Research article Special Issues

The mathematical analysis towards the dependence on the initial data for a discrete thermostatted kinetic framework for biological systems composed of interacting entities

  • Received: 09 April 2020 Accepted: 16 June 2020 Published: 28 June 2020
  • This paper is devoted to a mathematical proof of the continuous dependence on the initial data for the discrete thermostatted kinetic framework, for all T > 0. This is a versatile model for describing the time-evolution of a biological complex system which is composed by a large number of interacting entities, called active particles, and is subjected to an external force field due to the environment. A thermostat term is introduced in order to keep the 2nd-order moment of the system, corresponding to the physical global activation energy, constant in time. This model is expressed by a system of nonlinear ordinary differential equations with quadratic nonlinearity.

    Citation: Marco Menale, Bruno Carbonaro. The mathematical analysis towards the dependence on the initial data for a discrete thermostatted kinetic framework for biological systems composed of interacting entities[J]. AIMS Biophysics, 2020, 7(3): 204-218. doi: 10.3934/biophy.2020016

    Related Papers:

  • This paper is devoted to a mathematical proof of the continuous dependence on the initial data for the discrete thermostatted kinetic framework, for all T > 0. This is a versatile model for describing the time-evolution of a biological complex system which is composed by a large number of interacting entities, called active particles, and is subjected to an external force field due to the environment. A thermostat term is introduced in order to keep the 2nd-order moment of the system, corresponding to the physical global activation energy, constant in time. This model is expressed by a system of nonlinear ordinary differential equations with quadratic nonlinearity.



    加载中


    [1] Bianca C, Riposo J (2015) Mimic therapeutic actions against keloid by thermostatted kinetic theory methods. Eur Phys J Plus 130: 159. doi: 10.1140/epjp/i2015-15159-4
    [2] Bonabeau E, Theraulaz G, Deneubourg JL (1996) Mathematical model of self-organizing hierarchies in animal societies. B Math Biol 58: 661-717. doi: 10.1007/BF02459478
    [3] Choi B, Rempala GA (2012) Inference for discretely observed stochastic kinetic networks with applications to epidemic modeling. Biostatistics 13: 153-165. doi: 10.1093/biostatistics/kxr019
    [4] Conte M, Gerardo-Giorda L, Groppi M (2020) Glioma invasion and its interplay with nervous tissue and therapy: A multiscale model. J Theor Biol 486: 110088. doi: 10.1016/j.jtbi.2019.110088
    [5] Gray A, Greenhalgh D, Hu L, et al. (2011) A stochastic differential equation SIS epidemic model. SIAM J Appl Math 71: 876-902. doi: 10.1137/10081856X
    [6] Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42: 599-653. doi: 10.1137/S0036144500371907
    [7] Masurel L, Bianca C, Lemarchand A (2018) On the learning control effects in the cancer-immune system competition. Physica A: Stat Mech Appl 506: 462-475. doi: 10.1016/j.physa.2018.04.077
    [8] Krause J, Ruxton GD, Ruxton GD, et al. (2002)  Living in Groups Oxford: Oxford University Press.
    [9] Poleszczuk J, Macklin P, Enderling H (2016) Agent-based modeling of cancer stem cell driven solid tumor growth. Stem Cell Heterogeneity New York: Humana Press, 335-346.
    [10] Rybokonenko D, Balakhontceva M, Voloshin D, et al. (2015) Agent-based modeling of crowd dynamics on a moving platform. Procedia Comput Sci 66: 317-327. doi: 10.1016/j.procs.2015.11.037
    [11] Spina S, Giorno V, Román-Román P, et al. (2014) A stochastic model of cancer growth subject to an intermittent treatment with combined effects: Reduction in tumor size and rise in growth rate. B Math Biol 76: 2711-2736. doi: 10.1007/s11538-014-0026-8
    [12] Anderson PW (2011)  More and Different: Notes from a Thoughtful Curmudgeon World Scientific. doi: 10.1142/8141
    [13] Bar-Yam Y (1997)  Dynamics of Complex Systems CRC Press.
    [14] Cilliers P, Spurrett D (1999) Complexity and postmodernism: Understanding complex systems. S Afr J Philos 18: 258-274. doi: 10.1080/02580136.1999.10878187
    [15] Holland JH (2006) Studying complex adaptive systems. J Syst Sci Complex 19: 1-8. doi: 10.1007/s11424-006-0001-z
    [16] Cercignani C (1988) The boltzmann equation. the Boltzmann Equation and its Applications New York: Springer. doi: 10.1007/978-1-4612-1039-9
    [17] Bianca C (2012) Thermostated kinetic equations as models for complex systems in physics and life sciences. Phys life Rev 9: 359-399. doi: 10.1016/j.plrev.2012.08.001
    [18] Bianca C (2012) An existence and uniqueness theorem to the Cauchy problem for thermostatted-KTAP models. Int J Math Anal 6: 813-824.
    [19] Bianca C (2012) Kinetic theory for active particles modelling coupled to Gaussian thermostats. Appl Math Sci 6: 651-660.
    [20] Bianca C (2012) Modeling complex systems by functional subsystems representation and thermostatted-KTAP methods. Appl Math Inform Sci 6: 495-499.
    [21] Wennberg B, Wondmagegne Y (2006) The Kac equation with a thermostatted force field. J Stat Phys 124: 859-880. doi: 10.1007/s10955-005-9020-8
    [22] Hartwell LH, Hopfield JJ, et al. (1999) From molecular to modular cell biology. Nature 402: C47-C52. doi: 10.1038/35011540
    [23] Woese CR (2004) A new biology for a new century. Microbiol Mol Biol Rev 68: 173-186. doi: 10.1128/MMBR.68.2.173-186.2004
    [24] Augere P, de La Parra RB, et al. (2008) Aggregation methods in dynamical systems and applications in population and community dynamics. Phys Life Rev 5: 79-105. doi: 10.1016/j.plrev.2008.02.001
    [25] Perthame B (2006)  Transport Equations In Biology Springer Science & Business Media.
    [26] Webb GF (1985)  Theory of Nonlinear Age-Dependent Population Dynamics CRC Press.
    [27] Chowell G, Nishiura H (2008) Quantifying the transmission potential of pandemic influenza. Phys Life Rev 5: 50-77. doi: 10.1016/j.plrev.2007.12.001
    [28] Delitala M (2004) Generalized kinetic theory approach to modeling spread and evolution of epidemics. Math Comput Model 39: 1-12. doi: 10.1016/S0895-7177(04)90501-8
    [29] Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases. Model building, analysis 5.
    [30] Thieme HR (2018)  Mathematics in Population Biology Princeton: Princeton University Press. doi: 10.2307/j.ctv301f9v
    [31] Becker N (1979) The uses of epidemic models. Biometrics 35: 295-305. doi: 10.2307/2529951
    [32] Dietz K, Schenzle D (1985) Mathematical models for infectious disease statistics. A Celebration of Statistics New York: Springer.
    [33] Hethcote HW (1994) A thousand and one epidemic models. Frontiers in Mathematical Biology Berlin: Springer.
    [34] Hethcote HW, Van Ark JW (1987) Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs. Math Biosci 84: 85-118. doi: 10.1016/0025-5564(87)90044-7
    [35] Hethcote HW, Stech HW, van den Driessche P (1981) Periodicity and stability in epidemiological models: a survey. Differential Equations and Applications in Ecology, Epidemiology, and Population Problems New York: Academic Press.
    [36] Hethcote HW, Levin SA (1989) Periodicity in epidemiological models. Applied Mathematical Ecology Berlin: Springer.
    [37] Bertram D, Toscani G (2007) Hydrodynamics from kinetic models of conservative economies. Physica A 384: 493-506. doi: 10.1016/j.physa.2007.05.062
    [38] Naldi G, Pareschi L, Toscani G (2010)  Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences Springer Science & Business Media. doi: 10.1007/978-0-8176-4946-3
    [39] Bianca C, Mogno C (2018) Modelling pedestrian dynamics into a metro station by thermostatted kinetic theory methods. Math Comp Model Dyn 24: 207-235. doi: 10.1080/13873954.2018.1432664
    [40] Iannini MLL, Dickman R (2016) Kinetic theory of vehicular traffic. Am J Phys 84: 135-145. doi: 10.1119/1.4935895
    [41] Dogbé C (2010) Modeling crowd dynamics by the mean-field limit approach. Math Comp Model 52: 1506-1520. doi: 10.1016/j.mcm.2010.06.012
    [42] Carbonaro B, Serra N (2002) Towards mathematical models in psychology: A stochastic description of human feelings. Math Mod Meth Appl S 12: 1453-1490. doi: 10.1142/S0218202502002197
    [43] Carbonaro B, Giordano C (2005) A second step towards a stochastic mathematical description of human feelings. Math Comput Model 41: 587-614. doi: 10.1016/j.mcm.2003.05.021
    [44] Kacperski K (1999) Opinion formation model with strong leader and external impact: A mean field approach. Physica A 269: 511-526. doi: 10.1016/S0378-4371(99)00174-0
    [45] Bianca C, Mogno C (2018) Qualitative analysis of a discrete thermostatted kinetic framework modeling complex adaptive systems. Commun Nonlinear Sci 54: 221-232. doi: 10.1016/j.cnsns.2017.06.007
    [46] Bianca C, Menale M (2019) Existence and uniqueness of nonequilibrium stationary solutions in discrete thermostatted models. Commun Nonlinear Sci 73: 25-34. doi: 10.1016/j.cnsns.2019.01.026
    [47] Cooper EL (2010) Evolution of immune systems from self/not self to danger to artificial immune systems (AIS). Phys Life Rev 7: 55-78. doi: 10.1016/j.plrev.2009.12.001
    [48] Pappalardo F, Palladini A, Pennisi M, et al. (2012) Mathematical and computational models in tumor immunology. Math Model Nat Pheno 7: 186-203. doi: 10.1051/mmnp/20127312
    [49] Carbonaro B, Menale M (2019) Dependence on the initial data for the continuous thermostatted framework. Mathematics 7: 602. doi: 10.3390/math7070602
    [50] Dimarco G, Pareschi L (2013) Asymptotic preserving implicit-explicit Runge–Kutta methods for nonlinear kinetic equations. SIAM J Numer Anal 51: 1064-1087. doi: 10.1137/12087606X
    [51] Dimarco G, Pareschi L (2014) Numerical methods for kinetic equations. Acta Numer 23: 369-520. doi: 10.1017/S0962492914000063
    [52] Dogbe C (2008) On the numerical solutions of second order macroscopic models of pedestrian flows. Comput Math Appl 56: 1884-1898. doi: 10.1016/j.camwa.2008.04.028
    [53] Bianca C, Menale M (2020) Mathematical analysis of a thermostatted equation with a discrete real activity variable. Mathematics 8: 57. doi: 10.3390/math8010057
    [54] Walter W (2012)  Differential and Integral Inequalities Springer Science & Business Media.
    [55] Dogbe C (2012) On the modelling of crowd dynamics by generalized kinetic models. J Math Anal Appl 387: 512-532. doi: 10.1016/j.jmaa.2011.09.007
    [56] Gramani L (2009) On the modeling of granular traffic flow by the kinetic theory for active particles trend to equilibrium and macroscopic behavior. Int J Nonlin Mech 44: 263-268. doi: 10.1016/j.ijnonlinmec.2008.11.008
    [57] Derbel L (2004) Analysis of a new model for tumor-immune system competition including long-time scale effects. Math Mod Meth Appl S 14: 1657-1681. doi: 10.1142/S0218202504003738
    [58] Gałach M (2003) Dynamics of the tumor—immune system competition—the effect of time delay. Int J Ap Mat Com-Pol 13: 395-406.
    [59] Kolev M (2003) Mathematical modelling of the competition between tumors and immune system considering the role of the antibodies. Math Comput Model 37: 1143-1152. doi: 10.1016/S0895-7177(03)80018-3
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2510) PDF downloads(194) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog