Research article

An improved multi-strategy beluga whale optimization for global optimization problems


  • Received: 07 April 2023 Revised: 22 May 2023 Accepted: 23 May 2023 Published: 09 June 2023
  • This paper presents an improved beluga whale optimization (IBWO) algorithm, which is mainly used to solve global optimization problems and engineering problems. This improvement is proposed to solve the imbalance between exploration and exploitation and to solve the problem of insufficient convergence accuracy and speed of beluga whale optimization (BWO). In IBWO, we use a new group action strategy (GAS), which replaces the exploration phase in BWO. It was inspired by the group hunting behavior of beluga whales in nature. The GAS keeps individual belugas whales together, allowing them to hide together from the threat posed by their natural enemy, the tiger shark. It also enables the exchange of location information between individual belugas whales to enhance the balance between local and global lookups. On this basis, the dynamic pinhole imaging strategy (DPIS) and quadratic interpolation strategy (QIS) are added to improve the global optimization ability and search rate of IBWO and maintain diversity. In a comparison experiment, the performance of the optimization algorithm (IBWO) was tested by using CEC2017 and CEC2020 benchmark functions of different dimensions. Performance was analyzed by observing experimental data, convergence curves, and box graphs, and the results were tested using the Wilcoxon rank sum test. The results show that IBWO has good optimization performance and robustness. Finally, the applicability of IBWO to practical engineering problems is verified by five engineering problems.

    Citation: Hongmin Chen, Zhuo Wang, Di Wu, Heming Jia, Changsheng Wen, Honghua Rao, Laith Abualigah. An improved multi-strategy beluga whale optimization for global optimization problems[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 13267-13317. doi: 10.3934/mbe.2023592

    Related Papers:

  • This paper presents an improved beluga whale optimization (IBWO) algorithm, which is mainly used to solve global optimization problems and engineering problems. This improvement is proposed to solve the imbalance between exploration and exploitation and to solve the problem of insufficient convergence accuracy and speed of beluga whale optimization (BWO). In IBWO, we use a new group action strategy (GAS), which replaces the exploration phase in BWO. It was inspired by the group hunting behavior of beluga whales in nature. The GAS keeps individual belugas whales together, allowing them to hide together from the threat posed by their natural enemy, the tiger shark. It also enables the exchange of location information between individual belugas whales to enhance the balance between local and global lookups. On this basis, the dynamic pinhole imaging strategy (DPIS) and quadratic interpolation strategy (QIS) are added to improve the global optimization ability and search rate of IBWO and maintain diversity. In a comparison experiment, the performance of the optimization algorithm (IBWO) was tested by using CEC2017 and CEC2020 benchmark functions of different dimensions. Performance was analyzed by observing experimental data, convergence curves, and box graphs, and the results were tested using the Wilcoxon rank sum test. The results show that IBWO has good optimization performance and robustness. Finally, the applicability of IBWO to practical engineering problems is verified by five engineering problems.



    加载中


    [1] E. G. Talbi, Metaheuristics: from Design to Implementation, John Wiley & Sons, 2009. https://doi.org/10.1002/9780470496916
    [2] X. S. Yang, Nature-inspired optimization algorithms: Challenges and open problems, J. Comput. Sci., 46 (2020), 101104. https://doi.org/10.1016/j.jocs.2020.101104 doi: 10.1016/j.jocs.2020.101104
    [3] M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, An improved grey wolf optimizer for solving engineering problems, Expert Syst. Appl., 166 (2021), 113917. https://doi.org/10.1016/j.eswa.2020.113917 doi: 10.1016/j.eswa.2020.113917
    [4] M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, H. Faris, MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems, Appl. Soft Comput., 97 (2020), 106761. https://doi.org/10.1016/j.asoc.2020.106761 doi: 10.1016/j.asoc.2020.106761
    [5] S. R. Zhao, Y. L. Wu, S. Tan, J. R. Wu, Z. S. Cui, Y. G. Wang, QQLMPA: A quasi-opposition learning and Q-learning based marine predators algorithm, Expert Syst. Appl., 213 (2023), 119246. https://doi.org/10.1016/j.eswa.2022.119246 doi: 10.1016/j.eswa.2022.119246
    [6] C. T. Zhong, G. Li, Z. Zeng, Beluga whale optimization: A novel nature-inspired metaheuristic algorithm, Knowledge-Based Syst., 251 (2022), 109215. https://doi.org/10.1016/j.knosys.2022.109215 doi: 10.1016/j.knosys.2022.109215
    [7] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95-International Conference on Neural Networks, IEEE, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
    [8] S. Mirjalili, S. M Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [9] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [10] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell. Mag., 1 (2006), 28–39. https://doi.org/10.1109/MCI.2006.329691 doi: 10.1109/MCI.2006.329691
    [11] H. Jia, X. Peng, C. Lang, Remora optimization algorithm, Expert Syst. Appl. 185 (2021), 115665. https://doi.org/10.1016/j.eswa.2021.115665
    [12] S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowledge-Based Syst., 89 (2015), 228–249. https://doi.org/10.1016/j.knosys.2015.07.006 doi: 10.1016/j.knosys.2015.07.006
    [13] A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S. Mirjalili, A. H. Gandomi, Prairie dog optimization algorithm, Neural Comput. Appl., 34 (2022), 20017–20065. https://doi.org/10.1007/s00521-022-07530-9 doi: 10.1007/s00521-022-07530-9
    [14] A. Seyyedabbasi, F. Kiani, Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems, Eng. Comput., 2022 (2022), 1–25. https://doi.org/10.1007/s00366-022-01604-x doi: 10.1007/s00366-022-01604-x
    [15] R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput.-Aided Des., 43 (2011), 303–315. https://doi.org/10.1016/j.cad.2010.12.015 doi: 10.1016/j.cad.2010.12.015
    [16] A. Kaveh, V. R. Mahdavi, Colliding bodies optimization: a novel meta-heuristic method, Comput. Struct., 139 (2014), 18–27. https://doi.org/10.1016/j.compstruc.2014.04.005 doi: 10.1016/j.compstruc.2014.04.005
    [17] T. T. Huan, A. J. Kulkarni, J. Kanesan, C. J. Huang, A. Abraham, Ideology algorithm: a socio-inspired optimization methodology, Neural Comput. Appl., 28 (2017), 845–876. https://doi.org/10.1007/s00521-016-2379-4 doi: 10.1007/s00521-016-2379-4
    [18] Y. Shi, Brain storm optimization algorithm, in Advances in Swarm Intelligence: Second International Conference, Springer, (2011), 303–309. https://doi.org/10.1007/978-3-642-21515-5_36
    [19] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, in 2007 IEEE Congress on Evolutionary Computation, IEEE, (2007), 4661–4667. https://doi.org/10.1109/CEC.2007.4425083
