle of no arbitrage, we have

    E\left( {{\text{d}}{\Pi _t}} \right) = r\left( t \right)\Pi {\text{d}}t = r\left( {{V_t} - {\Delta _{1t}}{S_t} - {\Delta _{2t}}{P_t}} \right){\text{d}}t, (4.3)

    we can calculate that

    \left\{ \begin{array}{l} \frac{{\partial V}}{{\partial t}} + \frac{J}{t}\ln \left( {\frac{S}{J}} \right)\frac{{\partial V}}{{\partial J}} + \frac{1}{2}\sigma _{{S_1}}^2{S^2}\frac{{{\partial ^2}V}}{{\partial {S^2}}} + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{S_2}}^2{S^2}\frac{{{\partial ^2}V}}{{\partial {S^2}}} \hfill \\ + \frac{1}{2}\sigma _{{r_1}}^2\frac{{{\partial ^2}V}}{{\partial {r^2}}} + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2\frac{{{\partial ^2}V}}{{\partial {r^2}}} + a\left( {b - r\left( t \right)} \right)\frac{{\partial V}}{{\partial r}} + rS\frac{{\partial V}}{{\partial S}} - rV = 0, \hfill \\ V\left( {S, J, r, T} \right) = {\left( {J - K} \right)^ + }. \hfill \end{array} \right.

    Proof is completed.

    Theorem 4.2. Assuming that the stock price satisfies Eq (2.1), and the interest rate satisfies Eq (2.2), the price of the geometric average Asian call option at time t \in \left[{0, T} \right] with strike price K and maturity date T is given by

    V\left( {S, J, r, t} \right) = P{\left( {r, t;T} \right)^{\frac{t}{T}}}{J^{\frac{t}{T}}}{S^{\frac{{T - t}}{T}}}{e^L}N\left( {{d_1}} \right) - P\left( {r, t;T} \right)KN\left( {{d_2}} \right),

    where

    \left\{ \begin{array}{l} {d_1} = \frac{{\frac{{t\ln J + \left( {T - t} \right)\ln \frac{S}{{P\left( {r, t;T} \right)}}}}{T} + \int_t^T {{\beta _4}\left( s \right){\text{d}}s} + 2\int_t^T {{\beta _3}\left( s \right){\text{d}}s - \ln K} }}{{\sqrt {2\int_t^T {{\beta _3}\left( s \right){\text{d}}s} } }}, \hfill \\ {d_2} = {d_1} - \sqrt {2\int_t^T {{\beta _3}\left( s \right){\text{d}}s} } , \hfill \\ \beta _1^2\left( t \right) = \tilde \sigma _S^2 + \tilde \sigma _r^2{B^2}\left( {t, T} \right), \hfill \\ {\beta _2}\left( t \right) = - A\left( {t, T} \right) - rB\left( {t, T} \right), \hfill \\ {\beta _3}\left( t \right) = {\left( {\frac{{T - t}}{T}} \right)^2}\beta _1^2\left( t \right), \hfill \\ {\beta _4}\left( t \right) = \frac{1}{T}{\beta _2}\left( t \right) - \frac{{T - t}}{T}\beta _1^2\left( t \right), \hfill \\ L = \int_t^T {{\beta _4}\left( s \right){\text{d}}s} + \int_t^T {{\beta _3}\left( s \right){\text{d}}s} , \hfill \\ \tilde \sigma _S^2 = \frac{1}{2}\sigma _{{S_1}}^2 + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{S_2}}^2, \hfill \\ \tilde \sigma _r^2 = \frac{1}{2}\sigma _{{r_1}}^2 + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2, \hfill \\ N(x) = \frac{1}{{\sqrt {2\pi } }}\int_{ - \infty }^x {{e^{ - \frac{{{t^2}}}{2}}}} {\text{d}}t. \hfill \end{array} \right.

    Proof. To simplify the variable-coefficient equation with three variables down to one with two variables, we perform a variable substitution. Thus, let

    y = \frac{S}{{P\left( {r, t;T} \right)}}, {V_1}\left( {y, J, t} \right) = \frac{{V\left( {S, J, r, t} \right)}}{{P\left( {r, t;T} \right)}}. (4.4)

    Sometimes, we denote P\left({r, t; T} \right) as P to simplify notation. Then, through calculation, we have

    \left\{ \begin{array}{l} \frac{{\partial V}}{{\partial J}} = P\frac{{\partial {V_1}}}{{\partial J}}, \hfill \\ \frac{{\partial V}}{{\partial t}} = {V_1}\frac{{\partial P}}{{\partial t}} + P\frac{{\partial {V_1}}}{{\partial t}} - y\frac{{\partial {V_1}}}{{\partial y}}\frac{{\partial P}}{{\partial t}}, \hfill \\ \frac{{\partial V}}{{\partial r}} = {V_1}\frac{{\partial P}}{{\partial r}} - y\frac{{\partial {V_1}}}{{\partial y}}\frac{{\partial P}}{{\partial r}}, \hfill \\ \frac{{\partial V}}{{\partial S}} = \frac{{\partial {V_1}}}{{\partial y}}, \hfill \\ \frac{{{\partial ^2}V}}{{\partial {r^2}}} = {V_1}\frac{{{\partial ^2}P}}{{\partial {r^2}}} - y\frac{{\partial {V_1}}}{{\partial y}}\frac{{{\partial ^2}P}}{{\partial {r^2}}} + {y^2}\frac{{{\partial ^2}{V_1}}}{{\partial {y^2}}}\frac{1}{P}{\left( {\frac{{\partial P}}{{\partial r}}} \right)^2}, \hfill \\ \frac{{{\partial ^2}V}}{{\partial r\partial S}} = - y\frac{{{\partial ^2}{V_1}}}{{\partial {y^2}}}\frac{1}{P}\frac{{\partial P}}{{\partial r}}, \hfill \\ \frac{{{\partial ^2}V}}{{\partial {S^2}}} = \frac{1}{P}\frac{{{\partial ^2}{V_1}}}{{\partial {y^2}}}. \hfill \end{array} \right. (4.5)

    Substituting Eq (4.5) into Eq (4.1) and organizing it, we can obtain

    \begin{array}{l} \frac{{\partial {V_1}}}{{\partial t}} + \left( {\frac{1}{2}\frac{1}{{{P^2}}}\sigma _{{S_1}}^2{S^2} + \frac{1}{{{P^2}}}H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{S_2}}^2{S^2} + \frac{1}{2}{y^2}\frac{1}{{{P^2}}}{{\left( {\frac{{\partial P}}{{\partial r}}} \right)}^2}\sigma _{{r_1}}^2} \right)\frac{{{\partial ^2}{V_1}}}{{\partial {y^2}}} \hfill \\ + {y^2}\frac{1}{{{P^2}}}{\left( {\frac{{\partial P}}{{\partial r}}} \right)^2}\left( {2 - {2^{2H - 1}}} \right)H\sigma _{{r_2}}^2{t^{2H - 1}}\frac{{{\partial ^2}{V_1}}}{{\partial {y^2}}} + \frac{J}{t}\ln \left( {\frac{S}{J}} \right)\frac{{\partial {V_1}}}{{\partial J}} \hfill \\ - \frac{1}{P}y\left( {\frac{{\partial P}}{{\partial t}} + \frac{1}{2}\frac{{{\partial ^2}P}}{{\partial {r^2}}}\sigma _{{r_1}}^2 + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2\frac{{{\partial ^2}P}}{{\partial {r^2}}} + a\left( {b - r\left( t \right)} \right)\frac{{\partial P}}{{\partial r}} - \frac{{rS}}{y}} \right)\frac{{\partial {V_1}}}{{\partial y}} \hfill \\ + \frac{{{V_1}}}{P}\left( {\frac{{\partial P}}{{\partial t}} + \frac{1}{2}\frac{{{\partial ^2}P}}{{\partial {r^2}}}\sigma _{{r_1}}^2 + \frac{{{\partial ^2}P}}{{\partial {r^2}}}H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2 + a\left( {b - r\left( t \right)} \right)\frac{{\partial P}}{{\partial r}} - rP} \right) = 0. \hfill \end{array}

    By integrating Eqs (4.4) and (3.5), we can derive

    \frac{{\partial {V_1}}}{{\partial t}} + \frac{J}{t}\ln \left( {\frac{S}{J}} \right)\frac{{\partial {V_1}}}{{\partial J}} + {y^2}\beta _1^2\left( t \right)\frac{{{\partial ^2}{V_1}}}{{\partial {y^2}}} = 0, (4.6)

    where

    \left\{ \begin{array}{l} \beta _1^2\left( t \right) = \tilde \sigma _S^2 + \tilde \sigma _r^2{B^2}\left( {t, T} \right), \hfill \\ \tilde \sigma _S^2 = \frac{1}{2}\sigma _{{S_1}}^2 + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{S_2}}^2, \hfill \\ \tilde \sigma _r^2 = \frac{1}{2}\sigma _{{r_1}}^2 + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2. \hfill \end{array} \right.

    By substituting the deformation of Eq (4.4) into Eq (4.6), the equation can be transformed into

    \frac{{\partial {V_1}}}{{\partial t}} + \frac{J}{t}\left( {{\beta _2}\left( t \right) + \ln \frac{y}{J}} \right)\frac{{\partial {V_1}}}{{\partial J}} + {y^2}\beta _1^2\left( t \right)\frac{{{\partial ^2}{V_1}}}{{\partial {y^2}}} = 0, (4.7)

    where {\beta _2}\left(t \right) = - A\left({t, T} \right) - rB\left({t, T} \right).

    To simplify Eq (4.7), we can make the following variable substitution

    x = \frac{{t\ln J + \left( {T - t} \right)\ln y}}{T}, {V_2}\left( {x, t} \right) = {V_1}\left( {y, J, t} \right). (4.8)

    It can be determined that

    \left\{ \begin{array}{l} \frac{{\partial {V_1}}}{{\partial J}} = \frac{t}{{TJ}}\frac{{\partial {V_2}}}{{\partial x}}, \hfill \\ \frac{{\partial {V_1}}}{{\partial t}} = \frac{{\partial {V_2}}}{{\partial t}} + \frac{{\ln J - \ln y}}{T}\frac{{\partial {V_2}}}{{\partial x}}, \hfill \\ \frac{{\partial {V_1}}}{{\partial y}} = \frac{{T - t}}{{Ty}}\frac{{\partial {V_2}}}{{\partial x}}, \hfill \\ \frac{{{\partial ^2}{V_1}}}{{\partial {y^2}}} = {\left( {\frac{{T - t}}{{Ty}}} \right)^2}\frac{{{\partial ^2}{V_2}}}{{\partial {x^2}}} - \frac{{T - t}}{{T{y^2}}}\frac{{\partial {V_2}}}{{\partial x}}. \hfill \end{array} \right. (4.9)

    Substituting the above results into Eq (4.7), we find that

    \left\{ \begin{array}{l} \frac{{\partial {V_2}}}{{\partial t}} + {\beta _3}\left( t \right)\frac{{{\partial ^2}{V_2}}}{{\partial {x^2}}} + {\beta _4}\left( t \right)\frac{{\partial {V_2}}}{{\partial x}} = 0, \hfill \\ {V_2}\left( {x, T} \right) = {\left( {{e^x} - K} \right)^ + }, \hfill \end{array} \right. (4.10)

    where {\beta _3}\left(t \right) = {\left({\frac{{T - t}}{T}} \right)^2}\beta _1^2\left(t \right) and {\beta _4}\left(t \right) = \frac{1}{T}{\beta _2}\left(t \right) - \frac{{T - t}}{T}\beta _1^2\left(t \right) .

    The last time using variable substitution to simplify Eq (4.10) into a heat conduction equation, let

    {V_2}\left( {x, t} \right) = \mu \left( {\eta , \theta } \right), \eta = x + \int_t^T {{\beta _4}\left( s \right){\text{d}}s} , \theta = \int_t^T {{\beta _3}\left( s \right){\text{d}}s} . (4.11)

    It can be deduced that

    \left\{ \begin{array}{l} \frac{{\partial {V_2}}}{{\partial t}} = - {\beta _4}\left( t \right)\frac{{\partial \mu }}{{\partial \eta }} - {\beta _3}\left( t \right)\frac{{\partial \mu }}{{\partial \theta }}, \hfill \\ \frac{{\partial {V_2}}}{{\partial x}} = \frac{{\partial \mu }}{{\partial \eta }}, \hfill \\ \frac{{{\partial ^2}{V_2}}}{{\partial {x^2}}} = \frac{{{\partial ^2}\mu }}{{\partial {\eta ^2}}}. \hfill \end{array} \right. (4.12)

    Then, Eq (4.10) can be converted to

    \left\{ \begin{array}{l} \frac{{{\partial ^2}\mu }}{{\partial {\eta ^2}}} = \frac{{\partial \mu }}{{\partial \theta }}, \hfill \\ \mu \left( {\eta , T} \right) = {\left( {{e^\eta } - K} \right)^ + }. \hfill \end{array} \right. (4.13)

    According to the heat conduction theory, the solution of this equation can be expressed as

    {V_2}\left( {x, t} \right) = \mu \left( {\eta , \theta } \right) = {e^{\eta + \theta }}N\left( {{d_5}} \right) - KN\left( {{d_6}} \right) = {e^{x + L}}N\left( {{d_5}} \right) - KN\left( {{d_6}} \right), (4.14)

    where

    {d_5} = \frac{{\eta - \ln K + 2\theta }}{{\sqrt {2\theta } }} = \frac{{x + \int_t^T {{\beta _4}\left( s \right){\text{d}}s} + 2\int_t^T {{\beta _3}\left( s \right){\text{d}}s - \ln K} }}{{\sqrt {2\int_t^T {{\beta _3}\left( s \right){\text{d}}s} } }},
    {d_6} = {d_5} - \sqrt {2\theta } = {d_5} - \sqrt {2\int_t^T {{\beta _3}\left( s \right){\text{d}}s} } ,
    L = \int_t^T {{\beta _4}\left( s \right){\text{d}}s} + \int_t^T {{\beta _3}\left( s \right){\text{d}}s} .

    Substituting Eq (4.8) into Eq (4.14), we can obtain

    {V_1}\left( {y, J, t} \right) = {J^{\frac{t}{T}}}{y^{\frac{{T - t}}{t}}}{e^L}N\left( {{d_3}} \right) - KN\left( {{d_4}} \right), (4.15)

    where

    {d_3} = \frac{{\frac{{t\ln J + \left( {T - t} \right)\ln y}}{T} + \int_t^T {{\beta _4}\left( s \right){\text{d}}s} + 2\int_t^T {{\beta _3}\left( s \right){\text{d}}s - \ln K} }}{{\sqrt {2\int_t^T {{\beta _3}\left( s \right){\text{d}}s} } }},
    {d_4} = {d_3} - \sqrt {2\int_t^T {{\beta _3}\left( s \right){\text{d}}s} } .

    Combining Eqs (4.4) and (4.15), it follows that

    V\left( {S, J, r, t} \right) = {V_1}\left( {\frac{S}{{P\left( {r, t;T} \right)}}, J, t} \right)P\left( {r, t;T} \right) = P{\left( {r, t;T} \right)^{\frac{t}{T}}}{J^{\frac{t}{T}}}{S^{\frac{{T - t}}{T}}}{e^L}N\left( {{d_1}} \right) - P\left( {r, t;T} \right)KN\left( {{d_2}} \right),

    where

    {d_1} = \frac{{\frac{{t\ln J + \left( {T - t} \right)\ln \frac{S}{{P\left( {r, t;T} \right)}}}}{T} + \int_t^T {{\beta _4}\left( s \right){\text{d}}s} + 2\int_t^T {{\beta _3}\left( s \right){\text{d}}s - \ln K} }}{{\sqrt {2\int_t^T {{\beta _3}\left( s \right){\text{d}}s} } }},
    {d_2} = {d_1} - \sqrt {2\int_t^T {{\beta _3}\left( s \right){\text{d}}s} } .

    Proof is completed.

    Theorem 4.3. The call-put parity relationship for geometric average Asian options with fixed strike price is given by

    V\left( {S, J, r, t} \right) - p\left( {S, J, r, t} \right) = P\left( {r, t;T} \right){J^{\frac{t}{T}}}{\left( {\frac{S}{{P\left( {r, t;T} \right)}}} \right)^{\frac{{T - t}}{T}}}{e^L} - P\left( {r, t;T} \right)K,

    where p\left({S, J, r, t} \right) is the price of geometric average Asian put options and

    \left\{ \begin{array}{l} \beta _1^2\left( t \right) = \tilde \sigma _S^2 + \tilde \sigma _r^2{B^2}\left( {t, T} \right), \hfill \\ {\beta _2}\left( t \right) = - A\left( {t, T} \right) - rB\left( {t, T} \right), \hfill \\ {\beta _3}\left( t \right) = {\left( {\frac{{T - t}}{T}} \right)^2}\beta _1^2\left( t \right), \hfill \\ {\beta _4}\left( t \right) = \frac{1}{T}{\beta _2}\left( t \right) - \frac{{T - t}}{T}\beta _1^2\left( t \right), \hfill \\ L = \int_t^T {{\beta _4}\left( s \right){\text{d}}s} + \int_t^T {{\beta _3}\left( s \right){\text{d}}s} , \hfill \\ \tilde \sigma _S^2 = \frac{1}{2}\sigma _{{S_1}}^2 + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{S_2}}^2, \hfill \\ \tilde \sigma _r^2 = \frac{1}{2}\sigma _{{r_1}}^2 + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2. \hfill \end{array} \right.

    Proof. Let

    W\left( {S, J, r, t} \right) = V\left( {S, J, r, t} \right) - p\left( {S, J, r, t} \right).

    According to Theorem 4.1, W\left({S, J, r, t} \right) satisfies the following definite solution problem

    \left\{ \begin{array}{l} \frac{{\partial W}}{{\partial t}} + \frac{J}{t}\ln \left( {\frac{S}{J}} \right)\frac{{\partial W}}{{\partial J}} + \frac{1}{2}\sigma _{{S_1}}^2{S^2}\frac{{{\partial ^2}W}}{{\partial {S^2}}} + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{S_2}}^2{S^2}\frac{{{\partial ^2}W}}{{\partial {S^2}}} \hfill \\ + \frac{1}{2}\sigma _{{r_1}}^2\frac{{{\partial ^2}W}}{{\partial {r^2}}} + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2\frac{{{\partial ^2}W}}{{\partial {r^2}}} + a\left( {b - r\left( t \right)} \right)\frac{{\partial W}}{{\partial r}} + rS\frac{{\partial W}}{{\partial S}} - rW = 0, \hfill \\ W\left( {S, J, r, T} \right) = J - K. \hfill \end{array} \right. (4.16)

    Making the following variable substitutions

    y = \frac{S}{{P\left( {r, t;T} \right)}}, {W_1}\left( {y, J, t} \right) = \frac{{W\left( {S, J, r, t} \right)}}{{P\left( {r, t;T} \right)}}. (4.17)

    Substituting Eq (4.17) into Eq (4.16), we have

    \frac{{\partial {W_1}}}{{\partial t}} + \frac{J}{t}\ln \left( {\frac{S}{J}} \right)\frac{{\partial {W_1}}}{{\partial J}} + {y^2}\beta _1^2\left( t \right)\frac{{{\partial ^2}{W_1}}}{{\partial {y^2}}} = 0, (4.18)

    where

    \left\{ \begin{array}{l} \beta _1^2\left( t \right) = \tilde \sigma _S^2 + \tilde \sigma _r^2{B^2}\left( {t, T} \right), \hfill \\ \tilde \sigma _S^2 = \frac{1}{2}\sigma _{{S_1}}^2 + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{S_2}}^2, \hfill \\ \tilde \sigma _r^2 = \frac{1}{2}\sigma _{{r_1}}^2 + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2. \hfill \end{array} \right.

    Let

    \xi = \frac{{t\ln J + \left( {T - t} \right)\ln y}}{T}, {W_2}\left( {\xi , t} \right) = {W_1}\left( {y, J, t} \right). (4.19)

    By inserting Eq (4.19) into Eq (4.18), this yields

    \left\{ \begin{array}{l} \frac{{\partial {W_2}}}{{\partial t}} + {\beta _3}\left( t \right)\frac{{{\partial ^2}{W_2}}}{{\partial {\xi ^2}}} + {\beta _4}\left( t \right)\frac{{\partial {W_2}}}{{\partial \xi }} = 0, \hfill \\ {W_2}\left( {\xi , T} \right) = {e^\xi } - K, \hfill \end{array} \right. (4.20)

    where

    {\beta _2}\left( t \right) = - A\left( {t, T} \right) - rB\left( {t, T} \right),
    {\beta _3}\left( t \right) = {\left( {\frac{{T - t}}{T}} \right)^2}\beta _1^2\left( t \right),
    {\beta _4}\left( t \right) = \frac{1}{T}{\beta _2}\left( t \right) - \frac{{T - t}}{T}\beta _1^2\left( t \right).

    By letting

    {W_2}\left( {\xi , t} \right) = a\left( t \right){e^\xi } - b\left( t \right)K, (4.21)

    then, we can obtain

    \left\{ \begin{array}{l} \frac{{\partial {W_2}}}{{\partial t}} = a'\left( t \right){e^\xi } - b'\left( t \right)K, \hfill \\ \frac{{\partial {W_2}}}{{\partial \xi }} = a\left( t \right){e^\xi }, \hfill \\ \frac{{{\partial ^2}{W_2}}}{{\partial {\xi ^2}}} = a\left( t \right){e^\xi }, \hfill \end{array} \right.

    and

    \left( {a'\left( t \right) + {\beta _3}\left( t \right)a\left( t \right) + {\beta _4}\left( t \right)a\left( t \right)} \right){e^\xi } - b'\left( t \right)K = 0. (4.22)

    To solve Eq (4.22), we select appropriate a\left(t \right) and b\left(t \right) so that

    \left\{ \begin{array}{l} a'\left( t \right) + {\beta _3}\left( t \right)a\left( t \right) + {\beta _4}\left( t \right)a\left( t \right) = 0, \hfill \\ b'\left( t \right) = 0, \hfill \\ a\left( T \right) = 1, \hfill \\ b\left( T \right) = 1. \hfill \end{array} \right.

    Thus, we can derive

    a\left( t \right) = {e^L}, b\left( t \right) = 1, (4.23)

    where

    L = \int_t^T {{\beta _4}\left( s \right){\text{d}}s} + \int_t^T {{\beta _3}\left( s \right){\text{d}}s} .

    Substituting Eqs (4.21) and (4.23) into Eq (4.17), we have

    V\left( {S, J, r, t} \right) - p\left( {S, J, r, t} \right) = P\left( {r, t;T} \right){W_1}\left( {y, J, t} \right) = P\left( {r, t;T} \right){J^{\frac{t}{T}}}{\left( {\frac{S}{{P\left( {r, t;T} \right)}}} \right)^{\frac{{T - t}}{T}}}{e^L} - P\left( {r, t;T} \right)K.

    Proof is completed.

    Corollary 4.1. Let the price of the arithmetic average Asian call options with fixed strike price be denoted as \hat V\left({S, J, r, t} \right) , and let the price of the put options be \hat p\left({S, J, r, t} \right) . The put-call parity formula for arithmetic average Asian options is

    \hat V\left( {S, J, r, t} \right) - \hat p\left( {S, J, r, t} \right) = P\left( {r, t;T} \right)\left( {\frac{{tJ}}{T} - K} \right) + \frac{S}{T}\int_t^T {{e^{ - A\left( {s, T} \right) - rB\left( {s, T} \right)}}} {\text{d}}s,

    where

    \left\{ \begin{array}{l} A\left( {t, T} \right) = b\left( {T - t} \right) - bB\left( {t, T} \right) - \frac{1}{2}\sigma _{{r_1}}^2\int_t^T {{B^2}\left( {s, T} \right){\text{d}}s} - H\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2\int_t^T {{s^{2H - 1}}{B^2}\left( {s, T} \right){\text{d}}s} , \hfill \\ B\left( {t, T} \right) = \frac{{1 - {e^{ - a(T - t)}}}}{a}. \hfill \end{array} \right.

    Proof. Denoting

    W\left( {S, J, r, t} \right) = \hat V\left( {S, J, r, t} \right) - \hat p\left( {S, J, r, t} \right).

    According to Theorem 4.1 and Theorem 4.3, we can similarly derive

    \left\{ \begin{array}{l} \frac{{\partial W}}{{\partial t}} + \frac{{S - J}}{t}\frac{{\partial W}}{{\partial J}} + \frac{1}{2}\sigma _{{S_1}}^2{S^2}\frac{{{\partial ^2}W}}{{\partial {S^2}}} + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{S_2}}^2{S^2}\frac{{{\partial ^2}W}}{{\partial {S^2}}} \hfill \\ + \frac{1}{2}\sigma _{{r_1}}^2\frac{{{\partial ^2}W}}{{\partial {r^2}}} + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2\frac{{{\partial ^2}W}}{{\partial {r^2}}} + a\left( {b - r\left( t \right)} \right)\frac{{\partial W}}{{\partial r}} + rS\frac{{\partial W}}{{\partial S}} - rW = 0, \hfill \\ W\left( {S, J, r, T} \right) = J - K. \hfill \end{array} \right. (4.24)

    By employing a change of variables, we define

    y = \frac{S}{{P\left( {r, t;T} \right)}}, {W_1}\left( {y, J, t} \right) = \frac{{W\left( {S, J, r, t} \right)}}{{P\left( {r, t;T} \right)}}. (4.25)

    Substituting Eq (4.25) into Eq (4.24), we can obtain

    \frac{{\partial {W_1}}}{{\partial t}} + \frac{{yP - J}}{t}\frac{{\partial {W_1}}}{{\partial J}} + {y^2}\beta _1^2\left( t \right)\frac{{{\partial ^2}{W_1}}}{{\partial {y^2}}} = 0, (4.26)

    where

    \left\{ \begin{array}{l} \beta _1^2\left( t \right) = \tilde \sigma _S^2 + \tilde \sigma _r^2{B^2}\left( {t, T} \right), \hfill \\ \tilde \sigma _S^2 = \frac{1}{2}\sigma _{{S_1}}^2 + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{S_2}}^2, \hfill \\ \tilde \sigma _r^2 = \frac{1}{2}\sigma _{{r_1}}^2 + H{t^{2H - 1}}\left( {2 - {2^{2H - 1}}} \right)\sigma _{{r_2}}^2. \hfill \end{array} \right.

    Let

    \xi = \frac{{TK - tJ}}{y}, {W_2}\left( {\xi , t} \right) = \frac{T}{y}{W_1}\left( {y, J, t} \right). (4.27)

    By substituting Eq (4.27) into Eq (4.26), we can deduce

    \left\{ \begin{array}{l} \frac{{\partial {W_2}}}{{\partial t}} + \beta _1^2\left( t \right)\frac{{{\partial ^2}{W_2}}}{{\partial {\xi ^2}}}{\xi ^2} - P\frac{{\partial {W_2}}}{{\partial \xi }} = 0, \hfill \\ {W_2}\left( {\xi , T} \right) = - \xi . \hfill \end{array} \right. (4.28)

    Let

    {W_2}\left( {\xi , t} \right) = a\left( t \right)\xi + b\left( t \right), (4.29)

    then, we have

    \left\{ \begin{array}{l} \frac{{\partial {W_2}}}{{\partial t}} = a'\left( t \right)\xi + b'\left( t \right), \hfill \\ \frac{{\partial {W_2}}}{{\partial \xi }} = a\left( t \right), \hfill \\ \frac{{{\partial ^2}{W_2}}}{{\partial {\xi ^2}}} = 0, \hfill \end{array} \right.

    and

    a'\left( t \right)\xi + b'\left( t \right) - a\left( t \right)P = 0. (4.30)

    By combining Eqs (4.28) and (4.30), we can compare the coefficients to obtain

    \left\{ \begin{array}{l} a'\left( t \right) = 0, \hfill \\ b'\left( t \right) - a\left( t \right)P = 0, \hfill \\ a\left( T \right) = - 1, \hfill \\ b\left( T \right) = 0. \hfill \end{array} \right.

    Solving the aforementioned system of equations yields

    a(t) = - 1, b(t) = \int_t^T {{e^{ - A\left( {s, T} \right) - rB\left( {s, T} \right)}}} {\text{d}}s.

    Finally, we can derive

    W\left( {S, J, r, t} \right) = \hat V\left( {S, J, r, t} \right) - \hat p\left( {S, J, r, t} \right) = P\left( {r, t;T} \right)\left( {\frac{{tJ}}{T} - K} \right) + \frac{S}{T}\int_t^T {{e^{ - A\left( {s, T} \right) - rB\left( {s, T} \right)}}} {\text{d}}s.

    In this section, we provide specific values for each parameter to conduct the following numerical calculations.

    t = 0, S = 30, {\sigma _{{S_1}}} = 0.5, {\sigma _{{S_2}}} = 0.4, {\sigma _{{r_1}}} = 0.3, {\sigma _{{r_2}}} = 0.2, a = 2, b = 0.05, r = 0.06, T = 1.

    From Figure 1, it can be observed that when H = 0.5 , the msfBm simplifies to a geometric Brownian motion. At this point, the price of geometric average Asian call options peaks, whereas it reaches its minimum at H = 0.9 . An increment in the Hurst index is indicative of the manifestation of long-range correlations in the asset price, suggesting a persistent price trend. In specific situations, the expected small fluctuations in the asset price in the market will lead to a decrease in the option value. Figure 2 indicates that as the short rate rises, the price of the options gradually increases. This is because an increase in the interest rate could potentially raise the payoff of the options at maturity, thereby enhancing the holding value of the options. Figure 3 shows that the valuation of the options is positively influenced by a rise in the initial stock price. From Figure 4, the price of the options increases with the extension of the expiration date. As the remaining time for the option contract increases, it gives the holders more time to wait for a potential rise in the stock price. Therefore, the possibility of the investors making a profit is greater, and the price of the options will also increase accordingly. Conversely, it diminishes with an upsurge in the strike price. As the strike price increases, buyers have to pay a higher price to exercise the options, which compresses the profit margin and thus reduces the value of the options. Figure 5 illustrates that the pricing of options under the current model closely mirrors that of the sub-fractional Vasicek model. Notably, the pricing discrepancy for options between our model and Vasicek model widens initially and then narrows, and the pricing gap between our model and BS model exhibits a consistent upward trend.

    Figure 1.  The price of fixed strike geometric average Asian call options under the msfBm-Vasicek model, according to the parameter H .
    Figure 2.  The price of geometric average Asian call options under different r .
    Figure 3.  Geometric average Asian call option price across S .
    Figure 4.  The impact of parameters K and T on the pricing of geometric average Asian call options when H = 0.8 .
    Figure 5.  Difference among the msfBm-Vasicek model, sfBm-Vasicek model, Vasicek model, and BS model.

    According to Tables 1 and 2, it can be observed that the lowest pricing for geometric average Asian call options is associated with the BS model. In the case of a brief expiration period, the price of the options under the sfBm-Vasicek model marginally surpasses that of our model, especially with an increasing stock price, and there is minimal variation between the two models. For longer expiration dates, the option price under our model exceeds that under the sfBm-Vasicek model, with the price difference becoming more pronounced. Moreover, the price of options under our model and the Vasicek model are getting closer. Overall, our model demonstrates a degree of rationality and is deemed suitable for developing option pricing models in financial markets.

    Table 1.  The price of the four models under T = 0.5 and K = 40 .
    S Our price {V_{{\text{BS}}}} {V_{{\text{Vasicek}}}} {V_{{\text{sfBm - Vasicek}}}}
    20 0.2435 0.0005 1.8389 0.2208
    23 0.5498 0.0066 2.8183 0.5202
    26 1.0480 0.0426 3.9897 1.0211
    29 1.7685 0.1748 5.3360 1.7589
    32 2.7255 0.5146 6.8397 2.7506
    35 3.9194 1.1863 8.4843 3.9968
    38 5.3398 2.2779 10.2543 5.4858
    41 6.9698 3.8119 12.1360 7.1977
    44 8.7884 5.7485 14.1169 9.1087
    47 10.7735 8.0118 16.1861 11.1933
    50 12.9033 10.5160 18.3337 13.4270

     | Show Table
    DownLoad: CSV
    Table 2.  A comparison of the pricing results among different models when T = 2 .
    S Our price {V_{{\text{BS}}}} {V_{{\text{Vasicek}}}} {V_{{\text{sfBm - Vasicek}}}}
    20 5.1411 0.2085 2.3002 0.9705
    23 7.4411 0.4863 4.8981 2.7039
    26 9.8921 0.9501 7.6053 4.5926
    29 12.4656 1.6332 10.3988 6.6067
    32 15.1403 2.5519 13.2620 8.7238
    35 17.8998 3.7072 16.1825 10.9266
    38 20.7312 5.0881 19.1509 13.2019
    41 23.6243 6.6762 22.1600 15.5389
    44 26.5707 8.4490 25.2039 17.9291
    47 29.5636 10.3825 28.2781 20.3655
    50 32.5974 12.4535 31.3787 22.8423

     | Show Table
    DownLoad: CSV

    We select copper options for three-month futures as the sample, with a cutoff time of October 2006, and the data are sourced from the London Metal Exchange. Since all trading products on the LME are priced in US dollars, we adopt the interest rate of one-year US Treasury bonds.

    We calculate the value of H using the R/S method. Define a return sequence \left\{ {{R_t}, {R_t} = \frac{{\ln {P_{t + 1}}}}{{\ln {P_t}}}} \right\} of length N and divide it into A consecutive sub-intervals of length n . Label each sub-interval as {I_a}, a = 1, \cdots, A. Thus, each point in {I_a} can be represented as

    {R_{k, a}}, k = 1, \cdots , n;a = 1, \cdots , A.

    For each sub-interval {I_a} of length n , calculate its mean as

    {e_a} = \frac{1}{n}\sum\limits_{k = 1}^n {{R_{k, a}}} .

    The cumulative mean deviation {X_{k, a}} for a single sub-interval is calculated as

    {X_{k, a}} = \sum\limits_{i = 1}^k {\left( {{R_{i, a}} - {e_a}} \right)} , k = 1, 2, \cdots , n.

    The sum of the cumulative mean deviation sequence \left\{ {{X_{1, a}}, {X_{2, a}}, \cdots {X_{n, a}}} \right\} for a single sub-interval is zero. The range of an individual sub-interval is defined as

    {R_{{I_a}}} = \mathop {\max }\limits_k \left( {{X_{k, a}}} \right) - \mathop {\min }\limits_k \left( {{X_{k, a}}} \right), k = 1, 2, \cdots , n.

    Subsequently, the standard deviation {S_{{I_a}}} for each sub-interval is given by

    {S_{{I_a}}} = \sqrt {\frac{1}{n}\sum\limits_{k = 1}^n {{{\left( {{E_{k, a}} - {e_a}} \right)}^2}} } .

    Therefore, for the partition length n , we can compute the average rescaled range for A sub-intervals as

    {\left( {R/S} \right)_n} = \frac{1}{A}\sum\limits_{a = 1}^A {\left( {\frac{{{R_{{I_a}}}}}{{{S_{{I_a}}}}}} \right)} .

    Repeat the above calculation process for different partition lengths (i.e., different time scales) n to obtain multiple average rescaled range values. There is a linear relationship between \log \left({\frac{R}{S}} \right) and \log \left(n \right) [27]

    \log {\left( {\frac{R}{S}} \right)_n} = a + H\log \left( n \right).

    Finally, a double logarithmic regression is performed on n and R/S, and the slope is the parameter of long-range correlations, that is, the Hurst index. Therefore, we can obtain H = 0.6 .

    From Table 3, it is evident that the RMSE of our model is the smallest, indicating that the option price derived from our model is the closest to the market price. Furthermore, the price from our model is also quite close to that of the sfBm-Vasicek model. This suggests that it is essential to include factors such as the long-range correlations of the underlying asset and stochastic interest rate in the option pricing model, as they significantly influence the option price.

    Table 3.  Our model compared with other models.
    K Market price Our price {V_{{\text{BS}}}} {V_{{\text{Vasicek}}}} {V_{{\text{sfBm - Vasicek}}}}
    7800 750 750.8065 747.9587 752.3958 749.0275
    7500 694 693.9719 691.9232 696.2100 692.5075
    7850 737 737.8847 734.8516 739.3860 736.1443
    7900 742 741.1881 739.7236 744.2764 739.8953
    7550 670 669.3538 667.6885 672.1255 668.1860
    7650 658 658.1121 655.5799 660.1722 656.8193
    7700 630 629.6739 627.5145 632.1150 628.5006
    7300 584 584.4501 581.6303 586.0389 583.1820
    7600 572 572.5130 569.3085 574.0554 571.3721
    7450 541 540.6392 538.3216 542.9253 539.7519
    7400 508 509.9819 505.4722 510.0512 508.4733
    RMSE 0.8064 2.3756 2.1638 1.2832

     | Show Table
    DownLoad: CSV

    Geometric average Asian options are important exotic options. The mixed sub-fractional Brownian motion, chosen as a stochastic process, is capable of more accurately depicting the characteristics of long-range correlations. Since the Vasicek model is a very classical model, it is combined with the msfBm to simultaneously address the pricing issue. By using partial differential equations and multiple variable substitution methods, the valuation equations for the model are deduced. Finally, numerical computations are utilized to assess the effects of diverse parameters. The efficacy of our model is demonstrated through a comparative analysis of the pricing discrepancies for options between different models, which provides a reference for option pricing theory and practice.

    Xinyi Wang: Conceptualization, Methodology, Writing—original draft, Writing—review & editing, Funding acquisition; Chunyu Wang: Writing—review & editing. All authors have read and approved the final version of the manuscript for publication.

    This work was supported by the General Project of Philosophy and Social Science Research in Colleges and Universities of Jiangsu Province (2023SJYB1714).

    The authors declare no conflicts of interest.



    [1] M. H. Yap, G. Pons, J. Marti, S. Ganau, M. Sentis, R. Zwiggelaar, et al., Automated breast ultrasound lesions detection using convolutional neural networks, IEEE J. Biomed. Health Inf., 22 (2018), 1218–1226. https://doi.org/10.1109/JBHI.2017.2731873 doi: 10.1109/JBHI.2017.2731873
    [2] J. Gao, Q. Jiang, B. Zhou, D. Chen, Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: An overview, Math. Biosci. Eng., 16 (2019), 6536–6561. https://doi.org/10.3934/mbe.2019326 doi: 10.3934/mbe.2019326
    [3] C. Xu, Y. Qi, Y. Wang, M. Lou, J. Pi, Y. Ma, ARF-Net: An adaptive receptive gield network for breast mass segmentation in whole mammograms and ultrasound images, Biomed. Signal Process. Control, 71 (2022), 103178. https://doi.org/10.1016/j.bspc.2021.103178 doi: 10.1016/j.bspc.2021.103178
    [4] Y. Wang, N. Wang, M. Xu, J. Yu, C. Qin, X. Luo, et al., Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound, IEEE Trans. Med. Imaging, 39 (2019), 866–876. https://doi.org/10.1109/TMI.2019.2936500 doi: 10.1109/TMI.2019.2936500
    [5] S. Jiang, J. Li, Z. Hua, Transformer with progressive sampling for medical cellular image segmentation, Math. Biosci. Eng., 19 (2022), 12104–12126. https://doi.org/10.3934/mbe.2022563 doi: 10.3934/mbe.2022563
    [6] A. Iqbal, M. Sharif, MDA-Net: Multiscale dual attention-based network for breast lesion segmentation using ultrasound images, J. King Saud Univ. Comput. Inf. Sci., 34 (2022), 7283–7299. http://dx.doi.org/10.1016/j.jksuci.2021.10.002 doi: 10.1016/j.jksuci.2021.10.002
    [7] R. Bi, C. Ji, Z. Yang, M. Qiao, P. Lv, H. Wang, Residual-based attention-Unet combing DAC and RMP modules for automatic liver tumor segmentation in CT, Math. Biosci. Eng., 19 (2022), 4703–4718. https://doi.org/10.3934/mbe.2022219 doi: 10.3934/mbe.2022219
    [8] B. Lei, S. Huang, R. Li, C. Bian, H. Li, Y. H. Chou, et al., Segmentation of breast anatomy for automated whole breast ultrasound images with boundary regularized convolutional encoder-decoder network, Neurocomputing, 321 (2018), 178–186. https://doi.org/10.1016/j.neucom.2018.09.043 doi: 10.1016/j.neucom.2018.09.043
    [9] Y. Ouyang, Z. Zhou, W. Wu, J. Tian, F. Xu, S. Wu, et al., A review of ultrasound detection methods for breast microcalcification, Math. Biosci. Eng., 16 (2019), 1761–1785. https://doi.org/10.3934/mbe.2019085 doi: 10.3934/mbe.2019085
    [10] M. N. S. K. B. Soulami, N. Kaabouch, A. Tamtaoui, Breast cancer: One-stage automated detection, segmentation, and classification of digital mammograms using U-net model based semantic segmentation, Biomed. Signal Process. Control, 2021 (2021), 102481. https://doi.org/10.1016/j.bspc.2021.102481 doi: 10.1016/j.bspc.2021.102481
    [11] Y. Wang, N. Wang, M. Xu, J. Yu, C. Qin, X. Luo, et al., Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound, IEEE Trans. Med. Imaging, 39 (2019), 866–876. https://doi.org/10.1109/TMI.2019.2936500 doi: 10.1109/TMI.2019.2936500
    [12] E. H. Houssein, M. M. Emam, A. A. Ali, P. N. Suganthan, Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review, Exp. Syst. Appl., 167 (2021), 114161. https://doi.org/10.1016/j.eswa.2020.114161 doi: 10.1016/j.eswa.2020.114161
    [13] M. Xian, Y. Zhang, H. D. Cheng, F. Xu, B. Zhang, J. Ding, Automatic breast ultrasound image segmentation: A survey, Pattern Recognit., 79 (2018), 340–355. https://doi.org/10.1016/j.patcog.2018.02.012 doi: 10.1016/j.patcog.2018.02.012
    [14] Y. Tong, Y. Liu, M. Zhao, L. Meng, J. Zhang, Improved U-net MALF model for lesion segmentation in breast ultrasound images, Biomed. Signal Process. Control, 68 (2021), 102721. https://doi.org/10.1016/j.bspc.2021.102721 doi: 10.1016/j.bspc.2021.102721
    [15] D. Mishra, S. Chaudhury, M. Sarkar, A. S. Soin, Ultrasound image segmentation: A deeply supervised network with attention to boundaries, IEEE Trans. Biomed. Eng., 66 (2018), 1637–1648. https://doi.org/10.1109/TBME.2018.2877577 doi: 10.1109/TBME.2018.2877577
    [16] G. Chen, Y. Dai, J. Zhang, C-Net: Cascaded convolutional neural network with global guidance and refinement residuals for breast ultrasound images segmentation, Comput. Methods Programs Biomed., 2022 (2022), 107086. https://doi.org/10.1016/j.cmpb.2022.107086 doi: 10.1016/j.cmpb.2022.107086
    [17] N. K. Tomar, D. Jha, M. A. Riegler, H. D. Johansen, D. Johansen, J. Rittscher, et al., Fanet: A feedback attention network for improved biomedical image segmentation, Trans. Neural Networks Learn. Syst., 2022 (2022). https://doi.org/10.1109/TNNLS.2022.3159394 doi: 10.1109/TNNLS.2022.3159394
    [18] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille, DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, Trans. Pattern Anal. Mach. Intell., 2018 (2018), 834–848. https://doi.org/10.1109/TPAMI.2017.2699184 doi: 10.1109/TPAMI.2017.2699184
    [19] Y. Xie, J. Zhang, C. Shen, Y. Xia, Cotr: Efficiently bridging CNN and Transformer for 3d medical image segmentation, in Medical Image Computing and Computer Assisted Intervention MICCAI, (2021), 171–180. https://doi.org/10.1007/978-3-030-87199-4_16
    [20] N. S. Punn, S. Agarwal, RCA-IUnet: A residual cross-spatial attention-guided inception U-Net model for tumor segmentation in breast ultrasound imaging, Mach. Vision Appl., 33 (2022), 1–10. ttps://doi.org/10.1007/s00138-022-01280-3 doi: 10.1007/s00138-021-01257-8
    [21] N. Abraham, N. M. B. T. Khan, A novel focal tversky loss function with improved attention U-Net for lesion segmentation, Int. Symp. Biomed. Imaging, 2019 (2019), 683–687. https://doi.org/10.1109/ISBI.2019.8759329 doi: 10.1109/ISBI.2019.8759329
    [22] W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, J. Tang, Node similarity preserving graph convolutional networks, in Proceedings of the 14th ACM International Conference on Web Search and Data Mining, (2021), 148–156. https://doi.org/10.1145/3437963.3441735
    [23] B. Wu, X. Liang, X. Zheng, Y. Guo, H. Tang, Improving dynamic graph convolutional network with fine-grained attention mechanism, in ICASSP International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2022), 3938–3942. https://doi.org/10.1109/ICASSP43922.2022.9746009
    [24] Y. Lu, Y. Chen, D. Zhao, J. Chen, Graph-FCN for image semantic segmentation, in Advances in Neural Networks–ISNN 2019: 16th International Symposium on Neural Networks, (2019), 97–105. https://doi.org/10.1007/978-3-030-22796-8_11
    [25] Y. Huang, Y. Sugano, Y. Sato, Improving action segmentation via graph-based temporal reasoning, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2020), 14024–14034. https://doi.org/10.1109/CVPR42600.2020.01404
    [26] W. Al-Dhabyani, M. Gomaa, H. Khaled, A. Fahmy, Dataset of breast ultrasound images, Data Brief, 28 (2020), 104863. https://doi.org/10.1016/j.dib.2019.104863 doi: 10.1016/j.dib.2019.104863
    [27] Z. Fu, J. Zhang, R. Luo, Y. Sun, D. Deng, L. Xia, TF-Unet: An automatic cardiac MRI image segmentation method, Math. Biosci. Eng., 19 (2022), 5207–5222. https://doi.org/10.3934/mbe.2022244 doi: 10.3934/mbe.2022244
    [28] X. Xu, M. Zhao, P. Shi, R. Ren, X. He, X. Wei, et al., Crack detection and comparison study based on faster R-CNN and mask R-CNN, Sensors, 22 (2022), 1215. https://doi.org/10.3390/s22031215 doi: 10.3390/s22031215
    [29] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in Proceedings of the European Conference on Computer Vision (ECCV), (2018), 801–818.
    [30] R. Huang, M. Lin, H. Dou, Z. Lin, Q. Ying, X. Jia, et al., Boundary-rendering network for breast lesion segmentation in ultrasound images, Med. Image Anal., 80 (2022), 102478. https://doi.org/10.1016/j.media.2022.102478 doi: 10.1016/j.media.2022.102478
    [31] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, J. Liang, UNet++: A nested U-net architecture for medical image segmentation, in Lecture Notes in Computer Science, (2018), 3–11. http: /dx.doi.org/10.1007/ 978-3-030-00889-51
    [32] E. Sanderson, B. J. Matuszewski, FCN-Transformer feature fusion for polyp segmentation, in Medical Image Understanding and Analysis: 26th Annual Conference, Springer International Publishing, (2022), 892–907. https://doi.org/10.1007/978-3-031-12053-4_65
    [33] X. Feng, T. Wang, X. Yang, M. Zhang, W. Guo, W. Wang, ConvWin-UNet: UNet-like hierarchical vision transformer combined with convolution for medical image segmentation, Math. Biosci. Eng., 20 (2023), 128–144. https://doi.org/10.3934/mbe.2023007 doi: 10.3934/mbe.2023007
    [34] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, et al., Attention U-Net: learning where to look for the pancreas, preprint, arXiv: 1804.03999. https://doi.org/10.48550/arXiv.1804.03999
    [35] X. Zhang, K. Liu, K. Zhang, X. Li, Z. Sun, B. Wei, SAMS-Net: Fusion of attention mechanism and multi-scale features network for tumor infiltrating lymphocytes segmentation, Math. Biosci. Eng., 20 (2023), 2964–2979. https://doi.org/10.3934/mbe.2023140 doi: 10.3934/mbe.2023140
    [36] R. K. Meleppat, P. Zhang, M. J. Ju, S. K. K. Manna, Y. Jian, E. N. Pugh, et al., Directional optical coherence tomography reveals melanin concentration-dependent scattering properties of retinal pigment epithelium, J. Biomed. Optics, 24 (2019), 066011. https://doi.org/10.1117/1.JBO.24.6.066011 doi: 10.1117/1.JBO.24.6.066011
    [37] R. K. Meleppat, C. R. Fortenbach, Y. Jian, E. S. Martinez, K. Wagner, B. S. Modjtahedi, et al., In Vivo imaging of retinal and choroidal morphology and vascular plexuses of vertebrates using swept-source optical coherence tomography, Trans. Vis. Sci. Tech., 11 (2022), 11. https://doi.org/10.1167/tvst.11.8.11 doi: 10.1167/tvst.11.8.11
    [38] R. K. Meleppat, K. E. Ronning, S. J. Karlen, K. K. Kothandath, M. E. Burns, E. N. Pugh, et al., In situ morphologic and spectral characterization of retinal pigment epithelium organelles in mice using multicolor confocal fluorescence imaging, Invest. Ophthalmol. Vis. Sci., 61 (2020), 1. https://doi.org/10.1167/iovs.61.13.1 doi: 10.1167/iovs.61.13.1
    [39] J. He, Q. Zhu, K. Zhang, P. Yu, J. Tang, An evolvable adversarial network with gradient penalty for COVID-19 infection segmentation, Appl. Soft Comput., 113 (2021), 107947. https://doi.org/10.1016/j.asoc.2021.107947 doi: 10.1016/j.asoc.2021.107947
    [40] X. Liu, D. Zhang, J. Yao, J. Tang, Transformer and convolutional based dual branch network for retinal vessel segmentation in OCTA images, Biomed. Signal Process. Control, 83 (2023), 104604. https://doi.org/10.1016/j.bspc.2023.104604 doi: 10.1016/j.bspc.2023.104604
    [41] C. Zhao, A. Vij, S. Malhotra, J. Tang, H. Tang, D. Pienta, et al., Automatic extraction and stenosis evaluation of coronary arteries in invasive coronary angiograms, Comput. Biol. Med., 136 (2021), 104667. https://doi.org/10.1016/j.compbiomed.2021.104667 doi: 10.1016/j.compbiomed.2021.104667
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1929) PDF downloads(101) Cited by(2)

Figures and Tables

Figures(4)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog