In this paper, we study a predator-prey system, the modified Holling-Tanner model with strong Allee effect. The existence and stability of the non-negative equilibria are discussed first. Several kinds of bifurcation phenomena, which the model may undergo, such as saddle-node bifurcation, Hopf bifurcation, and Bogdanov-Takens bifurcation, are studied second. Bifurcation diagram for Bogdanov-Takens bifurcation of codimension 2 is given. Then, possible dynamical behaviors of this model are illustrated by numerical simulations. This paper appears to be the first study of the modified Holling-Tanner model that includes the influence of a strong Allee effect.
Citation: Kunlun Huang, Xintian Jia, Cuiping Li. Analysis of modified Holling-Tanner model with strong Allee effect[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 15524-15543. doi: 10.3934/mbe.2023693
[1] | Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395 |
[2] | Abdulmtalb Hussen, Mohammed S. A. Madi, Abobaker M. M. Abominjil . Bounding coefficients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials. AIMS Mathematics, 2024, 9(7): 18034-18047. doi: 10.3934/math.2024879 |
[3] | Tariq Al-Hawary, Ala Amourah, Abdullah Alsoboh, Osama Ogilat, Irianto Harny, Maslina Darus . Applications of q−Ultraspherical polynomials to bi-univalent functions defined by q−Saigo's fractional integral operators. AIMS Mathematics, 2024, 9(7): 17063-17075. doi: 10.3934/math.2024828 |
[4] | Abeer O. Badghaish, Abdel Moneim Y. Lashin, Amani Z. Bajamal, Fayzah A. Alshehri . A new subclass of analytic and bi-univalent functions associated with Legendre polynomials. AIMS Mathematics, 2023, 8(10): 23534-23547. doi: 10.3934/math.20231196 |
[5] | Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan . Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(1): 1024-1039. doi: 10.3934/math.2021061 |
[6] | Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan . Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial. AIMS Mathematics, 2022, 7(2): 2989-3005. doi: 10.3934/math.2022165 |
[7] | Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618 |
[8] | F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287 |
[9] | Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish . Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with q-Srivastava-Attiya operator. AIMS Mathematics, 2025, 10(3): 7269-7289. doi: 10.3934/math.2025333 |
[10] | Tingting Du, Zhengang Wu . Some identities involving the bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2023, 8(3): 5838-5846. doi: 10.3934/math.2023294 |
In this paper, we study a predator-prey system, the modified Holling-Tanner model with strong Allee effect. The existence and stability of the non-negative equilibria are discussed first. Several kinds of bifurcation phenomena, which the model may undergo, such as saddle-node bifurcation, Hopf bifurcation, and Bogdanov-Takens bifurcation, are studied second. Bifurcation diagram for Bogdanov-Takens bifurcation of codimension 2 is given. Then, possible dynamical behaviors of this model are illustrated by numerical simulations. This paper appears to be the first study of the modified Holling-Tanner model that includes the influence of a strong Allee effect.
Let A indicate an analytic functions family, which is normalized under the condition f (0)= f′(0)−1=0 in U={z:z∈C and |z |<1} and given by the following Taylor-Maclaurin series:
f (z)=z+∞∑n=2anzn . | (1.1) |
Further, by S we shall denote the class of all functions in A which are univalent in U.
With a view to recalling the principle of subordination between analytic functions, let the functions f and g be analytic in U. Then we say that the function f is subordinate to g if there exists a Schwarz function w(z), analytic in U with
ω(0)=0, |ω(z)|<1, (z∈U) |
such that
f (z)=g (ω(z)). |
We denote this subordination by
f≺g or f (z)≺g (z). |
In particular, if the function g is univalent in U, the above subordination is equivalent to
f (0)=g (0), f (U)⊂g (U). |
The Koebe-One Quarter Theorem [11] asserts that image of U under every univalent function f∈A contains a disc of radius 14. thus every univalent function f has an inverse f−1 satisfying f−1(f(z))=z and f ( f−1 (w))=w (|w|<r 0(f ),r 0(f ) >14 ), where
f−1(w)=w−a2w2+(2a22−a3)w3−(5a32−5a2a3+a4)w4+⋯. | (1.2) |
A function f∈A is said to be bi-univalent functions in U if both f and f−1 are univalent in U. A function f∈S is said to be bi-univalent in U if there exists a function g∈S such that g(z) is an univalent extension of f−1 to U. Let Λ denote the class of bi-univalent functions in U. The functions z1−z, −log(1−z), 12log(1+z1−z) are in the class Λ (see details in [20]). However, the familiar Koebe function is not bi-univalent. Lewin [17] investigated the class of bi-univalent functions Λ and obtained a bound |a2|≤1.51. Motivated by the work of Lewin [17], Brannan and Clunie [9] conjectured that |a2|≤√2. The coefficient estimate problem for |an|(n∈N,n≥3) is still open ([20]). Brannan and Taha [10] also worked on certain subclasses of the bi-univalent function class Λ and obtained estimates for their initial coefficients. Various classes of bi-univalent functions were introduced and studied in recent times, the study of bi-univalent functions gained momentum mainly due to the work of Srivastava et al. [20]. Motivated by this, many researchers [1], [4,5,6,7,8], [13,14,15], [20], [21], and [27,28,29], also the references cited there in) recently investigated several interesting subclasses of the class Λ and found non-sharp estimates on the first two Taylor-Maclaurin coefficients. Recently, many researchers have been exploring bi-univalent functions, few to mention Fibonacci polynomials, Lucas polynomials, Chebyshev polynomials, Pell polynomials, Lucas–Lehmer polynomials, orthogonal polynomials and the other special polynomials and their generalizations are of great importance in a variety of branches such as physics, engineering, architecture, nature, art, number theory, combinatorics and numerical analysis. These polynomials have been studied in several papers from a theoretical point of view (see, for example, [23,24,25,26,27,28,29,30] also see references therein).
We recall the following results relevant for our study as stated in [3].
Let p(x) and q(x) be polynomials with real coefficients. The (p,q)− Lucas polynomials Lp,q,n(x) are defined by the recurrence relation
Lp,q,n(x)=p(x)Lp,q,n−1(x)+q(x)Lp,q,n−2(x)(n≥2), |
from which the first few Lucas polynomials can be found as
Lp,q,0(x)=2,Lp,q,1(x)=p(x),Lp,q,2(x)=p2(x)+2q(x),Lp,q,3(x)=p3(x)+3p(x)q(x),.... | (1.3) |
For the special cases of p(x) and q(x), we can get the polynomials given Lx,1,n(x)≡Ln(x) Lucas polynomials, L2x,1,n(x)≡Dn(x) Pell–Lucas polynomials, L1,2x,n(x)≡jn(x) Jacobsthal–Lucas polynomials, L3x,−2,n(x)≡Fn(x) Fermat–Lucas polynomials, L2x,−1,n(x)≡Tn(x) Chebyshev polynomials first kind.
Lemma 1.1. [16] Let G{L(x)}(z)be the generating function of the (p,q)−Lucas polynomial sequence Lp,q,n(x).Then,
G{L(x)}(z)=∞∑n=0Lp,q,n(x)zn=2−p(x)z1−p(x)z−q(x)z2 |
and
G{L(x)}(z)=G{L(x)}(z)−1=1+∞∑n=1Lp,q,n(x)zn=1+q(x)z21−p(x)z−q(x)z2. |
Definition 1.2. [22] For ϑ≥0, δ∈R, ϑ+iδ≠0 and f∈A, let B(ϑ,δ) denote the class of Bazilevič function if and only if
Re[(zf′(z)f(z))(f(z)z)ϑ+iδ]>0. |
Several authors have researched different subfamilies of the well-known Bazilevič functions of type ϑ from various viewpoints (see [3] and [19]). For Bazilevič functions of order ϑ+iδ, there is no much work associated with Lucas polynomials in the literature. Initiating an exploration of properties of Lucas polynomials associated with Bazilevič functions of order ϑ+iδ is the main goal of this paper. To do so, we take into account the following definitions. In this paper motivated by the very recent work of Altinkaya and Yalcin [3] (also see [18]) we define a new class B(ϑ,δ), bi-Bazilevič function of Λ based on (p,q)− Lucas polynomials as below:
Definition 1.3. For f∈Λ, ϑ≥0, δ∈R, ϑ+iδ≠0 and let B(ϑ,δ) denote the class of Bi-Bazilevič functions of order t and type ϑ+iδ if only if
[(zf′(z)f(z))(f(z)z)ϑ+iδ]≺G{L(x)}(z)(z∈U) | (1.4) |
and
[(zg′(w)g(w))(g(w)w)ϑ+iδ]≺G{L(x)}(w)(w∈U), | (1.5) |
where GLp,q,n(z)∈Φ and the function g is described as g(w)=f−1(w).
Remark 1.4. We note that for δ=0 the class R(ϑ,0)=R(ϑ) is defined by Altinkaya and Yalcin [2].
The class B(0,0)=S∗Λ is defined as follows:
Definition 1.5. A function f∈Λ is said to be in the class S∗Λ, if the following subordinations hold
zf′(z)f(z)≺G{L(x)}(z)(z∈U) |
and
wg′(w)g(w)≺G{L(x)}(w)(w∈U) |
where g(w)=f−1(w).
We begin this section by finding the estimates of the coefficients |a2| and |a3| for functions in the class B(ϑ,δ).
Theorem 2.1. Let the function f(z) given by 1.1 be in the class B(ϑ,δ). Then
|a2|≤p(x)√2p(x)√|{((ϑ+iδ)2+3(ϑ+iδ)+2)−2(ϑ+iδ+1)2}p2(x)−4q(x)(ϑ+iδ+1)2|. |
and
|a3|≤p2(x)(ϑ+1)2+δ2+p(x)√(ϑ+2)2+δ2. |
Proof. Let f∈B(ϑ,δ,x) there exist two analytic functions u,v:U→U with u(0)=0=v(0), such that |u(z)|<1, |v(w)|<1, we can write from (1.4) and (1.5), we have
[(zf′(z)f(z))(f(z)z)ϑ+iδ]=G{L(x)}(z)(z∈U) | (2.1) |
and
[(zg′(w)g(w))(g(w)w)ϑ+iδ]=G{L(x)}(w)(w∈U), | (2.2) |
It is fairly well known that if
|u(z)|=|u1z+u2z2+⋯|<1 |
and
|v(w)|=|v1w+v2w2+⋯|<1. |
then
|uk|≤1and|vk|≤1(k∈N) |
It follows that, so we have
G{L(x)}(u(z))=1+Lp,q,1(x)u(z)+Lp,q,2(x)u2(z)+…=1+Lp,q,1(x)u1z+[Lp,q,1(x)u2+Lp,q,2(x)u21]z2+… | (2.3) |
and
G{L(x)}(v(w))=1+Lp,q,1(x)v(w)+Lp,q,2(x)v2(w)+…=1+Lp,q,1(x)v1w+[Lp,q,1(x)v2+Lp,q,2(x)v21]w2+… | (2.4) |
From the equalities (2.1) and (2.2), we obtain that
[(zf′(z)f(z))(f(z)z)ϑ+iδ]=1+Lp,q,1(x)u1z+[Lp,q,1(x)u2+Lp,q,2(x)u21]z2+…, | (2.5) |
and
[(zg′(w)g(w))(g(w)w)ϑ+iδ]=1+Lp,q,1(x)v1w+[Lp,q,1(x)v2+Lp,q,2(x)v21]w2+…, | (2.6) |
It follows from (2.5) and (2.6) that
(ϑ+iδ+1)a2=Lp,q,1(x)u1,, | (2.7) |
(ϑ+iδ−1)(ϑ+iδ+2)2a22−(ϑ+iδ+2)a3=Lp,q,1(x)u2+Lp,q,2(x)u21, | (2.8) |
and
−(ϑ+iδ+1)a2=Lp,q,1(x)v1, | (2.9) |
(ϑ+iδ+2)(ϑ+iδ+3)2a22+(ϑ+iδ+2)a3=Lp,q,1(x)v2+Lp,q,2(x)v21, | (2.10) |
From (2.7) and (2.9)
u1=−v1 | (2.11) |
and
2(ϑ+iδ+1)2a22=L2p,q,1(x)(u21+v21)., | (2.12) |
by adding (2.8) to (2.10), we get
((ϑ+iδ)2+3(ϑ+iδ)+2)a22=Lp,q,1(x)(u2+v2)+Lp,q,2(x)(u21+v21), | (2.13) |
by using (2.12) in equality (2.13), we have
[((ϑ+iδ)2+3(ϑ+iδ)+2)−2Lp,q,2(x)(ϑ+iδ+1)2L2p,q,1(x)]a22=Lp,q,1(x)(u2+v2), |
a22=L3p,q,1(x)(u2+v2)[((ϑ+iδ)2+3(ϑ+iδ)+2)L2p,q,1(x)−2Lp,q,2(x)(ϑ+iδ+1)2]. | (2.14) |
Thus, from (1.3) and (2.14) we get
|a2|≤p(x)√2p(x)√|{((ϑ+iδ)2+3(ϑ+iδ)+2)−2(ϑ+iδ+1)2}p2(x)−4q(x)(ϑ+iδ+1)2|. |
Next, in order to find the bound on |a3|, by subtracting (2.10) from (2.8), we obtain
2(ϑ+iδ+2)a3−2(ϑ+iδ+2)a22=Lp,q,1(x)(u2−v2)+Lp,q,2(x)(u21−v21)2(ϑ+iδ+2)a3=Lp,q,1(x)(u2−v2)+2(ϑ+iδ+2)a22a3=Lp,q,1(x)(u2−v2)2(ϑ+iδ+2)+a22 | (2.15) |
Then, in view of (2.11) and (2.12), we have from (2.15)
a3=L2p,q,1(x)2(ϑ+iδ+2)2(u21+v21)+Lp,q,1(x)2(ϑ+iδ+2)(u2−v2). |
|a3|≤p2(x)|ϑ+iδ+1|2+p(x)|ϑ+iδ+2|=p2(x)(ϑ+1)2+δ2+p(x)√(ϑ+2)2+δ2 |
This completes the proof.
Taking δ=0, in Theorem 2.1, we get the following corollary.
Corollary 2.2. Let the function f(z) given by (1.1) be in the class B(ϑ). Then
|a2|≤p(x)√2p(x)√|{(ϑ2+3ϑ+2)−2(ϑ+1)2}p2(x)−4q(x)(ϑ+1)2| |
and
|a3|≤p2(x)(ϑ+2)2+p(x)ϑ+2 |
Also, taking ϑ=0 and δ=0, in Theorem 2.1, we get the results given in [18].
Fekete-Szegö inequality is one of the famous problems related to coefficients of univalent analytic functions. It was first given by [12], the classical Fekete-Szegö inequality for the coefficients of f∈S is
|a3−μa22|≤1+2exp(−2μ/(1−μ)) for μ∈[0,1). |
As μ→1−, we have the elementary inequality |a3−a22|≤1. Moreover, the coefficient functional
ςμ(f)=a3−μa22 |
on the normalized analytic functions f in the unit disk U plays an important role in function theory. The problem of maximizing the absolute value of the functional ςμ(f) is called the Fekete-Szegö problem.
In this section, we are ready to find the sharp bounds of Fekete-Szegö functional ςμ(f) defined for f∈B(ϑ,δ) given by (1.1).
Theorem 3.1. Let f given by (1.1) be in the class B(ϑ,δ) and μ∈R. Then
|a3−μa22|≤{p(x)√(ϑ+2)2+δ2, 0≤|h(μ)|≤12√(ϑ+2)2+δ22p(x)|h(μ)|, |h(μ)|≥12√(ϑ+2)2+δ2 |
where
h(μ)=L2p,q,1(x)(1−μ)((ϑ+iδ)2+3(ϑ+iδ)+2)L2p,q,1(x)−2Lp,q,2(x)(ϑ+iδ+1)2. |
Proof. From (2.14) and (2.15), we conclude that
a3−μa22=(1−μ)L3p,q,1(x)(u2+v2)[((ϑ+iδ)2+3(ϑ+iδ)+2)L2p,q,1(x)−2Lp,q,2(x)(ϑ+iδ+1)2]+Lp,q,1(x)2(ϑ+iδ+2)(u2−v2) |
=Lp,q,1(x)[(h(μ)+12(ϑ+iδ+2))u2+(h(μ)−12(ϑ+iδ+2))v2] |
where
h(μ)=L2p,q,1(x)(1−μ)((ϑ+iδ)2+3(ϑ+iδ)+2)L2p,q,1(x)−2Lp,q,2(x)(ϑ+iδ+1)2. |
Then, in view of (1.3), we obtain
|a3−μa22|≤{p(x)√(ϑ+2)2+δ2, 0≤|h(μ)|≤12√(ϑ+2)2+δ22p(x)|h(μ)|, |h(μ)|≥12√(ϑ+2)2+δ2 |
We end this section with some corollaries.
Taking μ=1 in Theorem 3.1, we get the following corollary.
Corollary 3.2. If f∈B(ϑ,δ), then
|a3−a22|≤p(x)√(ϑ+2)2+δ2. |
Taking δ=0 in Theorem 3.1, we get the following corollary.
Corollary 3.3. Let f given by (1.1) be in the class B(ϑ,0). Then
|a3−μa22|≤{p(x)ϑ+2, 0≤|h(μ)|≤12(ϑ+2)2p(x)|h(μ)|, |h(μ)|≥12(ϑ+2) |
Also, taking ϑ=0, δ=0 and μ=1 in Theorem 3.1, we get the following corollary.
Corollary 3.4. Let f given by (1.1) be in the class B. Then
|a3−a22|≤p(x)2. |
All authors declare no conflicts of interest in this paper.
[1] |
P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213–245. https://doi.org/10.2307/2332342 doi: 10.2307/2332342
![]() |
[2] |
J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56 (1975), 855–867. https://doi.org/10.2307/1936296 doi: 10.2307/1936296
![]() |
[3] |
Y. Kuang, Global stability of Gause-type predator-prey systems, J. Math. Biol., 28 (1990), 463–474. https://doi.org/10.1007/BF00178329 doi: 10.1007/BF00178329
![]() |
[4] |
G. J. Butler, S. B. Hsu, P. Waltman, Coexistence of competing predators in a chemostat, J. Math. Biol., 17 (1983), 133–151. https://doi.org/10.1007/BF00305755 doi: 10.1007/BF00305755
![]() |
[5] |
K. S. Cheng, S. B. Hsu, S. S. Lin, Some results on global stability of a predator-prey system, J. Math. Biol., 12 (1982), 115–126. https://doi.org/10.1007/BF00275207 doi: 10.1007/BF00275207
![]() |
[6] |
S. B. Hsu, T. W. Hwang, Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type, Taiwan. J. Math., 3 (1999), 35–53. https://doi.org/10.11650/twjm/1500407053 doi: 10.11650/twjm/1500407053
![]() |
[7] |
S. B. Hsu, T. W. Huang, Global stability for a class of predator-prey systems, SIAM. J. Appl. Math., 55 (1995), 763–783. https://doi.org/10.1137/S0036139993253201 doi: 10.1137/S0036139993253201
![]() |
[8] |
M. A. Aziz-Alaoui, M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Appl. Math. Lett., 16 (2013), 1069–1075. https://doi.org/10.1016/S0893-9659(03)90096-6 doi: 10.1016/S0893-9659(03)90096-6
![]() |
[9] |
C. Xiang, J. C. Huang, H. Wang, Linking bifurcation analysis of Holling-Tanner model with generalist predator to a changing environment, Stud. Appl. Math., 149 (2022), 124–163. https://doi.org/10.1111/sapm.12492 doi: 10.1111/sapm.12492
![]() |
[10] |
Y. H. Du, R. Peng, M. X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differ. Equations, 246 (2009), 3932–3956. https://doi.org/10.1016/j.jde.2008.11.007 doi: 10.1016/j.jde.2008.11.007
![]() |
[11] |
R. P. Gupta, P. Chandra, Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl., 398 (2013), 278–295. https://doi.org/10.1016/j.jmaa.2012.08.057 doi: 10.1016/j.jmaa.2012.08.057
![]() |
[12] |
Y. L. Zhu, W. Kai, Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type Ⅱ schemes, J. Math. Anal. Appl., 384 (2011), 400–408. https://doi.org/10.1016/j.jmaa.2011.05.081 doi: 10.1016/j.jmaa.2011.05.081
![]() |
[13] |
C. Ji, D. Jiang, N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482–498. https://doi.org/10.1016/j.jmaa.2009.05.039 doi: 10.1016/j.jmaa.2009.05.039
![]() |
[14] |
J. Xie, H. Liu, D. Luo, The Effects of harvesting on the dynamics of a Leslie-Gower model, Discrete Dyn. Nat. Soc., 2 (2021), 1–11. https://doi.org/10.1155/2021/5520758 doi: 10.1155/2021/5520758
![]() |
[15] |
Z. Shang, Y. Qiao, Bifurcation analysis of a Leslie-type predator-prey system with simplified Holling type Ⅳ functional response and strong Allee effect on prey, Nonlinear Anal.: Real World Appl., 64 (2022), 103–453. https://doi.org/10.1016/j.nonrwa.2021.103453 doi: 10.1016/j.nonrwa.2021.103453
![]() |
[16] |
Y. Huang, Z. Zhu, Z. Li, Modeling the Allee effect and fear effect in predator-prey system incorporating a prey refuge, Adv. Differ. Equations, 321 (2020), 1–13. https://doi.org/10.1186/s13662-020-02727-5 doi: 10.1186/s13662-020-02727-5
![]() |
[17] |
D. Sen, S. Ghorai, S. Sharma, M. Banerjee, Allee effect in prey's growth reduces the dynamical complexity in prey-predator model with generalist predator, Appl. Math. Modell., 91 (2021), 768–790. https://doi.org/10.1016/j.apm.2020.09.046 doi: 10.1016/j.apm.2020.09.046
![]() |
[18] |
A. Kumar, B. Dubey, Dynamics of prey-predator model with strong and weak Allee effect in the prey with gestation delay, Nonlinear Anal.-Model. Control, 25 (2020), 417–442. https://doi.org/10.15388/namc.2020.25.16663 doi: 10.15388/namc.2020.25.16663
![]() |
[19] |
V. Méndez, C. Sans, I. Lopis, D. Campos, Extinction conditions for isolated populations with Allee effect, Math. Biosci., 232 (2011), 78–86. https://doi.org/10.1103/PhysRevE.99.022101 doi: 10.1103/PhysRevE.99.022101
![]() |
[20] |
J. Ye, Y. Wang, Z. Jin, C. J. Dai, M. Zhao, Dynamics of a predator-prey model with strong allee effect and nonconstant mortality rate, Math. Biosci. Eng., 19 (2022), 3402–3426. https://doi.org/10.3934/mbe.2022157 doi: 10.3934/mbe.2022157
![]() |
[21] |
D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal.: Real World Appl., 33 (2017), 58–82. https://doi.org/10.1016/j.nonrwa.2016.05.010 doi: 10.1016/j.nonrwa.2016.05.010
![]() |
[22] |
C. Xiang, J. C. Huang, M. Lu, Degenerate Bogdanov-Takens bifurcation of codimension 4 in Holling-Tanner model with harvesting, J. Differ. Equations, 314 (2022), 370–417. https://doi.org/10.1016/j.jde.2022.01.016 doi: 10.1016/j.jde.2022.01.016
![]() |
[23] |
C. Xiang, J. C. Huang, H. Wang, Bifurcations in Holling-Tanner model with generalist predator and prey refuge, J. Differ. Equations, 343 (2023), 495–529. https://doi.org/10.1016/j.jde.2022.10.018 doi: 10.1016/j.jde.2022.10.018
![]() |
[24] |
C. Arancibia-Ibarra, J. D. Flores, G. Pettet, P. V. Heijster, A Holling-Tanner predator-prey model with strong Allee effect, Int. J. Bifurcation Chaos, 29 (2019), 1–16. https://doi.org/10.1142/S0218127419300325 doi: 10.1142/S0218127419300325
![]() |
[25] |
X. T. Jia, K. L. Huang, C. P. Li, Bifurcation analysis of a modified Leslie-Gower predator-prey System, Int. J. Bifurcat. Chaos, 33 (2023), 1–16. https://doi.org/10.1142/S0218127423500244 doi: 10.1142/S0218127423500244
![]() |
[26] |
J. J. Zhang, Y. H. Qiao, Bifurcation analysis of an SIR model considering hospital resources and vaccination, Math. Comput. Simul., 208 (2023), 157–185. https://doi.org/10.1016/j.matcom.2023.01.023 doi: 10.1016/j.matcom.2023.01.023
![]() |
[27] |
Z. F. Zhang, T. R. Ding, W. Z. Huang, Z. X. Dong, Qualitative Theory of Differential Equations, Amer. Math. Soc., 101 (1992). https://doi.org/10.1090/mmono/101 doi: 10.1090/mmono/101
![]() |
[28] | L. Perko, Differential Equations and Dynamical Systems, 3nd edition, Springer-Verlag, New York, 2013. https://doi.org/10.1007/978-1-4613-0003-8 |
[29] |
A. Gasull, Limit cycles in the Holling-Tanner model, Publ. Mat., 41 (1997), 149–167. http://doi.org/10.5565/PUBLMAT_41197_09 doi: 10.5565/PUBLMAT_41197_09
![]() |
1. | Ala Amourah, Basem Aref Frasin, Thabet Abdeljawad, Sivasubramanian Srikandan, Fekete-Szegö Inequality for Analytic and Biunivalent Functions Subordinate to Gegenbauer Polynomials, 2021, 2021, 2314-8888, 1, 10.1155/2021/5574673 | |
2. | Mohamed Illafe, Ala Amourah, Maisarah Haji Mohd, Coefficient Estimates and Fekete–Szegö Functional Inequalities for a Certain Subclass of Analytic and Bi-Univalent Functions, 2022, 11, 2075-1680, 147, 10.3390/axioms11040147 | |
3. | Nazmiye Yilmaz, İbrahim Aktaş, On some new subclasses of bi-univalent functions defined by generalized Bivariate Fibonacci polynomial, 2022, 33, 1012-9405, 10.1007/s13370-022-00993-y | |
4. | Daniel Breaz, Halit Orhan, Luminiţa-Ioana Cotîrlă, Hava Arıkan, A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator, 2023, 12, 2075-1680, 172, 10.3390/axioms12020172 | |
5. | Luminiţa-Ioana Cotîrlǎ, Abbas Kareem Wanas, Applications of Laguerre Polynomials for Bazilevič and θ-Pseudo-Starlike Bi-Univalent Functions Associated with Sakaguchi-Type Functions, 2023, 15, 2073-8994, 406, 10.3390/sym15020406 | |
6. | Isra Al-Shbeil, Abbas Kareem Wanas, Afis Saliu, Adriana Cătaş, Applications of Beta Negative Binomial Distribution and Laguerre Polynomials on Ozaki Bi-Close-to-Convex Functions, 2022, 11, 2075-1680, 451, 10.3390/axioms11090451 | |
7. | Tariq Al-Hawary, Ala Amourah, Basem Aref Frasin, Fekete–Szegö inequality for bi-univalent functions by means of Horadam polynomials, 2021, 27, 1405-213X, 10.1007/s40590-021-00385-5 | |
8. | Abbas Kareem Wanas, Luminiţa-Ioana Cotîrlă, Applications of (M,N)-Lucas Polynomials on a Certain Family of Bi-Univalent Functions, 2022, 10, 2227-7390, 595, 10.3390/math10040595 | |
9. | Abbas Kareem Wanas, Haeder Younis Althoby, Fekete-Szegö Problem for Certain New Family of Bi-Univalent Functions, 2022, 2581-8147, 263, 10.34198/ejms.8222.263272 | |
10. | Arzu Akgül, F. Müge Sakar, A new characterization of (P, Q)-Lucas polynomial coefficients of the bi-univalent function class associated with q-analogue of Noor integral operator, 2022, 33, 1012-9405, 10.1007/s13370-022-01016-6 | |
11. | Tariq Al-Hawary, Coefficient bounds and Fekete–Szegö problem for qualitative subclass of bi-univalent functions, 2022, 33, 1012-9405, 10.1007/s13370-021-00934-1 | |
12. | Ala Amourah, Basem Aref Frasin, Tamer M. Seoudy, An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials, 2022, 10, 2227-7390, 2462, 10.3390/math10142462 | |
13. | Abbas Kareem Wanas, Alina Alb Lupaş, Applications of Laguerre Polynomials on a New Family of Bi-Prestarlike Functions, 2022, 14, 2073-8994, 645, 10.3390/sym14040645 | |
14. | Ibtisam Aldawish, Basem Frasin, Ala Amourah, Bell Distribution Series Defined on Subclasses of Bi-Univalent Functions That Are Subordinate to Horadam Polynomials, 2023, 12, 2075-1680, 362, 10.3390/axioms12040362 | |
15. | Ala Amourah, Omar Alnajar, Maslina Darus, Ala Shdouh, Osama Ogilat, Estimates for the Coefficients of Subclasses Defined by the Bell Distribution of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials, 2023, 11, 2227-7390, 1799, 10.3390/math11081799 | |
16. | Omar Alnajar, Maslina Darus, 2024, 3150, 0094-243X, 020005, 10.1063/5.0228336 | |
17. | Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla, Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions, 2024, 9, 2473-6988, 8134, 10.3934/math.2024395 | |
18. | Ala Amourah, Ibtisam Aldawish, Basem Aref Frasin, Tariq Al-Hawary, Applications of Shell-like Curves Connected with Fibonacci Numbers, 2023, 12, 2075-1680, 639, 10.3390/axioms12070639 | |
19. | Tariq Al-Hawary, Ala Amourah, Abdullah Alsoboh, Osama Ogilat, Irianto Harny, Maslina Darus, Applications of q−Ultraspherical polynomials to bi-univalent functions defined by q−Saigo's fractional integral operators, 2024, 9, 2473-6988, 17063, 10.3934/math.2024828 | |
20. | İbrahim Aktaş, Derya Hamarat, Generalized bivariate Fibonacci polynomial and two new subclasses of bi-univalent functions, 2023, 16, 1793-5571, 10.1142/S1793557123501474 | |
21. | Abbas Kareem Wanas, Fethiye Müge Sakar, Alina Alb Lupaş, Applications Laguerre Polynomials for Families of Bi-Univalent Functions Defined with (p,q)-Wanas Operator, 2023, 12, 2075-1680, 430, 10.3390/axioms12050430 | |
22. | Ala Amourah, Zabidin Salleh, B. A. Frasin, Muhammad Ghaffar Khan, Bakhtiar Ahmad, Subclasses of bi-univalent functions subordinate to gegenbauer polynomials, 2023, 34, 1012-9405, 10.1007/s13370-023-01082-4 | |
23. | Tariq Al-Hawary, Basem Aref Frasin, Abbas Kareem Wanas, Georgia Irina Oros, On Rabotnov fractional exponential function for bi-univalent subclasses, 2023, 16, 1793-5571, 10.1142/S1793557123502170 | |
24. | Tariq Al-Hawary, Ala Amourah, Hasan Almutairi, Basem Frasin, Coefficient Inequalities and Fekete–Szegö-Type Problems for Family of Bi-Univalent Functions, 2023, 15, 2073-8994, 1747, 10.3390/sym15091747 | |
25. | Omar Alnajar, Osama Ogilat, Ala Amourah, Maslina Darus, Maryam Salem Alatawi, The Miller-Ross Poisson distribution and its applications to certain classes of bi-univalent functions related to Horadam polynomials, 2024, 10, 24058440, e28302, 10.1016/j.heliyon.2024.e28302 | |
26. | Tariq Al-Hawary, Basem Frasin, Daniel Breaz, Luminita-Ioana Cotîrlă, Inclusive Subclasses of Bi-Univalent Functions Defined by Error Functions Subordinate to Horadam Polynomials, 2025, 17, 2073-8994, 211, 10.3390/sym17020211 |