    [20] Z. W. Geem, J. H. Kim, G. V. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation, 76 (2001), 60–68. https://doi.org/10.1177/003754970107600201 doi: 10.1177/003754970107600201
    [21] S. He, Q. H. Wu, J. R. Saunders, Group search optimizer: an optimization algorithm inspired by animal searching behavior, IEEE Trans. Evol. Comput., 13 (2009), 973–990. https://doi.org/10.1109/TEVC.2009.2011992 doi: 10.1109/TEVC.2009.2011992
    [22] Y. Zhang, Z. Jin, Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems, Expert Syst. Appl., 148 (2020), 113246. https://doi.org/10.1016/j.eswa.2020.113246 doi: 10.1016/j.eswa.2020.113246
    [23] S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems, Knowledge-Based Syst., 96 (2016), 120–133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022
    [24] D. Bertsimas, J. Tsitsiklis, Simulated annealing, Stat. Sci., 8 (1993), 10–15. https://doi.org/10.1214/ss/1177011077 doi: 10.1214/ss/1177011077
    [25] R. A. Formato, Central force optimization, Prog. Electromagn. Res., 77 (2007), 425–491. http://doi.org/10.2528/PIER07082403 doi: 10.2528/PIER07082403
    [26] S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27 (2016), 495–513. https://doi.org/10.1007/s00521-015-1870-7 doi: 10.1007/s00521-015-1870-7
    [27] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. https://doi.org/10.1016/j.cma.2020.113609 doi: 10.1016/j.cma.2020.113609
    [28] A. Hatamlou, Black hole: A new heuristic optimization approach for data clustering, Inf. Sci., 222 (2013), 175–184. https://doi.org/10.1016/j.ins.2012.08.023 doi: 10.1016/j.ins.2012.08.023
    [29] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm, Inf. Sci., 179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 doi: 10.1016/j.ins.2009.03.004
    [30] H. Du, X. Wu, J. Zhuang, Small-world optimization algorithm for function optimization//advances in natural computation: Second international conference, in Advances in Natural Computation: Second International Conference, ICNC 2006, Springer, (2006), 264–273. https://doi.org/10.1007/11881223_33
    [31] W, Banzhaf, J. R. Koza, C. Ryan, L. Spector, C. Jacob, Genetic programming, IEEE Intell. Syst. Appl., 15 (2000), 74–84. https://doi.org/10.1109/5254.846288 doi: 10.1109/5254.846288
    [32] K. V. Price, Differential evolution, Handb. Optim.: Classical Mod. Approach, 2013 (2013), 187–214. https://doi.org/10.1007/978-3-642-30504-7_8 doi: 10.1007/978-3-642-30504-7_8
    [33] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Trans. Evol. Comput., 3 (1999), 82–102. https://doi.org/10.1109/4235.771163 doi: 10.1109/4235.771163
    [34] D. Simon, Biogeography-based optimization, IEEE Trans. Evol. Comput., 12 (2008), 702–713. https://doi.org/10.1109/TEVC.2008.919004 doi: 10.1109/TEVC.2008.919004
    [35] J. H. Holland, Genetic algorithms, Sci. Am., 267 (1992), 66–73. https://doi.org/10.1038/scientificamerican0792-66 doi: 10.1038/scientificamerican0792-66
    [36] H. G. FBeyer, H. P. Schwefel, Evolution strategies-a comprehensive introduction, Nat. Comput., 1 (2002), 3–52. https://doi.org/10.1023/A:1015059928466 doi: 10.1023/A:1015059928466
    [37] M. Jaderyan, H. Khotanlou, Virulence optimization algorithm, Appl. Soft. Comput., 43 (2016), 596–618. https://doi.org/10.1016/j.asoc.2016.02.038 doi: 10.1016/j.asoc.2016.02.038
    [38] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67–82. https://doi.org/10.1109/4235.585893 doi: 10.1109/4235.585893
    [39] S. Wang, A. G. Hussien, H. Jia, L. Aualigah, R. Zheng, Enhanced remora optimization algorithm for solving constrained engineering optimization problems, Mathematics, 10 (2022), 1696. https://doi.org/10.3390/math10101696 doi: 10.3390/math10101696
    [40] Z. Cui, X. Hou, H. Zhou, W. Lian, J. Wu, Modified slime mould algorithm via levy flight, in 2020 13th International Congress on Image and Signal Processing, Biomedical Engineering and Informatics (CISP-BMEI), IEEE, (2020), 1109–1113. https://doi.org/10.1109/CISP-BMEI51763.2020.9263669
    [41] D. Wu, H. Rao, C. Wen, H. Jia, Q. Liu, L. Abualigah, Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems, Mathematics, 10 (2022), 4350. https://doi.org/10.3390/math10224350 doi: 10.3390/math10224350
    [42] M. H. Nadimi-Shahraki, H, Mohammad, H. D. Zamani, S. Mirjalili, M. A. Elaziz, MMKE: Multi-trial vector-based monkey king evolution algorithm and its applications for engineering optimization problems, Plos One, 18 (2023), e0280006. https://doi.org/10.1371/journal.pone.0280006 doi: 10.1371/journal.pone.0280006
    [43] M. H. Nadimi-Shahraki, H, Mohammad, A. A. Ewees, L. Abualigah, Mtv-mfo: Multi-trial vector-based moth-flame optimization algorithm, Symmetry, 13 (2021), 2388. https://doi.org/10.3390/sym13122388 doi: 10.3390/sym13122388
    [44] M. H. Nadimi-Shahraki, E. Moeini, S. Taghian, S. Mirjalili, DMFO-CD: a discrete moth-flame optimization algorithm for community detection, Algorithms, 14 (2021), 314. https://doi.org/10.3390/a14110314 doi: 10.3390/a14110314
    [45] Y. Yang, Y. Gao, S. Tan, S. Zhao, J. Wu, S. Gao, et al., An opposition learning and spiral modelling based arithmetic optimization algorithm for global continuous optimization problems, Eng. Appl. Artif. Intell., 113 (2022), 104981. https://doi.org/10.1016/j.engappai.2022.104981 doi: 10.1016/j.engappai.2022.104981
    [46] Y. Yang, C. Qian, H. Li, Y. Gao, J. Wu, C. J. Liu, et al., An efficient DBSCAN optimized by arithmetic optimization algorithm with opposition-based learning, J. Supercomput., 78 (2022), 19566–19604. https://doi.org/10.1007/s11227-022-04634-w doi: 10.1007/s11227-022-04634-w
    [47] M. H. Nadimi-Shahraki, H. Mohammad, S. Mirjalili, L. Abualigah, Binary aquila optimizer for selecting effective features from medical data: a covid-19 case study, Mathematics, 10 (2022), 1929. https://doi.org/10.3390/math10111929 doi: 10.3390/math10111929
    [48] S. Sharma, A. K. Saha, G. Lohar, Optimization of weight and cost of cantilever retaining wall by a hybrid metaheuristic algorithm, Eng. Comput., 2021 (2021), 1–27. https://doi.org/10.1007/s00366-021-01294-x doi: 10.1007/s00366-021-01294-x
    [49] M. Masdari, S. Barshandeh, Discrete teaching-learning-based optimization algorithm for clustering in wireless sensor networks, Intell. Humaniz. Comput., 11 (2020), 5459–5476. https://doi.org/10.1007/s12652-020-01902-6 doi: 10.1007/s12652-020-01902-6
    [50] H. R. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence, in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), IEEE, (2005), 695–701. https://doi.org/10.1109/CIMCA.2005.1631345
    [51] M. Li, G. Xu, B. Fu, X. Zhao, Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy, J. Supercomput., 2022 (2022), 1–31. https://doi.org/10.1007/s11227-021-04116-5 doi: 10.1007/s11227-021-04116-5
    [52] N. A. Dodgson, Quadratic interpolation for image resampling, IEEE Trans. Image Process., 6 (1997), 1322–1326. https://doi.org/10.1109/83.623195 doi: 10.1109/83.623195
    [53] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [54] H. A. Alsattar, A. A. Zaidan, B. B. Zaidan, Novel meta-heuristic bald eagle search optimisation algorithm, Artif. Intell. Rev., 53 (2020), 2237–2264. https://doi.org/10.1007/s10462-019-09732-5 doi: 10.1007/s10462-019-09732-5
    [55] G. Wu, M. Rammohan, P. N. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization, Natl. Univ. Def. Technol., 2017 (2017).
    [56] C. Wen, H. Jia, D. Wu, H. Rao, S. Li, Q. Liu, et al., Modified remora optimization algorithm with multistrategies for global optimization problem, Mathematics, 10 (2022), 3604. https://doi.org/10.3390/math10193604 doi: 10.3390/math10193604
    [57] E. Cuevas, P. Diaz, O. Camarena, E. Cuevas, P. Diaz, O. Camarena, Experimental analysis between exploration and exploitation, in Metaheuristic Computation: A Performance Perspective, Springer, (2021), 249–269. https://doi.org/10.1007/978-3-030-58100-8_10
    [58] J. O. Agushaka, A. E. Ezugwu, L. Abualigah, Dwarf mongoose optimization algorithm, Comput. Methods Appl. Mech. Eng., 391 (2022), 114570. https://doi.org/10.1016/j.cma.2022.114570 doi: 10.1016/j.cma.2022.114570
    [59] E. H. Houssein, N. Neggaz, M. E. Hosney, W. M. Mohamed, M. Hassaballah, Enhanced Harris hawks optimization with genetic operators for selection chemical descriptors and compounds activities, Neural Comput. Appl., 33 (2021), 13601–13618. https://doi.org/10.1007/s00521-021-05991-y doi: 10.1007/s00521-021-05991-y
    [60] W. Long, J. Jiao, X. Liang, S. Cai, A random opposition-based learning grey wolf optimizer, IEEE Access, 7 (2019), 113810–113825. https://doi.org/10.1109/ACCESS.2019.2934994 doi: 10.1109/ACCESS.2019.2934994
    [61] E. H. Houssein, N. Neggaz, M. E. Hosney, M. E. Hosney, W. M. Mohamed, M. Hassaballah, Enhanced Harris hawks optimization with genetic operators for selection chemical descriptors and compounds activities, Neural Comput. Appl., 33 (2021), 13601–13618. https://doi.org/10.1007/s00521-021-05991-y doi: 10.1007/s00521-021-05991-y
    [62] A. G. Hussien, An enhanced opposition-based salp swarm algorithm for global optimization and engineering problems, J. Ambient. Intell. Humaniz. Comput., 13 (2022), 129–150. https://doi.org/10.1007/s12652-021-02892-9 doi: 10.1007/s12652-021-02892-9
    [63] G. Sayed, A. Darwish, A. E. Hassanien, A new chaotic multi-verse optimization algorithm for solving engineering optimization problems, J. Exp. Theor. Artif. Intell., 30 (2018), 293–317. https://doi.org/10.1080/0952813X.2018.1430858 doi: 10.1080/0952813X.2018.1430858
    [64] L. Abualigah, M. A. Elaziz, P. Sumari, Z. W. Geem, A. H. Gandomi, Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer, Expert Syst. Appl., 191 (2021), 116158. https://doi.org/10.1016/j.eswa.2021.116158 doi: 10.1016/j.eswa.2021.116158
    [65] H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems, Comput. Struct., 110 (2012), 151–166. https://doi.org/10.1016/j.compstruc.2012.07.010 doi: 10.1016/j.compstruc.2012.07.010
    [66] A. H. Gandomi, X. S. Yang, A. H. Alavi, Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems, Eng. Comput., 29 (2013), 17–35. https://doi.org/10.1007/s00366-011-0241-y doi: 10.1007/s00366-011-0241-y
    [67] A. Baykasoglu, S. Akpinar, Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems-part2: Constrained optimization, Appl. Soft Comput., 37 (2015), 396–415. https://doi.org/10.1016/j.asoc.2015.08.052 doi: 10.1016/j.asoc.2015.08.052
    [68] J. M. Czerniak, H. Zarzycki, D. Ewald, Aao as a new strategy in modeling and simulation of constructional problems optimization, Simul. Modell. Pract. Theory, 76 (2017), 22–33. https://doi.org/10.1016/j.simpat.2017.04.001 doi: 10.1016/j.simpat.2017.04.001
    [69] A. Baykasoglu, F. B. Ozsoydan, Adaptive firefly algorithm with chaos for mechanical design optimization problems, Appl. Soft Comput., 36 (2015), 152–164. https://doi.org/10.1016/j.asoc.2015.06.056 doi: 10.1016/j.asoc.2015.06.056
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2369) PDF downloads(363) Cited by(14)

Article outline

Figures and Tables

Figures(18)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog