Research article Special Issues

Group theoretic particle swarm optimization for gray-level medical image enhancement


  • Received: 09 January 2023 Revised: 30 March 2023 Accepted: 03 April 2023 Published: 07 April 2023
  • As a principal category in the promising field of medical image processing, medical image enhancement has a powerful influence on the intermedia features and final results of the computer aided diagnosis (CAD) system by increasing the capacity to transfer the image information in the optimal form. The enhanced region of interest (ROI) would contribute to the early diagnosis and the survival rate of patients. Meanwhile, the enhancement schema can be treated as the optimization approach of image grayscale values, and metaheuristics are adopted popularly as the mainstream technologies for medical image enhancement. In this study, we propose an innovative metaheuristic algorithm named group theoretic particle swarm optimization (GT-PSO) to tackle the optimization problem of image enhancement. Based on the mathematical foundation of symmetric group theory, GT-PSO comprises particle encoding, solution landscape, neighborhood movement and swarm topology. The corresponding search paradigm takes place simultaneously under the guidance of hierarchical operations and random components, and it could optimize the hybrid fitness function of multiple measurements of medical images and improve the contrast of intensity distribution. The numerical results generated from the comparative experiments show that the proposed GT-PSO has outperformed most other methods on the real-world dataset. The implication also indicates that it would balance both global and local intensity transformations during the enhancement process.

    Citation: Jinyun Jiang, Jianchen Cai, Qile Zhang, Kun Lan, Xiaoliang Jiang, Jun Wu. Group theoretic particle swarm optimization for gray-level medical image enhancement[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10479-10494. doi: 10.3934/mbe.2023462

    Related Papers:

  • As a principal category in the promising field of medical image processing, medical image enhancement has a powerful influence on the intermedia features and final results of the computer aided diagnosis (CAD) system by increasing the capacity to transfer the image information in the optimal form. The enhanced region of interest (ROI) would contribute to the early diagnosis and the survival rate of patients. Meanwhile, the enhancement schema can be treated as the optimization approach of image grayscale values, and metaheuristics are adopted popularly as the mainstream technologies for medical image enhancement. In this study, we propose an innovative metaheuristic algorithm named group theoretic particle swarm optimization (GT-PSO) to tackle the optimization problem of image enhancement. Based on the mathematical foundation of symmetric group theory, GT-PSO comprises particle encoding, solution landscape, neighborhood movement and swarm topology. The corresponding search paradigm takes place simultaneously under the guidance of hierarchical operations and random components, and it could optimize the hybrid fitness function of multiple measurements of medical images and improve the contrast of intensity distribution. The numerical results generated from the comparative experiments show that the proposed GT-PSO has outperformed most other methods on the real-world dataset. The implication also indicates that it would balance both global and local intensity transformations during the enhancement process.



    加载中


    [1] S. Chakraborty, K. Mali, S. Chatterjee, S. Banerjee, A. Sah, S. Pathak, et al., Bio-medical image enhancement using hybrid metaheuristic coupled soft computing tools, in 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), (2017), 231–236. https://doi.org/10.1109/UEMCON.2017.8249036
    [2] N. Du, Q. Luo, Y. Du, Y. Zhou, Color image enhancement: A metaheuristic Chimp optimization algorithm, Neural Process. Lett., 54 (2022), 4769–4808. https://doi.org/10.1007/s11063-022-10832-7 doi: 10.1007/s11063-022-10832-7
    [3] W. Wang, C. Zhang, Bifurcation of a feed forward neural network with delay and application in image contrast enhancement, Math. Biosci. Eng., 17 (2020), 387–403. https://doi.org/10.3934/mbe.2020021 doi: 10.3934/mbe.2020021
    [4] S. Chakraborty, A. Raman, S. Sen, K. Mali, S. Chatterjee, H. Hachimi, Contrast optimization using elitist metaheuristic optimization and gradient approximation for biomedical image enhancement, in 2019 Amity International Conference on Artificial Intelligence (AICAI), (2019), 712–717. https://doi.org/10.1109/AICAI.2019.8701367
    [5] M. J. Horry, S. Chakraborty, B. Pradhan, M. Fallahpoor, H. Chegeni, M. Paul, Factors determining generalization in deep learning models for scoring COVID-CT images, Math. Biosci. Eng., 18 (2021), 9264–9293. https://doi.org/10.3934/mbe.2021456 doi: 10.3934/mbe.2021456
    [6] R. Janarthanan, E. A. Refaee, K. Selvakumar, M. A. Hossain, R. Soundrapandiyan, M. Karuppiah, Biomedical image retrieval using adaptive neuro-fuzzy optimized classifier system, Math. Biosci. Eng., 19 (2022), 8132–8151. https://doi.org/10.3934/mbe.2022380 doi: 10.3934/mbe.2022380
    [7] J. R. Tang, N. A. M. Isa, Bi-histogram equalization using modified histogram bins, Appl. Soft Comput., 55 (2017), 31–43. https://doi.org/10.1016/j.asoc.2017.01.053 doi: 10.1016/j.asoc.2017.01.053
    [8] U. K. Acharya, S. Kumar, Genetic algorithm based adaptive histogram equalization (GAAHE) technique for medical image enhancement, Optik, 230 (2021), 166273. https://doi.org/10.1016/j.ijleo.2021.166273 doi: 10.1016/j.ijleo.2021.166273
    [9] T. Rahman, A. Khandakar, Y. Qiblawey, A. Tahir, S. Kiranyaz, S. B. A. Kashem, et al., Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images, Comput. Biol. Med., 132 (2021), 104319. https://doi.org/10.1016/j.compbiomed.2021.104319 doi: 10.1016/j.compbiomed.2021.104319
    [10] A. Qayyum, W. Sultani, F. Shamshad, R. Tufail, J. Qadir, Single-shot retinal image enhancement using untrained and pretrained neural networks priors integrated with analytical image priors, Comput. Biol. Med., 148 (2022), 105879. https://doi.org/10.1016/j.compbiomed.2022.105879 doi: 10.1016/j.compbiomed.2022.105879
    [11] R. Kumar, A. K. Bhandari, Spatial mutual information based detail preserving magnetic resonance image enhancement, Comput. Biol. Med., 146 (2022), 105644. https://doi.org/10.1016/j.compbiomed.2022.105644 doi: 10.1016/j.compbiomed.2022.105644
    [12] M. Jalali, H. Behnam, M. Shojaeifard, Echocardiography image enhancement using texture-cartoon separation, Comput. Biol. Med., 134 (2021), 104535. https://doi.org/10.1016/j.compbiomed.2021.104535 doi: 10.1016/j.compbiomed.2021.104535
    [13] K. G. Dhal, S. Ray, A. Das, S. Das, A survey on nature-inspired optimization algorithms and their application in image enhancement domain, Arch. Comput. Methods Eng., 26 (2019), 1607–1638. https://doi.org/10.1007/s11831-018-9289-9 doi: 10.1007/s11831-018-9289-9
    [14] S. Goel, A. Verma, N. Kumar, Gray level enhancement to emphasize less dynamic region within image using genetic algorithm, in 2013 3rd IEEE International Advance Computing Conference (IACC), (2013), 1171–1176. https://doi.org/10.1109/IAdCC.2013.6514393
    [15] S. Suresh, S. Lal, Modified differential evolution algorithm for contrast and brightness enhancement of satellite images, Appl. Soft Comput., 61 (2017), 622–641. https://doi.org/10.1016/j.asoc.2017.08.019 doi: 10.1016/j.asoc.2017.08.019
    [16] A. K. Bhandari, A. Kumar, S. Chaudhary, G. K. Singh, A new beta differential evolution algorithm for edge preserved colored satellite image enhancement, Multidimension. Syst. Signal Process., 28 (2017), 495–527. https://doi.org/10.1007/s11045-015-0353-4 doi: 10.1007/s11045-015-0353-4
    [17] H. K. Verma, S. Pal, Modified sigmoid function based gray scale image contrast enhancement using particle swarm optimization, J. Inst. Eng. India Ser. B, 97 (2016), 243–251. https://doi.org/10.1007/s40031-014-0175-z doi: 10.1007/s40031-014-0175-z
    [18] S. K. Ghosh, B. Biswas, A. Ghosh, A novel approach of retinal image enhancement using PSO system and measure of fuzziness, Procedia Comput. Sci., 167 (2020), 1300–1311. https://doi.org/10.1016/j.procs.2020.03.446 doi: 10.1016/j.procs.2020.03.446
    [19] H. Gao, W. Zeng, Color image enhancement based on Ant Colony Optimization Algorithm, Telkomnika, 13 (2015), 155–163. http://doi.org/10.12928/telkomnika.v13i1.1274 doi: 10.12928/telkomnika.v13i1.1274
    [20] H. Singh, A. Kumar, L. K. Balyan, A sine-cosine optimizer-based gamma corrected adaptive fractional differential masking for satellite image enhancement, in Harmony Search and Nature Inspired Optimization Algorithms, Springer, (2019), 633–645. https://doi.org/10.1007/978-981-13-0761-4_61
    [21] Y. Feng, S. Deb, G. G. Wang, A. H. Alavi, Monarch butterfly optimization: a comprehensive review, Expert Syst. Appl., 168 (2021), 114418. https://doi.org/10.1016/j.eswa.2020.114418 doi: 10.1016/j.eswa.2020.114418
    [22] S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055
    [23] Y. Feng, G. G. Wang, A binary moth search algorithm based on self-learning for multidimensional knapsack problems, Future Gener. Comput. Syst., 126 (2022), 48–64. https://doi.org/10.1016/j.future.2021.07.033 doi: 10.1016/j.future.2021.07.033
    [24] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [25] I. Ahmadianfar, A. A. Heidari, S. Noshadian, H. Chen, A. H. Gandomi, INFO: An efficient optimization algorithm based on weighted mean of vectors, Expert Syst. Appl., 195 (2022), 116516. https://doi.org/10.1016/j.eswa.2022.116516 doi: 10.1016/j.eswa.2022.116516
    [26] Y. Yang, H. Chen, A. A. Heidari, A. H. Gandomi, Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl., 177 (2021), 114864. https://doi.org/10.1016/j.eswa.2021.114864 doi: 10.1016/j.eswa.2021.114864
    [27] J. Tu, H. Chen, M. Wang, A. H. Gandomi, The colony predation algorithm, J. Bionic Eng., 18 (2021), 674–710. https://doi.org/10.1007/s42235-021-0050-y doi: 10.1007/s42235-021-0050-y
    [28] H. Su, D. Zhao, A. A. Heidari, L. Liu, X. Zhang, M. Mafarja, et al., RIME: A physics-based optimization, Neurocomputing, 532 (2023), 183–214. https://doi.org/10.1016/j.neucom.2023.02.010 doi: 10.1016/j.neucom.2023.02.010
    [29] M. O. Oloyede, A. J. Onumanyi, H. Bello-Salau, K. Djouani, A. Kurien, Exploratory analysis of different metaheuristic optimization methods for medical image enhancement, IEEE Access, 10 (2022), 28014–28036. https://doi.org/10.1109/ACCESS.2022.3158324 doi: 10.1109/ACCESS.2022.3158324
    [30] J. Tang, J. Kim, E. Peli, Image enhancement in the JPEG domain for people with vision impairment, IEEE. Trans. Biomed. Eng., 51 (2004), 2013–2023. https://doi.org/10.1109/TBME.2004.834264 doi: 10.1109/TBME.2004.834264
    [31] J. Tang, X. Liu, Q. Sun, A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms, IEEE. J. Sel. Top. Signal Process., 3 (2009), 74–80. https://doi.org/10.1109/JSTSP.2008.2011108 doi: 10.1109/JSTSP.2008.2011108
    [32] X. Liu, J. Tang, X. Zhang, A multiscale image enhancement method for calcification detection in screening mammograms, in 2009 16th IEEE International Conference on Image Processing (ICIP), (2009), 677–680. https://doi.org/10.1109/ICIP.2009.5414077
    [33] K. Lan, G. Li, Y. Jie, R. Tang, L. Liu, S. Fong, Convolutional neural network with group theory and random selection particle swarm optimizer for enhancing cancer image classification, Math. Biosci. Eng., 18 (2021), 5573–5591. https://doi.org/10.3934/mbe.2021281 doi: 10.3934/mbe.2021281
    [34] S. Fong, K. Lan, P. Sun, S. Mohammed, J. Fiaidhi, A time-series pre-processing methodology for biosignal classification using statistical feature extraction, in Proceedings of the 10th IASTED International Conference on Biomedical Engineering (Biomed'13), (2013), 207–214. https://doi.org/10.2316/P.2013.791-100
    [35] K. Lan, J. Zhou, X. Jiang, J. Wang, S. Huang, J. Yang, et al., Group theoretic particle swarm optimization for multi-level threshold lung cancer image segmentation, Quant. Imaging. Med. Surg., 13 (2023), 1312–1322. https://doi.org/10.21037/qims-22-295 doi: 10.21037/qims-22-295
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1954) PDF downloads(131) Cited by(5)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog