Processing math: 56%
Research article Special Issues

Time-Resolved 3D cardiopulmonary MRI reconstruction using spatial transformer network


  • Received: 15 June 2023 Revised: 25 July 2023 Accepted: 27 July 2023 Published: 04 August 2023
  • The accurate visualization and assessment of the complex cardiac and pulmonary structures in 3D is critical for the diagnosis and treatment of cardiovascular and respiratory disorders. Conventional 3D cardiac magnetic resonance imaging (MRI) techniques suffer from long acquisition times, motion artifacts, and limited spatiotemporal resolution. This study proposes a novel time-resolved 3D cardiopulmonary MRI reconstruction method based on spatial transformer networks (STNs) to reconstruct the 3D cardiopulmonary MRI acquired using 3D center-out radial ultra-short echo time (UTE) sequences. The proposed reconstruction method employed an STN-based deep learning framework, which used a combination of data-processing, grid generator, and sampler. The reconstructed 3D images were compared against the start-of-the-art time-resolved reconstruction method. The results showed that the proposed time-resolved 3D cardiopulmonary MRI reconstruction using STNs offers a robust and efficient approach to obtain high-quality images. This method effectively overcomes the limitations of conventional 3D cardiac MRI techniques and has the potential to improve the diagnosis and treatment planning of cardiopulmonary disorders.

    Citation: Qing Zou, Zachary Miller, Sanja Dzelebdzic, Maher Abadeer, Kevin M. Johnson, Tarique Hussain. Time-Resolved 3D cardiopulmonary MRI reconstruction using spatial transformer network[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 15982-15998. doi: 10.3934/mbe.2023712

    Related Papers:

    [1] Chen Liang, Hai-Feng Huo, Hong Xiang . Modelling mosquito population suppression based on competition system with strong and weak Allee effect. Mathematical Biosciences and Engineering, 2024, 21(4): 5227-5249. doi: 10.3934/mbe.2024231
    [2] Liming Cai, Shangbing Ai, Guihong Fan . Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes. Mathematical Biosciences and Engineering, 2018, 15(5): 1181-1202. doi: 10.3934/mbe.2018054
    [3] Yang Li, Jia Li . Stage-structured discrete-time models for interacting wild and sterile mosquitoes with beverton-holt survivability. Mathematical Biosciences and Engineering, 2019, 16(2): 572-602. doi: 10.3934/mbe.2019028
    [4] Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng . The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppressio. Mathematical Biosciences and Engineering, 2019, 16(5): 4741-4757. doi: 10.3934/mbe.2019238
    [5] Yuanxian Hui, Genghong Lin, Qiwen Sun . Oscillation threshold for a mosquito population suppression model with time delay. Mathematical Biosciences and Engineering, 2019, 16(6): 7362-7374. doi: 10.3934/mbe.2019367
    [6] Rajivganthi Chinnathambi, Fathalla A. Rihan . Analysis and control of Aedes Aegypti mosquitoes using sterile-insect techniques with Wolbachia. Mathematical Biosciences and Engineering, 2022, 19(11): 11154-11171. doi: 10.3934/mbe.2022520
    [7] Bo Zheng, Lihong Chen, Qiwen Sun . Analyzing the control of dengue by releasing Wolbachia-infected male mosquitoes through a delay differential equation model. Mathematical Biosciences and Engineering, 2019, 16(5): 5531-5550. doi: 10.3934/mbe.2019275
    [8] Mugen Huang, Zifeng Wang, Zixin Nie . A stage structured model for mosquito suppression with immigration. Mathematical Biosciences and Engineering, 2024, 21(11): 7454-7479. doi: 10.3934/mbe.2024328
    [9] Daiver Cardona-Salgado, Doris Elena Campo-Duarte, Lilian Sofia Sepulveda-Salcedo, Olga Vasilieva, Mikhail Svinin . Optimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains. Mathematical Biosciences and Engineering, 2021, 18(3): 2952-2990. doi: 10.3934/mbe.2021149
    [10] Hui Wan, Huaiping Zhu . A new model with delay for mosquito population dynamics. Mathematical Biosciences and Engineering, 2014, 11(6): 1395-1410. doi: 10.3934/mbe.2014.11.1395
  • The accurate visualization and assessment of the complex cardiac and pulmonary structures in 3D is critical for the diagnosis and treatment of cardiovascular and respiratory disorders. Conventional 3D cardiac magnetic resonance imaging (MRI) techniques suffer from long acquisition times, motion artifacts, and limited spatiotemporal resolution. This study proposes a novel time-resolved 3D cardiopulmonary MRI reconstruction method based on spatial transformer networks (STNs) to reconstruct the 3D cardiopulmonary MRI acquired using 3D center-out radial ultra-short echo time (UTE) sequences. The proposed reconstruction method employed an STN-based deep learning framework, which used a combination of data-processing, grid generator, and sampler. The reconstructed 3D images were compared against the start-of-the-art time-resolved reconstruction method. The results showed that the proposed time-resolved 3D cardiopulmonary MRI reconstruction using STNs offers a robust and efficient approach to obtain high-quality images. This method effectively overcomes the limitations of conventional 3D cardiac MRI techniques and has the potential to improve the diagnosis and treatment planning of cardiopulmonary disorders.



    The study of Hom-algebras can be traced back to Hartwig, Larsson and Silvestrov's work in [1], where the notion of Hom-Lie algebra in the context of q-deformation theory of Witt and Virasoro algebras [2] was introduced, which plays an important role in physics, mainly in conformal field theory. Hom-algebras and Hom-coalgebras were introduced by Makhlouf and Silvestrov [3] as generalizations of ordinary algebras and coalgebras in the following sense: the associativity of the multiplication is replaced by the Hom-associativity and similar for Hom-coassociativity. They also defined the structures of Hom-bialgebras and Hom-Hopf algebras, and described some of their properties extending properties of ordinary bialgebras and Hopf algebras in [4,5]. In [6], Caenepeel and Goyvaerts studied Hom-bialgebras and Hom-Hopf algebras from a categorical view point, and called them monoidal Hom-bialgebras and monoidal Hom-Hopf algebras respectively, which are different from the normal Hom-bialgebras and Hom-Hopf algebras in [4]. Many more properties and structures of Hom-Hopf algebras have been developed, see [7,8,9,10] and references cited therein.

    Later, Yau [11,12] proposed the definition of quasitriangular Hom-Hopf algebras and showed that each quasitriangular Hom-Hopf algebra yields a solution of the Hom-Yang-Baxter equation. The Hom-Yang-Baxter equation reduces to the usual Yang-Baxter equation when the twist map is trivial. Several classes of solutions of the Hom-Yang-Baxter equation were constructed from different respects, including those associated to Hom-Lie algebras [11,13,14,15], Drinfelds (co)doubles [16,17,18], and Hom-Yetter-Drinfeld modules [19,20,21,22,23,24,25,26].

    It is well-known that classical nonlinear equations in Hopf algebra theory including the quantum Yang-Baxter equation, the Hopf equation, the pentagon equation, and the Long equation. In [27], Militaru proved that each Long dimodule gave rise to a solution for the Long equation. Long dimodules are the building stones of the Brauer-Long group. In the case where H is commutative, cocommutative and faithfully projective, the Yetter-Drinfeld category HHYD is precisely the Long dimodule category HHL. Of course, for an arbitrary H, the categories HHYD and HHL are basically different. In [28], Chen et al. introduced the concept of Long dimodules over a monoidal Hom-bialgebra and discussed its relation with Hom-Long equations. Later, we [29] extended Chen's work to generalized Hom-Long dimodules over monoidal Hom-Hopf algebras and obtained a kind solution for the quantum Yang-Baxter equation. For more details about Long dimodules, see [30,31,32,33] and references cited therein.

    The main purpose of this paper is to construct a new braided monoidal category and present solutions for two kinds of nonlinear equations. Different to our previous work in [29], in the present paper we do all the work over Hom-Hopf algebras, which is more unpredictable than the monoidal version. Since Hom-Hopf algebras and monoidal Hom-Hopf algebras are different concepts, it turns out that our definitions, formulas and results are also different from the ones in [29]. Most important, we associate quantum Yang-Baxter equations and Hom-Long equations to the Hom-Long dimodule categories.

    This paper is organized as follows. In Section 1, we recall some basic definitions about Hom-(co)modules and (co)quasitriangular Hom-Hopf algebras.

    In Section 2, we first introduce the notion of (H,B)-Hom-Long dimodules over Hom-bialgebras (H,α) and (B,β), then we show that the Hom-Long dimodule category BHL forms an autonomous category (see Theorem 2.6) and prove that the category is equivalent to the category of left BopH-Hom-modules (see Theorem 2.7).

    In Section 3, for a quasitriangular Hom-Hopf algebra (H,R,α) and a coquasitriangular Hom-Hopf algebra (B,|,β), we prove that the Hom-Long dimodule category BHL is a subcategory of the Hom-Yetter-Drinfeld category HBHBHYD (see Theorem 3.5), and show that the braiding yields a solution for the quantum Yang-Baxter equation (see Corollary 3.2).

    In Section 4, we prove that the category HM over a triangular Hom-Hopf algebra (resp., HM over a cotriangular Hom-Hopf algebra) is a Hom-Long dimodule subcategory of BHL (see Propositions 4.1 and 4.2). We also show that the Hom-Long dimodule category BHL is symmetric in case (H,R,α) is triangular and (B,|,β) is cotriangular (see Theorem 4.3).

    In Section 5, we introduce the notion of (H,α)-Hom-Long dimodules and obtain a solution for the Hom-Long equation (see Theorem 5.10).

    Throughout this paper, k is a fixed field. Unless otherwise stated, all vector spaces, algebras, modules, maps and unadorned tensor products are over k. For a coalgebra C, the coproduct will be denoted by Δ. We adopt a Sweedler's notation (c)=c1c2, for any cC, where the summation is understood. We refer to [34,35] for the Hopf algebra theory and terminology.

    We now recall some useful definitions in [3,4,5,12,36,37].

    Definition 1.1. A Hom-algebra is a quadruple (A,μ,1A,α) (abbr. (A,α)), where A is a k-linear space, μ:AAA is a k-linear map, 1AA and α is an endmorphism of A, such that

    (HA1)α(aa)=α(a)α(a);α(1A)=1A,(HA2)α(a)(aa)=(aa)α(a);a1A=1Aa=α(a)

    are satisfied for a,a,aA. Here we use the notation μ(aa)=aa.

    Definition 1.2. Let (A,α) be a Hom-algebra. A left (A,α)-Hom-module is a triple (M,,ν), where M is a linear space, ⊳:AMM is a linear map, and ν is an endmorphism of M, such that

    (HM1)ν(am)=α(a)ν(m),(HM2)α(a)(am)=(aa)ν(m);1Am=ν(m)

    are satisfied for a,aA and mM.

    Let (M,M,νM) and (N,N,νN) be two left (A,α)-Hom-modules. Then a linear morphism f:MN is called a morphism of left (A,α)-Hom-modules if f(hMm)=hNf(m) and νNf=fνM.

    Definition 1.3. A Hom-coalgebra is a quadruple (C,Δ,ϵ,β) (abbr. (C,β)), where C is a k-linear space, Δ:CCC, ϵ:Ck are k-linear maps, and β is an endmorphism of C, such that

    (HC1)β(c)1β(c)2=β(c1)β(c2);ϵβ=ϵ;(HC2)β(c1)c21c22=c11c12β(c2);ϵ(c1)c2=c1ϵ(c2)=β(c)

    are satisfied for cC.

    Definition 1.4. Let (C,β) be a Hom-coalgebra. A left (C,β)-Hom-comodule is a triple (M,ρ,μ), where M is a linear space, ρ:MCM (write ρ(m)=m(1)m(0),mM) is a linear map, and μ is an endmorphism of M, such that

    (HCM1)μ(m)(1)μ(m)(0)=β(m(1))μ(m(0)),ϵ(m(1))m(0)=μ(m);(HCM2)β(m(1))m(0)(1)m(0)(0)=m(1)1m(1)2μ(m(0))

    are satisfied for all mM.

    Let (M,ρM,μM) and (N,ρN,μN) be two left (C,β)-Hom-comodules. Then a linear map f:MN is called a map of left (C,β)-Hom-comodules if f(m)(1)f(m)(0)=m(1)f(m(0)) and μNf=fμM.

    Definition 1.5. A Hom-bialgebra is a sextuple (H,μ,1H,Δ,ϵ,γ) (abbr. (H,γ)), where (H,μ,1H,γ) is a Hom-algebra and (H,Δ,ϵ,γ) is a Hom-coalgebra, such that Δ and ϵ are morphisms of Hom-algebras, i.e.,

    Δ(hh)=Δ(h)Δ(h);Δ(1H)=1H1H;ϵ(hh)=ϵ(h)ϵ(h);ϵ(1H)=1.

    Furthermore, if there exists a linear map S:HH such that

    S(h1)h2=h1S(h2)=ϵ(h)1HandS(γ(h))=γ(S(h)),

    then we call (H,μ,1H,Δ,ϵ,γ,S) (abbr. (H,γ,S)) a Hom-Hopf algebra.

    Definition 1.6. ([36]) Let (H,β) be a Hom-bialgebra, (M,,μ) a left (H,β)-module with action ⊳:HMM,hmhm and (M,ρ,μ) a left (H,β)-comodule with coaction ρ:MHM,mm(1)m(0). Then we call (M,,ρ,μ) a (left-left) Hom-Yetter-Drinfeld module over (H,β) if the following condition holds:

    (HYD)h1β(m(1))(β3(h2)m(0)=(β2(h1)m)(1)h2(β2(h1)m)(0),

    where hH and mM.

    When H is a Hom-Hopf algebra, then the condition (HYD) is equivalent to

    (HYD)ρ(β4(h)m)=β2(h11β(m(1)))S(h2)(β3(h12)m0).

    Definition 1.7. ([36]) Let (H,β) be a Hom-bialgebra. A Hom-Yetter-Drinfeld category HHYD is a pre-braided monoidal category whose objects are left-left Hom-Yetter-Drinfeld modules, morphisms are both left (H,β)-linear and (H,β)-colinear maps, and its pre-braiding C, is given by

    CM,N(mn)=β2(m(1))ν1(n)μ1(m0), (1.1)

    for all m(M,μ)HHYD and n(N,ν)HHYD.

    Definition 1.8. A quasitriangular Hom-Hopf algebra is a octuple (H,μ,1H,Δ,ϵ,S,β,R) (abbr. (H,β,R)) in which (H,μ,1H,Δ,ϵ,S,β) is a Hom-Hopf algebra and R=R(1)R(2)HH, satisfying the following axioms (for all hH and R=r):

    (QHA1)ϵ(R(1))R(2)=R(1)ϵ(R(2))=1H,(QHA2)Δ(R(1))β(R(2))=β(R(1))β(r(1))R(2)r(2),(QHA3)β(R(1))Δ(R(2))=R(1)r(1)β(r(2))β(R(2)),(QHA4)Δcop(h)R=RΔ(h),(QHA5)β(R(1))β(R(2))=R(1)R(2),

    where Δcop(h)=h2h1 for all hH. A quasitriangular Hom-Hopf algebra (H,R,β) is called triangular if R1=R(2)R(1).

    Definition 1.9. A coquasitriangular Hom-Hopf algebra is a Hom-Hopf algebra (H,β) together with a bilinear form | on (H,β) (i.e., | Hom(HH,k)) such that the following axioms hold:

    (CHA1)hg|β(l)=β(h)|l2β(g)|l1,(CHA2)β(h)|gl=h1|β(g)h2|β(l),(CHA3)h1|g1g2h2=h1g1h2|g2,(CHA4)1|h=h|1=ϵ(h),(CHA5)β(h)|β(g)=h|g,

    for all h,g,lH. A coquasitriangular Hom-Hopf algebra (H,|,β) is called cotriangular if | is convolution invertible in the sense of h1|g1g2|h2=ϵ(h)ϵ(g), for all h,gH.

    In this section, we will introduce the notion of Hom-Long dimodules and prove that the Hom-Long dimodule category is an autonomous category.

    Definition 2.1. Let (H,α) and (B,β) be two Hom-bialgebras. A left-left (H,B)-Hom-Long dimodule is a quadruple (M,,ρ,μ), where (M,,μ) is a left (H,α)-Hom-module and (M,ρ,μ) is a left (B,β)-Hom-comodule such that

    ρ(hm)=β(m(1))α(h)m(0), (2.1)

    for all hH and mM. We denote by BHL the category of left-left (H,B)-Hom-Long dimodules, morphisms being H-linear B-colinear maps.

    Example 2.2. Let (H,α) and (B,β) be two Hom-bialgebras. Then (HB,αβ) is an (H,B)-Hom-Long dimodule with left (H,α)-action h(gx)=hgβ(x) and left (B,β)-coaction ρ(gx)=x1(α(g)x2), where h,gH,xB.

    Proposition 2.3. Let (M,μ),(N,ν) be two (H,B)-Hom-Long dimodules, then (MN,μν) is an (H,B)-Hom-Long dimodule with structures:

    h(mn)=h1mh2n,ρ(mn)=β2(m(1)n(1))m(0)n(0),

    for all mM,nN and hH.

    Proof. From Theorem 4.8 in [21], (MN,μν) is both a left (H,α)-Hom-module and a left (B,β)-Hom-comodule. It remains to check that the compatibility condition (2.1) holds. For any mM,nN and hH, we have

    ρ(h(mn))=β((h1m)(1)(h2n)(1))(h1m)(0)(h2n)(0)=β1(m(1)n(1))α(h1)m(0)α(h2)n(0)=β((mn)(1))α(h)((mn)(0)),

    as desired. This completes the proof.

    Proposition 2.4. The Hom-Long dimodule category BHL is a monoidal category, where the tensor product is given in Proposition 2.3, the unit I=(k,id), the associator and the constraints are given as follows:

    aU,V,W:(UV)WU(VW),(uv)wμ1(u)(vω(w)),lV:kVV,kvkν(v),rV:VkV,vkkν(v),

    for u(U,μ)BHL,v(V,ν)BHL,w(W,ω)BHL.

    Proof. Straightforward.

    Proposition 2.5. Let H and B be two Hom-Hopf algebras with bijective antipodes. For any Hom-Long dimodule (M,μ) in BHL, set M=Homk(M,k), with the (H,α)-Hom-module and the (B,β)-Hom-comodule structures:

    θM:HMM,(hf)(m)=f(SHα1(h)μ2(m)),ρM:MBM,f(1)f(0)(m)=S1Bβ1(m(1))f(μ2(m(0))),

    and the Hom-structure map μ of M is μ(f)(m)=f(μ1(m)). Then M is an object in BHL. Moreover, BHL is a left autonomous category.

    Proof. It is not hard to check that (M,θM,μ) is an (H,α)-Hom-module and (M,ρM,μ) is a (B,β)-Hom-comodule. Further, for any fM, mM, hH, we have

    (hf)(1)(hf)(0)(m)=S1Bβ1(m(1))(hf)(μ2(m(0)))=S1Bβ1(m(1))f(SHα1(h)μ4(m(0))),β(f(1))(α(h)f(0))(m)=β(f(1))f(0)(SH(h)μ2(m))=β(S1Bβ2(m(1)))f(μ2(SHα(h)μ2(m(0))))=S1Bβ1(m(1))f(SHα1(h)μ4(m(0))).

    Thus MBHL.

    Moreover, for any fM and mM, one can define the left evaluation map and the left coevaluation map by

    evM:fmf(m),coevM:1keiei,

    where ei and ei are dual bases in M and M respectively. Next, we will show that (M,evM,coevM) is the left dual of M.

    It is easy to see that evM and coevM are morphisms in BHL. For this, we need the following computation

    (rM(idMevM)aM,M,M(coevMidM)l1M)(m)=(rM(idMevM)aM,M,M)(i(eiei)μ1(m))=(rM(idMevM))(iμ1(ei)(eim))=rM(iμ1(ei)ei(m))=rM(μ1(m)1k)=m.

    Similarly, we get

    (lM(evMidM)a1M,M,M(idMcoevM)r1M)(f)=(lM(evMidM)a1M,M,M)(iμ1(f)(eiei))=(lM(evMidM))(ifei)μ1(ei))=lM(if(ei)μ1(ei))=lM(1kμ1(f))=f.

    So BHL admits the left duality. The proof is finished.

    Theorem 2.6. The Hom-Long dimodule category BHL is an autonomous category.

    Proof. By Proposition 2.5, it is sufficient to show that BHL is also a right autonomous category. In fact, for any (M,μ)BHL, its right dual (M,~coevM,~evM) is defined as follows:

    M=Homk(M,k) as k-modules, with the Hom-module and Hom-comodule structures:

    (hf)(m)=f(S1Hα1(h)μ2(m)),f(1)f(0)(m)=SBβ1(m(1))f(μ2(m(0))),

    where fM, mM, and the Hom-structure map μ of M is μ(f)(m)=f(μ1(m));

    The right evaluation map and the right coevaluation map are given by

    ~evM:mff(m),~coevM:1kaiai,

    where ai and ai are dual bases of M and M respectively. By similar verification in Proposition 2.5, one may check that BHL is a right autonomous category, as required. This completes the proof.

    Recall from [17] that for any finite dimensional Hom-Hopf algebra B, B is also a Hom-Hopf algebra with the following structures

    (fg)(y):=f(β2(y1))g(β2(y2)),ΔB(f)(xy):=f(β2(xy)),1B:=ϵ,ϵB(f):=f(1H),SB:=S,αB(f):=fβ1,

    where x,yH, f,gB.

    Theorem 2.7. If B is a finite dimensional Hom-Hopf algebra, then the Hom-Long dimodule category BHL is identified to the category of left BopH-Hom-modules, where BopH means the usual tensor product Hom-Hopf algebra.

    Proof. Define the functor Ψ from BopHM to BHL by

    Ψ(M):=Maskmodule,Ψ(f):=f,

    where (M,μ,) is a BopH-Hom-module, f:MN is a morphism of BopH-Hom-modules. Further, the H-action on M is defined by

    hm:=(ϵBh)m,forallmM,hH,

    and the B-coaction on M is given by

    m(1)m(0):=ei(ei1H)m,

    where ei and ei are dual bases of B and B respectively.

    First, we will show (M,μ,) is a left (H,α)-Hom-module. Actually, for any mM, h,gH, we have 1Hm=(ϵB1H)m=μ(m), and

    α(h)(gm)=(ϵBα(h))((ϵBg)m)=(ϵBhg)μ(m)=(hg)μ(m),

    which implies (M,μ,)HM.

    Second, one can show that (M,μ)BM in a similar way.

    At last, for any mM, hH, we have

    (hm)(1)(hm)(0)=ei(ei1H)(hm)=ei(eiα(h))μ(m)=β(ei)((ϵB1H)(eih)μ(m)=β(ei)((ϵBh)(ei1H)μ(m)=β(ei)α(h)((ei1H)μ(m))=β(m(1))α(h)m(0),

    which implies (M,μ)BHL.

    Conversely, for any object (M,μ), (N,ν), and morphism f:UV in BHL, one can define a functor Φ from BHL to BopHM

    Φ(M):=Maskmodules,Φ(f):=f,

    where the (BopH,βα)-Hom-module structure on M is given by

    (ph)m=p(m(1))hμ1(m(0)),

    for all pB,hH,mM. It is straightforward to check that (M,μ,) is an object in BHL to BopHM, and hence Φ is well defined.

    Note that Φ and Ψ are inverse with each other. Hence the conclusion holds.

    In this section, we will prove that the Hom-Long dimodule category BHL over a quasitriangular Hom-Hopf algebra (H,R,α) and a coquasitriangular Hom-Hopf algebra (B,|,β) is a braided monoidal subcategory of the Hom-Yetter-Drinfeld category HBHBHYD.

    Theorem 3.1. Let (H,R,α) be a quasitriangular Hom-Hopf algebra and (B,|,β) a coquasitriangular Hom-Hopf algebra. Then the category BHL is a braided monoidal category with braiding

    CM,N:MNNM,mnm(1)|n(1)R(2)ν2(n(0))R(1)μ2(m(0)), (3.1)

    for all m(M,μ)BHL and n(N,ν)BHL.

    Proof. We will first show that the braiding CM,N is a morphism in BHL. In fact, for any mM,nN and hH, we have

    CM,N(h1mh2n)=(h1m)(1)|(h2n)(1)R(2)ν2(h2n)(0)R(1)μ2(h1m)(0)(2.1)=β(m(1))|β(n(1))R(2)ν2(α(h2)n(0))R(1)μ2(α(h1)m(0))(HM2)=m(1)|n(1)α1(R(2)h2)ν1(n(0))α1(R(1)h1)μ1(m(0)),hCM,N(mn)=m(1)|n(1)h(R(2)ν2(n(0))R(1)μ2(m(0)))=m(1)|n(1)h1(α1(R(2))ν2(n(0)))h2(α1(R(1))μ2(m(0)))(HM2)=m(1)|n(1)α1(h1R(2))ν1(n(0))α1(h2R(1))μ1(m(0))(QHA4)=m(1)|n(1)α1(R(2)h2)ν1(n(0))α1(R(1)h1)μ1(m(0)).

    The third equality holds since | is β-invariant and the fifth equality holds since R is α-invariant. So CM,N is left (H,α)-linear. Similarly, one may check that CM,N is left (B,β)-colinear.

    Now we prove that the braiding CM,N is natural. For any (M,μ),(M,μ), (N,ν),(N,ν) BHL, let f:MM and g:NN be two morpshisms in BHL, it is sufficient to verify the identity (gf)CM,N=CM,N(fg). For this purpose, we take mM,nN and do the following calculation:

    (gf)CM,N(mn)=m(1)|n(1)(gf)(R(2)ν2(n(0))R(1)μ2(m(0)))=m(1)|n(1)g(R(2)ν2(n(0)))f(R(1)μ2(m(0)))=m(1)|n(1)R(2)g(ν2(n(0)))R(1)f(μ2(m(0))),CM,N(fg)(mn)=CM,N(f(m)g(n))=f(m)(1)|g(n)(1)R(2)ν2(g(n)(0))(R(1)μ2(f(m)(0))=m(1)|n(1)R(2)ν2(g(n(0)))R(1)μ2(f(m(0)))=m(1)|n(1)R(2)g(ν2(n(0)))R(1)f(μ2(m(0))).

    The sixth equality holds since f,g are left (B,β)-colinear. So the braiding CM,N is natural, as needed.

    Next, we will show that the braiding CM,N is an isomorphsim with inverse map

    C1M,N:NMMN,nmS1(m(1))|n(1)S(R(1))μ2(m(0))R(2)ν2(n(0)).

    For any mM,nN, we have

    C1M,NCM,N(mn)=m(1)|n(1)C1M,N(R(2)ν2(n(0))R(1)μ2(m(0)))=m(1)|n(1)S1(β1(m(0)(1)))|β1(n(0)(1))S(r(1))μ2(α(R(2))μ2(m(0)(0)))r(2)ν2(α(R(1))ν2(n(0)(0)))(HCM2)=β1(m(1)1)|β1(n(1)1)S1(β1(m(1)2))|β1(n(1)2)S(r(1))(α1(R(2))μ3(m(0)))r(2)(α1(R(1))ν3(n(0)))(HM2)=m(1)1|n(1)1S1(m(1)2)|n(1)2α1(S(r(1))R(2))μ2(m(0))α1(r(2)R(1))ν2(n(0))(CHA1)=S1(β1(m(1)2))β1(m(1)1)|β(n(1))1Hμ2(m(0))1Hν2(n(0))=β2(S1(m(1)2)m(1)1)|n(1)1Hμ2(m(0))1Hν2(n(0))=ϵ(m(1))1H|n(1)μ1(m(0))ν1(n(0))=ϵ(m(1))ϵ(n(1))μ1(m(0))ν1(n(0))=mn.

    The second equality holds since ρ(R(2)ν2(n(0)))=β1(n(0)(1))α(R(2))n(0)(0) and the fifth equality holds since R1=S(r(1))r(2).

    Now let us verify the hexagon axioms (H1,H2) from Section XIII. 1.1 of [38]. We need to show that the following diagram (H1) commutes for any (U,μ),(V,ν),(W,ω)BHL:

    For this purpose, let uU,vV,wW, then we have

    aV,U,WCU,VWaU,V,W((uv)w)=aV,U,WCU,VW(μ1(u)(vω(w)))=β1(u(1))|β2(v(1))β1(w(1))aV,U,W(R(2)(ν2ω2)(v(0)ω(w(0)))R(1)μ3(u(0)))=β(u(1))|v(1)β(w(1))aV,U,W(R(2)(ν2(v(0))ω1(w(0)))R(1)μ3(u(0)))=β(u(1))|v(1)β(w(1))α1(R(2)1)ν3(v(0))(R(2)2ω1(w(0))α(R(1))μ2(u(0)))(QHA3)=β(u(1))|v(1)β(w(1))r(2)ν3(v(0))(α(R(2))ω1(w(0))(R(1)r(1))μ2(u(0)))

    and

    (idVCU,W)aV,U,W(CU,VidW)((uv)w)=u(1)|v(1)(idVCU,W)aV,U,W((R(2)ν2(v(0))R(1)μ2(u(0)))w)=u(1)|v(1)(idVCU,W)α1(R(2))ν3(v(0))(R(1)μ2(u(0))ω(w))=u(1)|v(1)β1(u(0)(1))|β(w(1))α1(R(2))ν3(v(0))(r(2)ω1(w(0))r(1)μ2(α(R(1))μ2(u(0)(0))))(HCM2)=β1(u(1)1)|v(1)β1(u(1)2)|β(w(1))α1(R(2))ν3(v(0))(r(2)ω1(w(0))α1(r(1)R(1))μ2(u(0)))(CHA2)=u(1)|β1(v(1))w(1)α1(R(2))ν3(v(0))(r(2)ω1(w(0))α1(r(1)R(1))μ2(u(0)))=β(u(1))|v(1)β(w(1))R(2)ν3(v(0))(α(r(2))ω1(w(0))(r(1)R(1))μ2(u(0)))

    Since r = R , it follows that a_{V, U, W}\circ C_{U, V{\otimes} W}\circ a_{U, V, W} = (id_{V}{\otimes} C_{U, W})\circ a_{V, U, W}\circ(C_{U, V}{\otimes} id_{W}) , that is, the diagram ( H_{1} ) commutes.

    Now we check that the diagram ( H_{2} ) commutes for any (U, \mu), (V, \nu), (W, \omega)\in{} ^{B}_{H}\Bbb{L} :

    In fact, for any u\in U, v\in V, w\in W , we obtain

    \begin{eqnarray*} &&a^{-1}_{W,U,V}\circ C_{U{\otimes} V, W}\circ a^{-1}_{U,V,W}(u{\otimes} (v{\otimes} w))\\ & = &a^{-1}_{W,U,V}\circ C_{U{\otimes} V, W}((\mu(u){\otimes} v){\otimes} \omega^{-1}(w))\\ & = &\langle \beta^{-1}(u_{(-1)})\beta^{-1}(v_{(-2)})|\beta^{-1}(w_{(-1)})\rangle a^{-1}_{W,U,V}\\ &&\; \; \; \; \; \; \; \; \; \; (R^{(2)}{\cdot} \omega^{-3}(w_{(0)}){\otimes} R^{(1)}{\cdot} (\mu^{-1}(u_{(0)}){\otimes} \nu^{-2}(v_{(0)})))\\ & = &\langle \beta(u_{(-1)})v_{(-1)}|\beta(w_{(-1)})\rangle a^{-1}_{W,U,V}\\ &&\; \; \; \; \; \; \; \; \; \; (R^{(2)}{\cdot} \omega^{-3}(w_{(0)}){\otimes} (R^{(1)}_{1}{\cdot} \mu^{-1}(u_{(0)}){\otimes} R^{(1)}_{2}{\cdot} \nu^{-2}(v_{(0)})))\\ & = &\langle \beta(u_{(-1)})v_{(-1)}|\beta(w_{(-1)})\rangle\\ &&\; \; \; \; \; \; \; \; \; \; (\omega(R^{(2)}{\cdot} \omega^{-2}(w_{(0)})){\otimes} R^{(1)}_{1}{\cdot} \mu^{-1}(u_{(0)})){\otimes}{\alpha}^{-1}(R^{(1)}_{2}){\cdot} \nu^{-3}(v_{(0)})\\ & = &\langle \beta(u_{(-1)})v_{(-1)}|\beta(w_{(-1)})\rangle\\ &&\; \; \; \; \; \; \; \; \; \; (\alpha^{-1}(R^{(2)}){\cdot}\omega^{-2}(w_{(0)}){\otimes} R^{(1)}_{1}{\cdot} \mu^{-1}(u_{(0)})){\otimes} \alpha(R^{(1)}_{2}){\cdot} \nu(v_{(0)})\\ &\stackrel{(QHA2)}{ = }&\langle \beta(u_{(-1)})v_{(-1)}|\beta(w_{(-1)})\rangle\\ &&\; \; \; \; \; \; \; \; \; \; (\alpha^{-1}(R^{(2)}r^{(2)}){\cdot}\omega^{-2}(w_{(0)}){\otimes} R^{(1)}{\cdot} \mu^{-1}(u_{(0)})){\otimes} \alpha^{-1}(r^{(1)}){\cdot} \nu^{-3}(v_{(0)}). \end{eqnarray*}

    Also we can get

    \begin{eqnarray*} &&(C_{U,W}{\otimes} id_{V})\circ a^{-1}_{U,W,V}\circ(id_{U}{\otimes} C_{V,W})(u{\otimes} (v{\otimes} w))\\ & = &\langle v_{(-1)})|w_{(-1)}\rangle(C_{U,W}{\otimes} id_{V})\circ a^{-1}_{U,W,V} (u{\otimes} (R^{(2)}{\cdot} \omega^{-2}(w_{(0)}){\otimes} R^{(1)}{\cdot} \nu^{-2}(v_{(0)})))\\ & = &\langle v_{(-1)})|w_{(-1)}\rangle(C_{U,W}{\otimes} id_{V}) ((\mu(u){\otimes} R^{(2)}{\cdot}\omega^{-2}(w_{(0)})){\otimes}{\alpha}^{-1}(R^{(1)}){\cdot} \nu^{-3}(v_{(0)}))\\ & = &\langle v_{(-1)})|w_{(-1)}\rangle\langle \beta(u_{(-1)})|\beta^{-1}(w_{(0)(-1)})\rangle\\ &&\; \; \; \; \; (r^{(2)}{\cdot}\omega^{-2}(\alpha(R^{(2)}){\cdot} \omega^{-2}(w_{(0)(0)})){\otimes} r^{(1)}{\cdot} \mu^{-1}(u_{(0)})){\otimes}{\alpha}^{-1}(R^{(1)}){\cdot} \nu^{-3}(v_{(0)})\\ &\stackrel{(HCM2)}{ = }&\langle v_{(-1)})|\beta^{-1}(w_{(-1)1})\rangle\langle \beta(u_{(-1)})|\beta^{-1}(w_{(-1)2})\rangle\\ &&\; \; \; \; \; (r^{(2)}{\cdot}({\alpha}^{-1}(R^{(2)}){\cdot} \omega^{-3}(w_{(0)})){\otimes} r^{(1)}{\cdot} \mu^{-1}(u_{(0)})){\otimes}\alpha^{-1}(R^{(1)}){\cdot} \nu^{-3}(v_{(0)})\\ &\stackrel{(CHA1)}{ = }&\langle u_{(-1)}\beta^{-1}(v_{(-1)})|w_{(-1)}\rangle\\ &&\; \; \; \; \; (\alpha^{-1}(r^{(2)}R^{(2)}){\cdot} \omega^{-2}(w_{(0)}){\otimes} r^{(1)}{\cdot} \mu^{-1}(u_{(0)})){\otimes}\alpha^{-1}(R^{(1)}){\cdot} \nu^{-3}(v_{(0)}). \end{eqnarray*}

    So the diagram ( H_{2} ) commutes since r = R . This ends the proof.

    Corollary 3.2. Under hypotheses of Theorem 3.1, the braiding C is a solution of the quantum Yang-Baxter equation

    \begin{eqnarray*} &&(id_{W}{\otimes} C_{U,V})\circ a_{W,U,V}\circ( C_{U,W}{\otimes} id_{V})\circ a^{-1}_{W,V,U}\circ( id_{U}{\otimes} C_{V,W})\circ a_{U,V,W}\nonumber\\ & = &a_{W,V,U}\circ( C_{W,V}{\otimes} id_{U})\circ a^{-1}_{W,V,U}\circ( id_{V}{\otimes} C_{U,W})\circ a_{V,U,W}\circ( C_{U,V}{\otimes} id_{W}). \end{eqnarray*}

    Proof. Straightforward.

    Lemma 3.3. Let (H, R, \alpha) be a quasitriangular Hom-Hopf algebra and (B, \langle|\rangle, \beta) a coquasitriangular Hom-Hopf algebra. Define a linear map

    \begin{eqnarray*} (H{\otimes} B){\otimes} M\rightarrow M,(h{\otimes} x)\rightharpoonup m = \langle x|m_{(-1)}\rangle {\alpha}^{-3}(h){\cdot} \mu^{-1}(m_{(0)}), \end{eqnarray*}

    for any h\in H, x\in B and m\in(M, \mu)\in{}^{B}_{H} \Bbb L . Then (M, \mu) becomes a left (H{\otimes} B) -Hom-module.

    Proof. It is sufficient to show that the Hom-module action defined above satisfies Definition 1.2. For any h, g\in H, x, y\in B and m\in M , we have

    \begin{eqnarray*} (1_{H}{\otimes} 1_{B})\rightharpoonup m = \langle 1_{B}|m_{(-1)}\rangle 1_{H}{\cdot} \mu^{-1}(m_{(0)}) = \epsilon(m_{(-1)})m_{(0)} = \mu(m). \end{eqnarray*}

    That is, (1_{H}{\otimes} 1_{B})\rightharpoonup m = \mu(m) . For the equality \mu((h{\otimes} x)\rightharpoonup m) = (\alpha(h){\otimes} \beta(x))\rightharpoonup \mu(m) , we have

    \begin{eqnarray*} (\alpha(h){\otimes} \beta(x))\rightharpoonup \mu(m) & = &\langle \beta(x)|\beta(m_{(-1)})\rangle \alpha^{-2}(h){\cdot} m_{(0)}\\ & = &\langle x|m_{(-1)}\rangle \alpha^{-2}(h){\cdot} m_{(0)} = \mu((h{\otimes} x)\rightharpoonup m), \end{eqnarray*}

    as required. Finally, we check the expression ((h{\otimes} x)(g{\otimes} y))\rightharpoonup \mu(m) = (\alpha(h){\otimes}\beta(x))\rightharpoonup((g{\otimes} y)\rightharpoonup m) . For this, we calculate

    \begin{eqnarray*} &&(\alpha(h){\otimes}\beta(x))\rightharpoonup ((g{\otimes} y)\rightharpoonup m)\\ & = &\langle y|m_{(-1)}\rangle(\alpha(h){\otimes}\beta(x)){\cdot} (\alpha^{-3}(g){\cdot} \mu^{-1}(m_{(0)}))\\ & = &\langle y|m_{(-1)}\rangle\langle \beta(x)|m_{(0)(-1)}\rangle\alpha^{-2}(h){\cdot}(\alpha^{-3}(g){\cdot}\mu^{-2}(m_{(0)(0)}))\\ &\stackrel{(HCM2)}{ = }&\langle y|\beta^{-1}(m_{(-1)1})\rangle\langle x|\beta^{-1}(m_{(-1)2})\rangle \alpha^{-3}(hg){\cdot} m_{(0)}\\ &\stackrel{(CHA1)}{ = }&\langle xy|\beta(m_{(-1)})\rangle\alpha^{-3}(hg){\cdot} m_{(0)}\\ & = &((h{\otimes} x)(g{\otimes} y))\rightharpoonup \mu(m). \end{eqnarray*}

    So (M, \mu) is a left (H{\otimes} B) -Hom-module. The proof is completed.

    Lemma 3.4. Let (H, R, \alpha) be a quasitriangular Hom-Hopf algebra and (B, \langle|\rangle, \beta) a coquasitriangular Hom-Hopf algebra. Define a linear map

    \begin{eqnarray*} \overline{\rho}: M\rightarrow (H{\otimes} B){\otimes} M,\; \overline{\rho}(m) = m_{[-1]}{\otimes} m_{[0]} = R^{(2)} {\otimes} \beta^{-3}(m_{(-1)}){\otimes} R^{(1)}{\cdot} \mu^{-1}(m_{(0)}), \end{eqnarray*}

    for any m\in (M, \mu) . Then (M, \mu) becomes a left (H{\otimes} B) -Hom-comodule.

    Proof. We first show that \overline{\rho} satisfies Eq (HCM2). On the one side, we have

    \begin{eqnarray*} &&\Delta(m_{[-1]}){\otimes} \mu(m_{[0]})\\ & = &( R^{(2)}_{1} {\otimes}\beta^{-3}(m_{(-1)1})){\otimes}( R^{(2)}_{2} {\otimes}\beta^{-3}(m_{(-1)2})){\otimes}\alpha(R^{(1)}){\cdot} m_{(0)}\\ & = &({\alpha}(r^{(2)}){\otimes}\beta^{-2}(m_{(-1)})){\otimes}({\alpha}(R^{(2)}){\otimes}\beta^{-3}(m_{(0)(-1)})){\otimes}\alpha(R^{(1)})(r^{(1)}{\cdot} \mu^{-2}(m_{(0)(0)})). \end{eqnarray*}

    On the other side, we have

    \begin{eqnarray*} &&\; \; (\alpha{\otimes}\beta)(m_{[-1]}){\otimes} \overline{\rho}(m_{[0]})\\ && = ({\alpha}(r^{(2)}){\otimes} {\beta}^{-2}(m_{(-1)})){\otimes}(R^{(2)} {\otimes} \beta^{-3}( ( r^{(1)} {\cdot} \mu^{-1}(m_{(0)}) )_{(-1)} ) {\otimes} R^{(1)} \\ &&\; \; \; \; \; \; \; \; \; \; {\cdot} \mu^{-1}(( r^{(1)} {\cdot} \mu^{-1}(m_{(0)}) )_{(0)} ) \\ && = ({\alpha}(r^{(2)}){\otimes}\beta^{-2}(m_{(-1)})){\otimes}(R^{(2)}{\otimes}\beta^{-3}(m_{(0)(-1)})){\otimes} R^{(1)} {\cdot} (r^{(1)}{\cdot} \mu^{-2}(m_{(0)(0)})). \end{eqnarray*}

    Since R is \alpha -invariant, we have \Delta(m_{[-1]}){\otimes} \mu(m_{[0]}) = (\alpha{\otimes}\beta)(m_{[-1]}){\otimes} \overline{\rho}(m_{[0]}) , as needed.

    For Eq (HCM1), we have

    \begin{eqnarray*} (\epsilon_{H}{\otimes}\epsilon_{B})(m_{[-1]})m_{[0]} & = &\epsilon_{H}(R^{(2)})\epsilon_{B}(m_{(-1)})R^{(1)}{\cdot} \mu^{-1}(m_{(0)})\\ & = &1_{H}{\cdot} m = \mu(m),\\ (\alpha{\otimes}\beta)(m_{[-1]}){\otimes} \mu(m_{[0]}) & = &(\alpha(R^{(2)}){\otimes} \beta^{-2}(m_{(-1)})){\otimes} \mu(R^{(1)}{\cdot} \mu^{-1}(m_{(0)}))\\ & = & R^{(2)} {\otimes} \beta^{-3}(\beta(m_{(-1)})){\otimes} R^{(1)}{\cdot} \mu^{-1}(\mu(m_{(0)}))\\ & = & \overline{\rho}(\mu(m)), \end{eqnarray*}

    as desired. And this finishes the proof.

    Theorem 3.5. Let (H, R, \alpha) be a quasitriangular Hom-Hopf algebra and (B, \langle|\rangle, \beta) a coquasitriangular Hom-Hopf algebra. Then the Hom-Long dimodules category ^{B}_{H} \Bbb L is a monoidal subcategory of Hom-Yetter-Drinfeld category ^{H{\otimes} B}_{H{\otimes} B}\Bbb {YD} .

    Proof. Let m\in(M, \mu)\in {}^{B}_{H}\mathcal{L} and h\in H . Here we first note that \rho(h{\cdot} \mu^{-1}(m_{(0)})) = m_{(0)(-1)}{\otimes}\alpha(h){\cdot} \mu^{-1}(m_{(0)(0)}) . It is sufficient to show that the left (H{\otimes} B) -Hom-module action in Lemma 3.3 and the left (H{\otimes} B) -Hom-comodule structure in Lemma 3.4 satisfy the compatible condition Eq (HYD). Indeed, for any h \in H , x \in B , m \in M , we have

    \begin{eqnarray*} &&(h_1 {\otimes} x_1)({\alpha} {\otimes} {\beta} )(m_{[-1]}) {\otimes} ({\alpha}^3(h_2) {\otimes} {\beta}^3(x_2))\rightharpoonup m_{[0]} \\ & = & h_1 {\alpha}(R^{(2)}) {\otimes} x_1 {\beta}^{-2}(m_{(-1)}) {\otimes} \langle {\beta}^3(x_2) | (R^{(1)} {\cdot} \mu^{-1}(m_{(0)}))_{(-1)} \rangle h_2 {\cdot} \mu^{-1}( (R^{(1)} {\cdot} \mu^{-1}(m_{(0)}))_{(0)} )\\ & = & h_1 {\alpha}(R^{(2)}) {\otimes} x_1 {\beta}^{-3}(m_{(-1)1}) {\otimes} \langle {\beta}^3(x_2) | m_{(-1)2} \rangle h_2 {\cdot} ( R^{(1)} {\cdot} \mu^{-1}(m_{(0)}) )\\ & = & h_1 {\alpha}(R^{(2)}) {\otimes} x_1 {\beta}^{-3}(m_{(-1)1}) {\otimes} \langle x_2 | {\beta}^{-3}(m_{(-1)2}) \rangle {\alpha}^{-1}(h_2 {\alpha}(R^{(1)}) ) {\cdot} m_{(0)} \\ & = & R^{(2)} h_2 {\otimes} {\beta}^{-3}(m_{(-1)2}) x_2 \langle x_1 | {\beta}^{-3}(m_{(-1)1}) \rangle {\otimes} ({\alpha}^{-1}(R^{(1)}) {\alpha}^{-1}(h_1)) {\cdot} m_{(0)} \\ & = & \langle {\alpha}^2(x_1) | m_{(-1)} \rangle R^{(2)} h_2 {\otimes} {\beta}^{-3}(m_{(0)(-1)}) x_2 {\otimes} ({\alpha}^{-1}(R^{(1)}) {\alpha}^{-1}(h_1)) {\cdot} \mu^{-1}(m_{(0)(0)}) \\ & = & \langle {\alpha}^2(x_1) | m_{(-1)} \rangle (R^{(2)} {\otimes} {\beta}^{-3}( {{\alpha}^{-1}(h_1) {\cdot} \mu^{-1}(m_{(0)}) }_{(-1)} ) )(h_2 {\otimes} x_2) \\ &&\; \; \; \; \; \; \; \; \; \; \; \; {\otimes} R^{(1)} {\cdot} \mu^{-1}({{\alpha}^{-1}(h_1) {\cdot} \mu^{-1}(m_{(0)}) }_{(0)}) \\ & = & {({\alpha}^2(h_1) {\otimes} {\beta}^2(x_1))\rightharpoonup m}_{[-1]} (h_2 {\otimes} x_2) {\otimes} {({\alpha}^2(h_1) {\otimes} {\beta}^2(x_1))\rightharpoonup m}_{[0]}. \end{eqnarray*}

    So (M, \mu)\in{}^{H{\otimes} B}_{H{\otimes} B}\Bbb{HYD} . The proof is completed.

    Proposition 3.6. Under hypotheses of Theorem 3.5, ^{B}_{H}\Bbb{L} is a braided monoidal subcategory of ^{H{\otimes} B}_{H{\otimes} B}\Bbb{HYD} .

    Proof. It is sufficient to show that the braiding in the category ^{B}_{H}\Bbb{L} is compatible to the braiding in ^{H{\otimes} B}_{H{\otimes} B}\Bbb{HYD} . In fact, for any m\in (M, \mu) and n\in (N, \nu) , we have

    \begin{eqnarray*} C_{M,N}(m{\otimes} n) & = & ({\alpha}^2(R^{(2)}) {\otimes} {\beta}^{-1}(m_{(-1)}))\rightharpoonup \nu^{(-1)}(n) {\otimes} {\alpha}^{-1}(R^{(1)}) {\cdot} \mu^{-2}(m_{(0)}) \\ & = & \langle {\beta}^{-1}(m_{(-1)}) | {\beta}^{-1}(n_{(-1)}) \rangle {\alpha}^{-1}(R^{(2)}) {\cdot} \nu^{-2}(n_{(0)}) {\otimes} {\alpha}^{-1}(R^{(1)}) {\cdot} \mu^{-2}(m_{(0)}) \\ & = & \langle m_{(-1)} | n_{(-1)} \rangle R^{(2)} {\cdot} \nu^{-2}(n_{(0)}) {\otimes} R^{(1)} {\cdot} \mu^{-2}(m_{(0)}), \end{eqnarray*}

    as desired.This finishes the proof.

    In this section, we obtain a sufficient condition for the Hom-Long dimodule category ^{B}_{H} \Bbb L to be symmetric.

    Let \mathcal{C} be a monoidal category and C a braiding on \mathcal{C} . The braiding C is called a symmetry [38,39] if C_{Y, X}\circ C_{X, Y} = id_{X\otimes Y} for all X, Y\in \mathcal{C} , and the category \mathcal{C} is called symmetric.

    Proposition 4.1. Let (H, R, \alpha) be a triangular Hom-Hopf algebra and (B, \beta) a Hom-Hopf algebra. Then the category _{H} \Bbb M of left (H, \alpha) -Hom-modules is a symmetric subcategory of ^{B}_{H} \Bbb L under the left (B, \beta) -comodule structure \rho(m) = 1_{B}\otimes \mu(m) , where m\in (M, \mu)\in{}_{H} \Bbb M , and the braiding is defined as

    \begin{eqnarray*} C_{M,N}: M{\otimes} N\rightarrow N{\otimes} M, m{\otimes} n\rightarrow R^{(2)}{\cdot} \nu^{-1}(n){\otimes} R^{(1)}{\cdot} \mu^{-1}(m), \end{eqnarray*}

    for all m\in (M, \mu)\in{}_{H} \Bbb M, n\in (N, \nu)\in{}_{H} \Bbb M.

    Proof. It is clear that (M, \rho, \mu) is a left (B, \beta) -Hom-comodule under the left (B, \beta) -comodule structure given above. Now we check that the left (B, \beta) -comodule structure satisfies the compatible condition Eq (2.1). For this purpose, we take h\in H, m\in(M, \mu)\in{}_{H} \Bbb M , and calculate

    \begin{eqnarray*} \rho(h{\cdot} m) = 1_{B}\otimes \mu(h{\cdot} m) = 1_{B}\otimes \alpha(h){\cdot}\mu(m) = \beta(m_{(-1)})\otimes \alpha(h){\cdot} m_{(0)}. \end{eqnarray*}

    So, Eq (2.1) holds. That is, (M, \rho, \mu) is an (H, B) -Hom-Long dimodule.

    Next we verify that any morphism in _{H} \Bbb M is left (B, \beta) -colinear, too. Indeed, for any m\in (M, \mu)\in{}_{H} \Bbb M and n\in (N, \nu)\in{}_{H} \Bbb M . Assume that f: (M, \mu)\rightarrow (N, \nu) is a morphism in _{H} \Bbb M , then

    \begin{eqnarray*} (id_{B}\otimes f)\rho(m) = 1_{B}\otimes f(\mu(m)) = 1_{B}\otimes\nu(f(m)) = \rho(f(m)). \end{eqnarray*}

    So f is left (B, \beta) -colinear, as desired. Therefore, _{H} \Bbb M is a subcategory of ^{B}_{H} \Bbb L .

    Finally, we prove that _{H} \Bbb M is a symmetric subcategory of ^{B}_{H} \Bbb L . Since C_{M, N}(m{\otimes} n) = R^{(2)}{\cdot} \nu^{-1}(n){\otimes} R^{(1)}{\cdot} \mu^{-1}(m), for all m\in (M, \mu)\in{}_{H} \Bbb M and n\in (N, \nu)\in{}_{H} \Bbb M , we have

    \begin{eqnarray*} C_{N,M}\circ C_{M,N}(m{\otimes} n) & = &C_{N,M}(R^{(2)}{\cdot} \nu^{-1}(n){\otimes} R^{(1)}{\cdot} \mu^{-1}(m))\\ & = &r^{(2)}{\cdot}\mu^{-1}(R^{(1)}{\cdot} \mu^{-1}(m)){\otimes} r^{(1)}{\cdot}\nu^{-1}(R^{(2)}{\cdot} \nu^{-1}(n))\\ & = &r^{(2)}{\cdot}({\alpha}^{-1}(R^{(1)}){\cdot} \mu^{-2}(m)){\otimes} r^{(1)}{\cdot}({\alpha}^{-1}(R^{(2)}){\cdot} \nu^{-2}(n))\\ & = &\alpha^{-1}(r^{(2)}R^{(1)}){\cdot} \mu^{-1}(m){\otimes} \alpha^{-1}(r^{(1)}R^{(2)}){\cdot} \nu^{-1}(n)\\ & = &1_{H}{\cdot} \mu^{-1}(m){\otimes} 1_{H}{\cdot} \nu^{-1}(n) = m{\otimes} n. \end{eqnarray*}

    It follows that the braiding C_{M, N} is symmetric. The proof is completed.

    Proposition 4.2. Let (B, \langle|\rangle, \beta) be a cotriangular Hom-Hopf algebra and (H, \alpha) a Hom-Hopf algebra. Then the category ^{B} \Bbb M of left (B, \beta) -Hom-comodules is a symmetric subcategory of ^{B}_{H} \Bbb L under the left (H, \alpha) -module action h{\cdot} m = \epsilon(h)\mu(m) , where h\in H, m\in (M, \mu)\in{}^{B} \Bbb M , and the braiding is given by

    \begin{eqnarray*} C_{M,N}: M{\otimes} N\rightarrow N{\otimes} M, m{\otimes} n\rightarrow \langle m_{(-1)}|n_{(-1)}\rangle \nu^{-2}(n_{(0)}){\otimes} \mu^{-2}(m_{(0)}), \end{eqnarray*}

    for all m\in (M, \mu)\in{}^{B} \Bbb M, n\in (N, \nu)\in{}^{B} \Bbb M.

    Proof. We first show that the left (H, \alpha) -module action defined above forces (M, \mu) to be a left (H, \alpha) -module, but this is easy to check. For the compatible condition Eq (2.1), we take h\in H, m\in(M, \mu)\in{}^{B} \Bbb M and calculate as follows:

    \begin{eqnarray*} \rho(h{\cdot} m) = 1_{B}{\otimes}\mu(h{\cdot} m) = 1_{B}{\otimes}\epsilon(h)\mu( m) = \beta(m_{(-1)})\otimes \alpha(h){\cdot} m_{(0)}. \end{eqnarray*}

    So, Eq (2.1) holds, as required. Therefore, (M, \rho, \mu) is an (H, B) -Hom-Long dimodule.

    Now we verify that any morphism in ^{B} \Bbb M is left (H, \alpha) -linear, too. Indeed, for any m\in (M, \mu)\in{}^{B} \Bbb M and n\in (N, \nu)\in{}^{B} \Bbb M . Assume that f: (M, \mu)\rightarrow (N, \nu) is a morphism in ^{B} \Bbb M , then

    \begin{eqnarray*} f(h{\cdot} m) = f(\epsilon(h)\mu(m)) = \epsilon(h)\mu(f(m)) = h{\cdot} f(m). \end{eqnarray*}

    So f is left (H, \alpha) -linear, as desired. Therefore, ^{B} \Bbb M is a subcategory of ^{B}_{H} \Bbb L .

    Finally, we show that ^{B} \Bbb M is a symmetric subcategory of ^{B}_{H} \Bbb L . Since C_{M, N}(m{\otimes} n) = \langle m_{(-1)}|n_{(-1)}\rangle \nu^{-1}(n_{(0)}){\otimes} \mu^{-1}(m_{(0)}), for all m\in (M, \mu)\in{}^{B} \Bbb M and n\in (N, \nu)\in{}^{B} \Bbb M , then

    \begin{eqnarray*} &&C_{N,M}\circ C_{M,N}(m{\otimes} n)\\ & = &\langle m_{(-1)}|n_{(-1)}\rangle C_{N,M}(\nu^{-1}(n_{(0)}){\otimes} \mu^{-1}(m_{(0)}))\\ & = &\langle m_{(-1)}|n_{(-1)}\rangle\langle {\beta}^{-1}(n_{(0)(-1)})|{\beta}^{-1}(m_{0(-1)})\rangle(\mu^{-2}(m_{(0)(0)}){\otimes} \nu^{-2}(n_{(0)(0)})\\ & = &\langle \beta^{-1}(m_{(-1)1})|\beta^{-1}(n_{(-1)1})\rangle\langle {\beta}^{-1}(n_{(-1)2})|{\beta}^{-1}(m_{(-1)2})\rangle\mu^{-1}(m_{(0)}){\otimes} \nu^{-1}(n_{(0)})\\ & = &\epsilon(m_{(-1)})\epsilon(n_{(-1)})\mu^{-1}(m_{(0)}){\otimes} \nu^{-1}(n_{(0)}) = m{\otimes} n, \end{eqnarray*}

    where the fourth equality holds since \langle | \rangle is {\beta} -invariant. It follows that the braiding C_{M, N} is symmetric. The proof is completed.

    Theorem 4.3. Let (H, \alpha) be a triangular Hom-Hopf algebra and (B, \langle|\rangle, \beta) a cotriangular Hom-Hopf algebra. Then the category ^{B}_{H} \Bbb L is symmetric.

    Proof. For any m\in (M, \mu)\in{}^{B}_{H} \Bbb L and n\in (N, \nu)\in{}^{B}_{H} \Bbb L , we have

    \begin{eqnarray*} &&C_{N,M}\circ C_{M,N}(m{\otimes} n)\\ & = &\langle m_{(-1)}|n_{(-1)}\rangle C_{N,M}(R^{(2)}{\cdot} \nu^{-2}(n_{(0)}){\otimes} R^{(1)}{\cdot} \mu^{-2}(m_{(0)}))\\ & = &\langle m_{(-1)}|n_{(-1)}\rangle\langle \beta(n_{(0)(-1)})|\beta(m_{(0)(-1)})\rangle \\ &&\; \; \; \; \; \; \; \; r^{(2)}{\cdot}\mu^{-2}(\alpha(R^{(1)}){\cdot}\mu^{-2}( m_{(0)(0)})){\otimes} r^{(1)}{\cdot}\nu^{-2}(\alpha(R^{(2)}){\cdot} \nu^{-2}(n_{(0)(0)}))\\ & = &\langle \beta^{-1}(m_{(-1)1})|\beta^{-1}(n_{(-1)1})\rangle\langle \beta^{-1}(n_{(-1)2})|\beta^{-1}(m_{(-1)2})\rangle\\ &&\; \; \; \; \; \; \; \; \alpha^{-1}(r^{(2)}R^{(1)}){\cdot} \mu^{-2}(m_{(0)}){\otimes}\alpha^{-1}(r^{(1)}R^{(2)}){\cdot} \nu^{-2}(n_{(0)})\\ & = &\epsilon(m_{(-1)})\epsilon(n_{(-1)}) 1_{H}{\cdot} \mu^{-2}(m_{(0)}){\otimes} 1_{H}{\cdot} \nu^{-2}(n_{(0)})\\ & = &\epsilon(m_{(-1)})\epsilon(n_{(-1)}) \mu^{-1}(m_{(0)}){\otimes}\nu^{-1}(n_{(0)})\\ & = &m{\otimes} n, \end{eqnarray*}

    as desired. This finishes the proof.

    In this section, we will present a kind of new solutions of the Hom-Long equation.

    Definition 5.1. Let (H, \alpha) be a Hom-bialgebra and (M, \mu) a Hom-module over (H, {\alpha}) . Then R\in End(M{\otimes} M) is called the solution of the Hom-Long equation if it satisfies the nonlinear equation:

    \begin{eqnarray} R^{12}\circ R^{23} = R^{23}\circ R^{12}, \end{eqnarray} (5.1)

    where R^{12} = R{\otimes}\mu, R^{23} = \mu{\otimes} R .

    Example 5.2. If R\in End(M{\otimes} M) is invertible, then it is easy to see that R is a solution of the Hom-Long equation if and only if R^{-1} is too.

    Example 5.3. Let (M, \mu) be an (H, {\alpha}) -Hom-module with a basis \{m_1, m_2, \cdots, m_n\} . Assume that \mu is given by \mu(m_i) = a_im_i , where a_i\in k, \; i = 1, 2, \cdots, n . Define a map

    \begin{eqnarray*} R:\; M{\otimes} M\rightarrow M{\otimes} M,\; \; R(m_i{\otimes} m_j) = b_{ij}m_i{\otimes} m_j, \end{eqnarray*}

    where b_{ij}\in k, \; i, j = 1, 2, ,\cdots, n. Then R is a solution of Eq (5.1). Furthermore, if a_i = 1 , for all i = 1, 2, \cdots, n , then R is a solution of the classical Long equation.

    Proposition 5.4. Let (M, \mu) be an (H, {\alpha}) -Hom-module with a basis \{m_1, m_2, \cdots, m_n\} . Assume that R, S\in End(M{\otimes} M, \mu{\otimes}\mu^{-1}) given by the matrix formula

    \begin{eqnarray*} R(m_k{\otimes} m_l) = x_{kl}^{ij}m_i{\otimes} \mu^{-1}(m_j),\; \; S(m_k{\otimes} m_l) = y_{kl}^{ij}m_i{\otimes} \mu^{-1}(m_j), \end{eqnarray*}

    and \mu(m_l) = z_{l}^{i}m_i , where x_{kl}^{ij}, y_{kl}^{ij}, z_{l}^{i}\in k . Then S^{12}\circ R^{23} = R^{23}\circ S^{12} if and only if

    \begin{eqnarray*} z_{u}^{i}x_{vw}^{jk}y_{ij}^{pq} = z_{i}^{p}x_{jw}^{qk}y_{uv}^{ij}, \end{eqnarray*}

    for all k, p, q, u, v, w = 1, 2, \cdots, n . In particular, R is a solution of the Hom-Long equation if and only if

    \begin{eqnarray*} z_{u}^{i}x_{vw}^{jk}x_{ij}^{pq} = z_{i}^{p}x_{jw}^{qk}x_{uv}^{ij}. \end{eqnarray*}

    Proof. According to the definition of R, S, \mu , we have

    \begin{eqnarray*} S^{12}\circ R^{23}(m_{u}{\otimes} m_{v}{\otimes} m_{w}) & = &S^{12}(z_{u}^{i}m_{i}{\otimes} x_{vw}^{jk}m_{j}{\otimes} \mu^{-1}(m_{k}))\\ & = &z_{u}^{i}x_{vw}^{jk}y_{ij}^{pq}(m_{p}{\otimes} \mu^{-1}(m_{q}){\otimes} m_{k}),\\ R^{23}\circ S^{12}(m_{u}{\otimes} m_{v}{\otimes} m_{w}) & = &R^{23}(y_{uv}^{ij}m_{i}{\otimes}\mu^{-1}(m_{j}){\otimes} m_{w})\\ & = &y_{uv}^{ij}z_{i}^{p}x_{jw}^{qk}(m_{p}{\otimes} \mu^{-1}(m_{q}){\otimes} m_{k}). \end{eqnarray*}

    It follows that S^{12}\circ R^{23} = R^{23}\circ S^{12} if and only if z_{u}^{i}x_{vw}^{jk}y_{ij}^{pq} = z_{i}^{p}x_{jw}^{qk}y_{uv}^{ij}. Furthermore, R^{12}\circ R^{23} = R^{23}\circ R^{12} if and only if z_{u}^{i}x_{vw}^{jk}x_{ij}^{pq} = z_{i}^{p}x_{jw}^{qk}x_{uv}^{ij}. The proof is completed.

    In the following proposition, we use the notation: for any F\in End(M{\otimes} M) , we denote F^{12} = F{\otimes} \mu, F^{23} = \mu{\otimes} F, F^{13} = (id{\otimes}\tau)\circ (F {\otimes} \mu)\circ (id{\otimes} \tau) , and \tau^{(123)}(x{\otimes} y{\otimes} z) = (z, x, y).

    Proposition 5.5. Let (M, \mu) be an (H, {\alpha}) -Hom-module and R\in End(M{\otimes} M) . The following statements are equivalent:

    (1) R is a solution of the Hom-Long equation.

    (2) U = \tau\circ R is a solution of the equation:

    U^{13}\circ U^{23} = \tau^{(123)}\circ U^{13}\circ U^{12}.

    (3) T = R\circ\tau is a solution of the equation:

    T^{12}\circ T^{13} = T^{23}\circ T^{13}\circ\tau^{(123)}.

    (4) W = \tau\circ R \circ \tau is a solution of the equation:

    \tau^{(123)}\circ W^{23}\circ W^{13} = W^{12}\circ W^{13}\circ\tau^{(123)}.

    Proof. We just prove (1)\Leftrightarrow (2) , and similar for (1)\Leftrightarrow (3) and (1)\Leftrightarrow (4). Since R = \tau\circ U , R is a solution of the Hom-Long equation if and only if R^{12}\circ R^{23} = R^{23}\circ R^{12} , that is,

    \begin{eqnarray} \tau^{12}\circ U^{12}\circ \tau^{23}\circ U^{23} = \tau^{23}\circ U^{23}\circ\tau^{12}\circ U^{12}. \end{eqnarray} (5.2)

    While \tau^{12}\circ U^{12}\circ \tau^{23} = \tau^{23}\circ\tau^{13}\circ U^{13} and \tau^{23}\circ U^{23}\circ\tau^{12} = \tau^{23}\circ\tau^{12}\circ U^{13} , (5.2) is equivalent to

    \tau^{23}\circ \tau^{13}\circ U^{13}\circ U^{23} = \tau^{23}\circ\tau^{12}\circ U^{13}\circ U^{12},

    which is equivalent to U^{13}\circ U^{23} = \tau^{(123)}\circ U^{13}\circ U^{12} from the fact \tau^{23}\circ\tau^{12} = \tau^{(123)} .

    Next we will present a new solution for Hom-Long equation by the Hom-Long dimodule structures. For this, we give the notion of (H, {\alpha}) -Hom-Long dimodules.

    Definition 5.6. Let (H, \alpha) be a Hom-bialgebra. A left-left (H, {\alpha}) -Hom-Long dimodule is a quadruple (M, {\cdot}, \rho, \mu) , where (M, {\cdot}, \mu) is a left (H, \alpha) -Hom-module and (M, \rho, \mu) is a left (H, \alpha) -Hom-comodule such that

    \begin{eqnarray} \rho(h{\cdot} m) = {\alpha}(m_{(-1)}){\otimes} \alpha(h){\cdot} m_{0}, \end{eqnarray} (5.3)

    for all h\in H and m\in M .

    Remark 5.7. Clearly, left-left (H, {\alpha}) -Hom-Long dimodules is a special case of (H, B) -Hom-Long dimodules in Definition 2.1 by setting (H, {\alpha}) = (B, {\beta}).

    Example 5.8. Let (H, {\alpha}) be a Hom-bialgebra and (M, {\cdot}, \mu) be a left (H, {\alpha}) -Hom-module. Define a left (H, {\alpha}) -Hom-module structure and a left (H, {\alpha}) -Hom-comodule structure on (H{\otimes} M, {\alpha}{\otimes} \mu) as follows:

    \begin{eqnarray*} h{\cdot}(g{\otimes} m) = {\alpha}(g){\otimes} h{\cdot}\mu(m), \; \; \rho(g{\otimes} m) = g_1{\otimes} g_2{\otimes}\mu(m), \end{eqnarray*}

    for all h, g\in H and m\in M . Then (H{\otimes} M, {\alpha}{\otimes} \mu) is an (H, {\alpha}) -Hom-Long dimodule.

    Example 5.9. Let (H, {\alpha}) be a Hom-bialgebra and (M, \rho, \mu) be a left (H, {\alpha}) -Hom-comodule. Define a left (H, {\alpha}) -Hom-module structure and be a left (H, {\alpha}) -Hom-comodule structure on (H{\otimes} M, {\alpha}{\otimes} \mu) as follows:

    \begin{eqnarray*} h{\cdot}(g{\otimes} m) = hg{\otimes}\mu(m), \; \; \rho(g{\otimes} m) = m_{(-1)}{\otimes} {\alpha}(g){\otimes} m_0, \end{eqnarray*}

    for all h, g\in H and m\in M . Then (H{\otimes} M, {\alpha}{\otimes} \mu) is an (H, {\alpha}) -Hom-Long dimodule.

    Theorem 5.10. Let (H, {\alpha}) be a Hom-bialgebra and (M, {\cdot}, \rho, \mu) be a (H, {\alpha}) -Hom-Long dimodule. Then the map

    \begin{eqnarray} R_{M}: M{\otimes} M\rightarrow M{\otimes} M,\; \; \; \; m{\otimes} n\mapsto n_{(-1)}{\cdot} m {\otimes} n_0, \end{eqnarray} (5.4)

    is a solution of the Hom-Long equation, for any m, n\in M.

    Proof. For any l, m, n\in M , we calculate

    \begin{eqnarray*} R_{M}^{12}\circ R_{M}^{23}(l{\otimes} m{\otimes} n) & = &R_{M}^{12}(\mu(l){\otimes} n_{(-1)}{\cdot} m{\otimes} n_0)\\ & = &(n_{(-1)}{\cdot} m)_{(-1)}{\cdot}\mu(l){\otimes}(n_{(-1)}{\cdot} m)_{0}{\otimes} \mu(n_0)\\ & = &{\alpha}(m_{(-1)}){\cdot}\mu(l){\otimes}{\alpha}(n_{(-1)}){\cdot} m_{0}{\otimes}\mu(n_0),\\ R_{M}^{23}\circ R_{M}^{12}(l{\otimes} m{\otimes} n) & = &R_{M}^{23}(m_{(-1)}{\cdot} l{\otimes} m_0{\otimes} \mu(n))\\ & = &\mu(m_{(-1)}{\cdot} l){\otimes}{\alpha}(n_{(-1)})){\cdot} m_0{\otimes}\mu(n_0)\\ & = &{\alpha}(m_{(-1)}){\cdot}\mu(l){\otimes}{\alpha}(n_{(-1)}){\cdot} m_{0}{\otimes}\mu(n_0). \end{eqnarray*}

    So we have R_{M}^{12}\circ R_{M}^{23} = R_{M}^{23}\circ R_{M}^{12} , as desired. And this finishes the proof.

    The work of S. Wang is supported by the Anhui Provincial Natural Science Foundation (No. 1908085MA03) and the Key University Science Research Project of Anhui Province (No. KJ2020A0711). The work of X. Zhang is supported by the NSF of China (No. 11801304) and the Young Talents Invitation Program of Shandong Province. The work of S. Guo is supported by the NSF of China (No. 12161013) and Guizhou Provincial Science and Technology Foundation (No. [2019]1050).

    The authors declare there is no conflict of interest.



    [1] A. Hansell, J. Walk, J. Soriano, What do chronic obstructive pulmonary disease patients die from? Amultiple cause coding analysis, Eur. Respir. J., 22 (2003), 809–814. https://doi.org/10.1183/09031936.03.00031403 doi: 10.1183/09031936.03.00031403
    [2] R. Rubinsztajn, R. Chazan, An analysis of the causes of mortality and co-morbidities in hospitalised patients with chronic obstructive pulmonary disease, Adv. Respir. Med., 79 (2011), 343–346. https://doi.org/10.5603/ARM.27637 doi: 10.5603/ARM.27637
    [3] P. Sicard, Y. O. Khaniabadi, S. Perez, M. Gualtieri, A. De Marco, Effect of O_3, PM_1_0 and PM_2_._5 on cardiovascular and respiratory diseases in cities of France, Iran and Italy, Environ. Sci. Pollut. Res., 26 (2019), 32645–32665. https://doi.org/10.1007/s11356-019-06445-8 doi: 10.1007/s11356-019-06445-8
    [4] L. C. Saunders, P. J. Hughes, S. Alabed, D. J. Capener, H. Marshall, J. Vogel-Claussen, et al., Integrated cardiopulmonary MRI assessment of pulmonary hypertension, J. Magn. Reson. Imaging, 55 (2022), 633–652. https://doi.org/10.1002/jmri.27849 doi: 10.1002/jmri.27849
    [5] O. Bane, S. J. Shah, M. J. Cuttica, J. D. Collins, S. Selvaraj, N. R. Chatterjee, et al., A non-invasive assessment of cardiopulmonary hemodynamics with MRI in pulmonary hypertension, Magn. Reson. Imaging, 33 (2015), 1224–1235. https://doi.org/10.1016/j.mri.2015.08.005 doi: 10.1016/j.mri.2015.08.005
    [6] J. A. Tkach, N. S. Higano, M. D. Taylor, R. A. Moore, M. Hossain, G. Huang, et al., Quantitative cardiopulmonary magnetic resonance imaging in neonatal congenital diaphragmatic hernia, Pediatr. Radiol., 52 (2022), 2306–2318. https://doi.org/10.1007/s00247-022-05384-w doi: 10.1007/s00247-022-05384-w
    [7] J. Y. Cheng, T. Zhang, M. T. Alley, M. Uecker, M. Lustig, J. M. Pauly, et al., Comprehensive multi-dimensional MRI for the simultaneous assessment of cardiopulmonary anatomy and physiology, Sci. Rep., 7 (2017), 1–15. https://doi.org/10.1038/s41598-017-04676-8 doi: 10.1038/s41598-017-04676-8
    [8] A. Vonk Noordegraaf, F. Haddad, H. J. Bogaard, P. M. Hassoun, Noninvasive imaging in the assessment of the cardiopulmonary vascular unit, Circulation, 131 (2015), 899–913. https://doi.org/10.1161/CIRCULATIONAHA.114.006972 doi: 10.1161/CIRCULATIONAHA.114.006972
    [9] R. A. Lafountain, J. S. da Silveira, J. Varghese, G. Mihai, D. Scandling, J. Craft, et al., Cardiopulmonary exercise testing in the MRI environment, Physiol. Meas., 37 (2016), N11. https://doi.org/10.1088/0967-3334/37/4/N11 doi: 10.1088/0967-3334/37/4/N11
    [10] R. Jogiya, A. Schuster, A. Zaman, M. Motwani, M. Kouwenhoven, E. Nagel, et al., Three-dimensional balanced steady state free precession myocardial perfusion cardiovascular magnetic resonance at 3T using dual-source parallel RF transmission: initial experience, J. Cardiovasc. Magn. Reson., 16 (2014), 1–10. https://doi.org/10.1186/s12968-014-0090-0 doi: 10.1186/s12968-014-0090-0
    [11] C. Lin, M. A. Bernstein, 3D magnetization prepared elliptical centric fast gradient echo imaging, Magn. Reson. Med., 59 (2008), 434–439.
    [12] S. Potthast, L. Mitsumori, L. A. Stanescu, M. L. Richardson, K. Branch, T. J. Dubinsky, et al., Measuring aortic diameter with different MR techniques: Comparison of three-dimensional (3D) navigated steady-state free-precession (SSFP), 3D contrast-enhanced magnetic resonance angiography (CE-MRA), 2D T2 black blood, and 2D cine SSFP, J. Magn. Reson. Imaging, 31 (2010), 177–184. https://doi.org/10.1002/jmri.22016 doi: 10.1002/jmri.22016
    [13] M. J. Kim, D. G. Mitchell, K. Ito, P. N. Kim, Hepatic MR imaging: comparison of 2D and 3D gradient echo techniques, Abdom. Imaging, 26 (2001), 269–276. https://doi.org/10.1007/s002610000177 doi: 10.1007/s002610000177
    [14] S. J. Kruger, S. B. Fain, K. M. Johnson, R. V. Cadman, S. K. Nagle, Oxygen-enhanced 3D radial ultrashort echo time magnetic resonance imaging in the healthy human lung, NMR Biomed., 27 (2014), 1535–1541. https://doi.org/10.1002/nbm.3158 doi: 10.1002/nbm.3158
    [15] W. Zha, S. J. Kruger, K. M. Johnson, R. V. Cadman, L. C. Bell, F. Liu, et al., Pulmonary ventilation imaging in asthma and cystic fibrosis using oxygen-enhanced 3D radial ultrashort echo time MRI, J. Magn. Reson. Imaging, 47 (2018), 1287–1297. https://doi.org/10.1002/jmri.25877 doi: 10.1002/jmri.25877
    [16] K. S. Sodhi, A. Bhatia, P. Rana, J. L. Mathew, Impact of radial percentage k-space filling and signal averaging on native lung MRI image quality in 3D radial UTE acquisition: A pilot study, Acad. Radiol., 2023 (2023). https://doi.org/10.1016/j.acra.2023.01.029 doi: 10.1016/j.acra.2023.01.029
    [17] M. D. Robson, P. D. Gatehouse, M. Bydder, G. M. Bydder, Magnetic resonance: an introduction to ultrashort TE (UTE) imaging, J. Comput. Assisted Tomogr., 27 (2003), 825–846. https://doi.org/10.1097/00004728-200311000-00001 doi: 10.1097/00004728-200311000-00001
    [18] R. Shekhar, V. Zagrodsky, Cine MPR: interactive multiplanar reformatting of four-dimensional cardiac data using hardware-accelerated texture mapping, IEEE Trans. Inf. Technol. Biomed., 7 (2003), 384–393. https://doi.org/10.1109/TITB.2003.821320 doi: 10.1109/TITB.2003.821320
    [19] K. T. Block, H. Chandarana, S. Milla, M. Bruno, T. Mulholland, G. Fatterpekar, et al., Towards routine clinical use of radial stack-of-stars 3D gradient-echo sequences for reducing motion sensitivity, J. Korean Soc. Magn. Reson. Med., 18 (2014), 87–106. https://doi.org/10.13104/jksmrm.2014.18.2.87 doi: 10.13104/jksmrm.2014.18.2.87
    [20] J. E. Park, Y. H. Choi, J. E. Cheon, W. S. Kim, I. O. Kim, Y. J. Ryu, et al., Three-dimensional radial vibe sequence for contrast-enhanced brain imaging: an alternative for reducing motion artifacts in restless children, AJR Am. J. Roentgenol., 210 (2018), 876–882. https://doi.org/10.2214/AJR.17.18490 doi: 10.2214/AJR.17.18490
    [21] J. Cao, D. Zhao, C. Tian, T. Jin, F. Song, Adopting improved adam optimizer to train dendritic neuron model for water quality prediction, Math. Biosci. Eng., 20 (2023), 9489–9510. https://doi.org/10.3934/mbe.2023417 doi: 10.3934/mbe.2023417
    [22] T. Jin, F. Li, H. Peng, B. Li, D. Jiang, Uncertain barrier swaption pricing problem based on the fractional differential equation in caputo sense, Soft Comput., 2023 (2023), 1–16. https://doi.org/10.1007/s00500-023-08153-5 doi: 10.1007/s00500-023-08153-5
    [23] Q. Zou, A. H. Ahmed, P. Nagpal, S. Kruger, M. Jacob, Dynamic imaging using a deep generative storm (gen-storm) model, IEEE Trans. Med. Imaging, 40 (2021), 3102–3112. https://doi.org/10.1109/TMI.2021.3065948 doi: 10.1109/TMI.2021.3065948
    [24] R. Hou, F. Li, IDPCNN: Iterative denoising and projecting CNN for MRI reconstruction, J. Comput. Appl. Math., 406 (2022), 113973.
    [25] Z. Wang, R. Wu, Y. Xu, Y. Liu, R. Chai, H. Ma, A two-stage CNN method for MRI image segmentation of prostate with lesion, Biomed. Signal Process. Control, 82 (2023), 104610. https://doi.org/10.1016/j.bspc.2023.104610 doi: 10.1016/j.bspc.2023.104610
    [26] D. I. Zaridis, E. Mylona, N. Tachos, V. C. Pezoulas, G. Grigoriadis, N. Tsiknakis, et al., Region-adaptive magnetic resonance image enhancement for improving CNN-based segmentation of the prostate and prostatic zones, Sci. Rep., 13 (2023), 714. https://doi.org/10.1038/s41598-023-27671-8 doi: 10.1038/s41598-023-27671-8
    [27] S. Shojaei, M. S. Abadeh, Z. Momeni, An evolutionary explainable deep learning approach for Alzheimer's MRI classification, Expert Syst. Appl., 220 (2023), 119709. https://doi.org/10.1016/j.eswa.2023.119709 doi: 10.1016/j.eswa.2023.119709
    [28] O. Özkaraca, O. İ. Bağrıaçık, H. Gürüler, F. Khan, J. Hussain, J. Khan, et al., Multiple brain tumor classification with dense CNN architecture using brain MRI images, Life, 13 (2023), 349. https://doi.org/10.3390/life13020349 doi: 10.3390/life13020349
    [29] S. Hardaha, D. R. Edla, S. R. Parne, A survey on convolutional neural networks for MRI analysis, Wireless Pers. Commun., 128 (2023), 1065–1085. https://doi.org/10.1007/s11277-022-09989-0 doi: 10.1007/s11277-022-09989-0
    [30] N. R. Huttinga, C. A. Van den Berg, P. R. Luijten, A. Sbrizzi, MR-MOTUS: model-based non-rigid motion estimation for MR-guided radiotherapy using a reference image and minimal k-space data, Phys. Med. Biol., 65 (2020), 015004. https://doi.org/10.1088/1361-6560/ab554a doi: 10.1088/1361-6560/ab554a
    [31] Z. Miller, L. Torres, S. Fain, K. Johnson, Motion compensated extreme MRI: Multi-scale low rank reconstructions for highly accelerated 3D dynamic acquisitions (MoCo-MSLR), preprint, arXiv: 2205.00131.
    [32] Q. Zou, L. A. Torres, S. B. Fain, N. S. Higano, A. J. Bates, M. Jacob, Dynamic imaging using motion-compensated smoothness regularization on manifolds (MoCo-SToRM), Phys. Med. Biol., 67 (2022), 144001. https://doi.org/10.1109/ISBI52829.2022.9761440 doi: 10.1109/ISBI52829.2022.9761440
    [33] M. Jaderberg, K. Simonyan, A. Zisserman, Spatial transformer networks, in Advances in Neural Information Processing Systems, 28 (2015).
    [34] F. Ong, X. Zhu, J. Y. Cheng, K. M. Johnson, P. E. Larson, S. S. Vasanawala, et al., Extreme MRI: Large-scale volumetric dynamic imaging from continuous non-gated acquisitions, Magn. Reson. Med., 84 (2020), 1763–1780. https://doi.org/10.1002/mrm.28235 doi: 10.1002/mrm.28235
    [35] O. Maier, S. H. Baete, A. Fyrdahl, K. Hammernik, S. Harrevelt, L. Kasper, et al., CG‐SENSE revisited: Results from the first ISMRM reproducibility challenge, Magn. Reson. Med., 85 (2021), 1821–1839. https://doi.org/10.1002/mrm.28569 doi: 10.1002/mrm.28569
    [36] N. A. Gumerov, R. Duraiswami, Fast multipole method based filtering of non-uniformly sampled data, preprint, arXiv: 1611.09379.
    [37] M. J. Muckley, R. Stern, T. Murrell, F. Knoll, Torchkbnufft: A high-level, hardware-agnostic non-uniform fast fourier transform, in ISMRM Workshop on Data Sampling & Image Reconstruction, (2020), 22.
    [38] D. Strong, T. Chan, Edge-preserving and scale-dependent properties of total variation regularization, Inverse Probl., 19 (2003), S165. https://doi.org/10.1088/0266-5611/19/6/059 doi: 10.1088/0266-5611/19/6/059
    [39] S. Imambi, K. B. Prakash, G. Kanagachidambaresan, Pytorch, in Programming with TensorFlow: Solution for Edge Computing Applications, (2021), 87–104. https://doi.org/10.1007/978-3-030-57077-4
    [40] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, preprint, arXiv: 1412.6980.
    [41] A. F. Agarap, Deep learning using rectified linear units (RELU), preprint, arXiv: 1803.08375.
    [42] K. M. Johnson, S. B. Fain, M. L. Schiebler, S. Nagle, Optimized 3D ultrashort echo time pulmonary MRI, Magn. Reson. Med., 70 (2013), 1241–1250. https://doi.org/10.1002/mrm.24570 doi: 10.1002/mrm.24570
    [43] M. Buehrer, K. P. Pruessmann, P. Boesiger, S. Kozerke, Array compression for MRI with large coil arrays, Magn. Reson. Med., 57 (2007), 1131–1139. https://doi.org/10.1002/mrm.21237 doi: 10.1002/mrm.21237
    [44] X. Zhu, M. Chan, M. Lustig, K. M. Johnson, P. E. Larson, Iterative motion-compensation reconstruction ultra-short TE (iMoCo UTE) for high-resolution free-breathing pulmonary MRI, Magn. Reson. Med., 83 (2020), 1208–1221. https://doi.org/10.1002/mrm.27998 doi: 10.1002/mrm.27998
    [45] S. Napel, M. P. Marks, G. D. Rubin, M. D. Dake, C. H. McDonnell, S. M. Song, et al., CT angiography with spiral CT and maximum intensity projection, Radiology, 185 (1992), 607–610. https://doi.org/10.1148/radiology.185.2.1410382 doi: 10.1148/radiology.185.2.1410382
    [46] J. F. Gruden, S. Ouanounou, S. Tigges, S. D. Norris, T. S. Klausner, Incremental benefit of maximum-intensity-projection images on observer detection of small pulmonary nodules revealed by multidetector CT, Am. J. Roentgenol., 179 (2002), 149–157. https://doi.org/10.2214/ajr.179.1.1790149 doi: 10.2214/ajr.179.1.1790149
  • This article has been cited by:

    1. Hui Wu, Xiaohui Zhang, On the BiHom-Type Nonlinear Equations, 2022, 10, 2227-7390, 4360, 10.3390/math10224360
    2. Shengxiang Wang, Xiaohui Zhang, Shuangjian Guo, Hom-Yang-Baxter equations and Hom-Yang-Baxter systems, 2023, 51, 0092-7872, 1462, 10.1080/00927872.2022.2137518
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2091) PDF downloads(200) Cited by(1)

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog