Research article

Nonlinear neural networks adaptive control for a class of fractional-order tuberculosis model

  • Received: 18 December 2022 Revised: 15 March 2023 Accepted: 30 March 2023 Published: 07 April 2023
  • The problem of nonlinear adaptive control for a class of fractional-order tuberculosis (TB) model is studied in this paper. By analyzing the transmission mechanism of TB and the characteristics of fractional calculus, a fractional-order TB dynamical model is established with media coverage and treatment as control variables. With the help of universal approximation principle of radial basis function neural networks and the positive invariant set of established TB model, the expressions of control variables are designed and the stability of error model is analyzed. Thus, the adaptive control method can guarantee that the number of susceptible and infected individuals can be kept close to the corresponding control targets. Finally, the designed control variables are illustrated by numerical examples. The results indicate that the proposed adaptive controllers can effectively control the established TB model and ensure the stability of controlled model, and two control measures can protect more people from tuberculosis infection.

    Citation: Na Pang. Nonlinear neural networks adaptive control for a class of fractional-order tuberculosis model[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10464-10478. doi: 10.3934/mbe.2023461

    Related Papers:

  • The problem of nonlinear adaptive control for a class of fractional-order tuberculosis (TB) model is studied in this paper. By analyzing the transmission mechanism of TB and the characteristics of fractional calculus, a fractional-order TB dynamical model is established with media coverage and treatment as control variables. With the help of universal approximation principle of radial basis function neural networks and the positive invariant set of established TB model, the expressions of control variables are designed and the stability of error model is analyzed. Thus, the adaptive control method can guarantee that the number of susceptible and infected individuals can be kept close to the corresponding control targets. Finally, the designed control variables are illustrated by numerical examples. The results indicate that the proposed adaptive controllers can effectively control the established TB model and ensure the stability of controlled model, and two control measures can protect more people from tuberculosis infection.



    加载中


    [1] Global Tuberculosis Report 2019, World Health Organization, (2019).
    [2] S. Kumar, R. P. Chauhan, S. Momani, S. Hadid, A study of fractional TB model due to mycobacterium tuberculosis bacteria, Chaos, Solitons Fractals, 153 (2021), 111452. https://doi.org/10.1016/j.chaos.2021.111452 doi: 10.1016/j.chaos.2021.111452
    [3] E. Barrios-Rivera, H. E. Bastidas-Santacruz, C. A. Ramirez-Bernate, O. Vasilieva, A synthesized model of tuberculosis transmission featuring treatment abandonment, Math. Biosci. Eng., 19 (2022), 10882–10914. https://doi.org/10.3934/mbe.2022509 doi: 10.3934/mbe.2022509
    [4] Global Tuberculosis Report 2021, World Health Organization, (2021).
    [5] A. Xu, Z. Wen, Y. Wang, W. Wang, Prediction of different interventions on the burden of drug-resistanttuberculosis in China: A dynamic modelling study, J. Global Antimicrob. Resist., 29 (2022), 323–330. https://doi.org/10.1016/j.jgar.2022.03.018 doi: 10.1016/j.jgar.2022.03.018
    [6] X. Bai, Y. Liang, Y. Yang, J. Feng, Z. Luo, J. Zhang, et al., Potential novel markers to discriminate between active and latent tuberculosis infection in Chinese individuals, Comp. Immunol., Microbiol. Infect. Dis., 44 (2016), 8–13. https://doi.org/10.1016/j.cimid.2015.11.002 doi: 10.1016/j.cimid.2015.11.002
    [7] X. Zhou, X. Shi, Stability analysis and backward bifurcation on an SEIQR epidemic model with nonlinear innate immunity, Electron. Res. Arch., 30 (2022), 3481–3508. https://doi.org/10.3934/era.2022178 doi: 10.3934/era.2022178
    [8] R. Haldar, S. J. Narayanan, A novel ensemble based recommendation approach using network based analysis for identification of effective drugs for Tuberculosis, Math. Biosci. Eng., 19 (2021), 873–891. https://doi.org/10.21203/rs.3.rs-680480/v1 doi: 10.21203/rs.3.rs-680480/v1
    [9] Z. Zhang, G. ur Rahman, J. F. Gómez-Aguilar, Dynamical aspects of a delayed epidemic model with subdivision of susceptible population and control strategies, Chaos, Solitons Fractals, 160 (2022), 112194. https://doi.org/10.1016/j.chaos.2022.112194 doi: 10.1016/j.chaos.2022.112194
    [10] Y. D. Zhang, H. F. Huo, H. Xiang, Dynamics of tuberculosis with fast and slow progression and media coverage, Math. Biosci. Eng., 16 (2019), 1150–1170. https://doi.org/10.3934/mbe.2019055 doi: 10.3934/mbe.2019055
    [11] S. M. Blower, A. R. Mclean, T. C. Porco, P. M. Small, P. C. Hopewell, M. A. Sanchez, et al., The intrinsic transmission dynamics of Tuberculosis epidemics, Nat. Med., 1 (1995), 815–821. https://doi.org/10.1038/nm0895-815 doi: 10.1038/nm0895-815
    [12] S. M. Blower, P. M. Small, P. C. Hopewell, Control strategies for Tuberculosis epidemics: New models for old problems, Science, 273 (1996), 497–500. https://doi.org/10.1126/science.273.5274.497 doi: 10.1126/science.273.5274.497
    [13] J. P. Aparicio, A. F. Capurro, C. Castillo-Chavez, Transmission and dynamics of Tuberculosis on generalized households, J. Theor. Biol., 206 (2000), 327–341. https://doi.org/10.1006/jtbi.2000.2129 doi: 10.1006/jtbi.2000.2129
    [14] C. Castillo-Chavez, Z. Feng, To treat or not to treat: The case of Tuberculosis, J. Math. Biol., 35 (1997), 629–656. https://doi.org/10.1007/s002850050069 doi: 10.1007/s002850050069
    [15] Z. Feng, C. Castillo-Chavez, A. F. Capurro, A model for tuberculosis with exogenous reinfection, Theor. Popul. Biol., 57 (2000), 235–247. https://doi.org/10.1006/tpbi.2000.1451 doi: 10.1006/tpbi.2000.1451
    [16] B. Song, C. Castillo-Chavez, J. P. Aparicio, Tuberculosis models with fast and slow dynamics: the role of close and casual contacts, Math. Biosci., 180 (2002), 187–205. https://doi.org/10.1016/S0025-5564(02)00112-8 doi: 10.1016/S0025-5564(02)00112-8
    [17] C. Castillo-Chavez, B. Song, Dynamical models of Tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361–404. https://doi.org/10.3934/mbe.2004.1.361 doi: 10.3934/mbe.2004.1.361
    [18] H. H. Lin, L. Wang, H. Zhang, Y. Ruan, D. P. Chinc, C. Dyed, Tuberculosis control in China: Use of modelling to develop targets and policies, Bull. World Health Organ., 93 (2015), 790–798. https://doi.org/10.2471/BLT.15.154492 doi: 10.2471/BLT.15.154492
    [19] S. Liu, Y. Li, Y. Bi, Q. Huang, Mixed vaccination strategy for the control of tuberculosis: A case study in China, Math. Biosci. Eng., 14 (2017), 695–708. https://doi.org/10.3934/mbe.2017039 doi: 10.3934/mbe.2017039
    [20] Y. Cai, S. Zhao, Y. Niu, Z. Peng, K. Wang, D. He, et al., Modelling the effects of the contaminated environments on tuberculosis in Jiangsu, China, J. Theor. Biol., 508 (2021), 110453. https://doi.org/10.1093/law/9780198827276.003.0047 doi: 10.1093/law/9780198827276.003.0047
    [21] E. F. D. Goufo, A. Atangana, On analysis generalization of TB-HIV dynamics by a two-scale reduction process, Result. Phys., 30 (2021), 104772. https://doi.org/10.1016/j.rinp.2021.104772 doi: 10.1016/j.rinp.2021.104772
    [22] S. Treibert, H. Brunner, M. Ehrhardt, Compartment models for vaccine effectiveness and non-specific effects for Tuberculosis, Math. Biosci. Eng., 16 (2019), 7250–7298. https://doi.org/10.3934/mbe.2019364 doi: 10.3934/mbe.2019364
    [23] K. Hattaf, M. Rachik, S. Saadi, Y. Tabit, N. Yousfi, Optimal control of tuberculosis with exogenous reinfection, Appl. Math. Sci., 3 (2009), 231–240.
    [24] T. Yu, Y. Shi, W. Yao, Dynamic model of tuberculosis considering multi-drug resistance and their applications, Infect. Dis. Modell., 3 (2018), 362–372. https://doi.org/10.1016/j.idm.2018.11.001 doi: 10.1016/j.idm.2018.11.001
    [25] S. Athithan, M. Ghosh, Mathematical modelling of TB with the effects of case detection and treatment, Int. J. Dyn. Control, 1 (2013), 223–230. https://doi.org/10.1007/s40435-013-0020-2 doi: 10.1007/s40435-013-0020-2
    [26] Y. Li, X. Liu, Y. Yuan, J. Li, L. Wang, Global analysis of tuberculosis dynamical model and optimal control strategies based on case data in the United States, Appl. Math. Comput., 422 (2022), 126983. https://doi.org/10.1016/j.amc.2022.126983 doi: 10.1016/j.amc.2022.126983
    [27] J. Ramadoss, A. Alharbi, K. Rajagopal, S. Boulaaras, A fractional-order discrete memristor neuron model: Nodal and network dynamics, Electron. Res. Arch., 30 (2022), 3977–3992. https://doi.org/10.3934/era.2022202 doi: 10.3934/era.2022202
    [28] K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 49. https://doi.org/10.3390/computation8020049 doi: 10.3390/computation8020049
    [29] W. Shatanawi, M. S. Abdo, M. A. Abdulwasaa, K. Shah, S. K. Panchal, S. V. Kawale, et al., A fractional dynamics of tuberculosis (TB) model in the frame of generalized Atangana-Baleanu derivative, Result. Phys., 29 (2021), 104739. https://doi.org/10.1016/j.rinp.2021.104739 doi: 10.1016/j.rinp.2021.104739
    [30] Z. Zafar, S. Zaib, M. T. Hussain, C. Tunç, S. Javeed, Analysis and numerical simulation of tuberculosis model using different fractional derivatives, Chaos Solitons Fractals, 160 (2022), 112202. https://doi.org/10.1016/j.chaos.2022.112202 doi: 10.1016/j.chaos.2022.112202
    [31] S. Rashid, M. K. Iqbal, A. M. Alshehri, R. Ashraf, F. Jarad, A comprehensive analysis of the stochastic fractal-fractional tuberculosis model via Mittag-Leffler kernel and white noise, Result. Phys., 39 (2022), 105764. https://doi.org/10.1016/j.rinp.2022.105764 doi: 10.1016/j.rinp.2022.105764
    [32] Adnan, S. Ahmad, A. Ullah, M. B. Riaz, A. Ali, A. Akgül, et al., Complex dynamics of multi strain TB model under nonlocal and nonsingular fractal fractional operator, Result. Phys., 30 (2021), 104823. https://doi.org/10.1016/j.rinp.2021.104823 doi: 10.1016/j.rinp.2021.104823
    [33] D. K. Das, T. K. Kar, Global dynamics of a tuberculosis model with sensitivity of the smear microscopy, Chaos Solitons Fractals, 146 (2021), 110879. https://doi.org/10.1016/j.chaos.2021.110879 doi: 10.1016/j.chaos.2021.110879
    [34] K. Hattaf, On the stability and numerical scheme of fractional differential equations with application to biology, Computation, 10 (2022), 97. https://doi.org/10.3390/computation10060097 doi: 10.3390/computation10060097
    [35] S. Wang, J. Xia, W. Sun, Observer-based adaptive event-triggered tracking control for nonlinear MIMO systems based on neural networks technique, Neurocomputing, 433 (2021), 71–82. https://doi.org/10.1016/j.neucom.2020.12.050 doi: 10.1016/j.neucom.2020.12.050
    [36] L. Ma, Z. Wang, C. Wang, Adaptive neural network state constrained fault-tolerant control for a class of pure-feedback systems with actuator faults, Neurocomputing, 490 (2022), 431–440. https://doi.org/10.1016/j.neucom.2021.12.017 doi: 10.1016/j.neucom.2021.12.017
    [37] H. Moradi, M. Sharifi, G. Vossoughi, Adaptive robust control of cancer chemotherapy in the presence ofparametric uncertainties: A comparison between three hypotheses, Comput. Biol. Med., 56 (2015), 145–157. https://doi.org/10.1016/j.compbiomed.2014.11.002 doi: 10.1016/j.compbiomed.2014.11.002
    [38] M. H. Nematollahi, R. Vatankhah, M. Sharifi, Nonlinear adaptive control of tuberculosis with consideration of the risk of endogenous reactivation and exogenous reinfection, J. Theor. Biol., 486 (2020), 110081. https://doi.org/10.1016/j.jtbi.2019.110081 doi: 10.1016/j.jtbi.2019.110081
    [39] B. Cao, T. Kang, Nonlinear adaptive control of COVID-19 with media campaigns and treatment, Biochem. Biophys. Res. Commun., 555 (2021), 202–209. https://doi.org/10.1016/j.bbrc.2020.12.105 doi: 10.1016/j.bbrc.2020.12.105
    [40] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, (1999).
    [41] R. M. Sanner, J. J. E. Slotine, Gaussian networks for direct adaptive control, IEEE Trans. Neural Networks, 3 (1992), 837–863. https://doi.org/10.1109/72.165588 doi: 10.1109/72.165588
    [42] G. S. Teodoro, J. A. T. Machado, E. C. de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195–208. https://doi.org/10.1016/j.jcp.2019.03.008 doi: 10.1016/j.jcp.2019.03.008
    [43] H. Kheiri, M. Jafari, Fractional optimal control of an HIV/AIDS epidemic model with random testing and contact tracing, J. Appl. Math. Comput., 60 (2019), 387–411. https://doi.org/10.1007/s12190-018-01219-w doi: 10.1007/s12190-018-01219-w
    [44] P. Gong, W. Lan, Q. L. Han, Robust adaptive fault-tolerant consensus control for uncertain nonlinear fractional-order multiagent systems with directed topologies, Automatica, 117 (2020), 109011. https://doi.org/10.1016/j.automatica.2020.109011 doi: 10.1016/j.automatica.2020.109011
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1282) PDF downloads(96) Cited by(1)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog