Citation: Rong Qiang, Wanbiao Ma, Ke Guo, Hongwu Du. The differential equation model of pathogenesis of Kawasaki disease with theoretical analysis[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3488-3511. doi: 10.3934/mbe.2019175
[1] | C. Shao and S. Zhu, Clinical disease and immunity, Science Press, Beijing, 2002. |
[2] | T. Kawasaki, Acute febrile mucocutaneous syndrome with lymphoid involvement with specificdesquamation of the fingers and toes in children, Arerugi, 16 (1967), 178–222. |
[3] | S. Bayers, S. T. Shulman and A. S. Paller, Kawasaki disease: Part I. Diagnosis, clinical features,and pathogenesis, J. Am. Acad. Dermatol., 69 (2013), 501e1–501e11. |
[4] | R. Uehara and E. D. Belay, Epidemiology of Kawasaki Disease in Asia, Europe, and the UnitedStates, J. Epidemiol., 22 (2012), 79–85. |
[5] | H. Lue, L. Chen, M. Lin, et al., Epidemiological features of Kawasaki disease in Taiwan, 1976–2007: results of five nationwide questionnaire hospital surveys, Pediatr. Neonatol., 55 (2014),92–96. |
[6] | C. Wei, J. Tsai, C. Lin, et al., Increased risk of idiopathic nephrotic syndrome in children withatopic dermatitis, Pediatr. Nephrol., 29 (2014), 2157–2163. |
[7] | A. Kentsis, A. Shulman, S. Ahmed, et al., Urine proteomics for discovery of improved diagnosticmarkers of Kawasaki disease, EMBO Mol. Med., 22 (2012), 210–220. |
[8] | M. Ayusawa, T. Sonobe, S. Uemura, et al., Revision of diagnostic guidelines for Kawasaki disease(the 5th revised edition), Pediatr. Int, 47 (2005), 232–234. |
[9] | C. Galeotti, S. V. Kaveri, R. Cimaz, et al., Predisposing factors, pathogenesis and therapeuticintervention of Kawasaki disease, Drug. Discov. Today, 21 (2016), 1850–1857. |
[10] | M. Terai and S. T. Shulman, Prevalence of coronary artery abnormalities in Kawasaki diseaseis highly dependent on gamma globulin dose but independent of salicylate dose, J. Pediatr., 131(1997), 888–893. |
[11] | G. B. Kim, J. J. Yu, K. L. Yoon, et al., Medium- or higher-dose acetylsalicylic acid for acuteKawasaki disease and patient outcomes, J. Pediatr., 184 (2016), 125–129.e1. |
[12] | J. C. Burns, B. M. Best, A. Mejias, et al., Infliximab treatment of intravenous immunoglobulin-resistant Kawasaki disease, J. Pediatr., 153 (2008), 833–838. |
[13] | T. Yang, M. Lin, C. Lu, et al., The prevention of coronary arterial abnormalities in Kawasakidisease: A meta-analysis of the corticosteroid effectiveness, J. Microbiol. Immunol. Infect., 51(2018), 321–331. |
[14] | J. Shen, L. Liang and C. Wang, Perifosine inhibits lipopolysaccharide (LPS)-induced tumornecrosis factor (TNF)- production via regulation multiple signaling pathways: new implicationfor Kawasaki disease (KD) treatment, Biochem. Biophys. Res. Commun., 437 (2013), 250–255. |
[15] | F. Bajolle, J. F. Meritet, F. Rozenberg, et al., Markers of a recent bocavirus infection in childrenwith Kawasaki disease: a year prospective study, Pathol. Biol., 62 (2014), 365–368. |
[16] | L. Chang, C. Lu, P. Shao, et al., Viral infections associated with Kawasaki disease, J. Formos.Med. Assoc., 113 (2014), 148–154. |
[17] | N. Principi, D. Rigante and S. Esposito, The role of infection in Kawasaki syndrome, J. Infect.,67 (2013), 1–10. |
[18] | A. Harnden, B. Alves and A. Sheikh, Rising incidence of Kawasaki disease in England: analysisof hospital admission data, Bmj, 324 (2002), 1424–1425. |
[19] | H. Murata, Experimental candida-induced arteritis in mice. Relation to arteritis in themucocutaneous lymph node syndrome, Microbiol. Immunol., 23 (1979), 825–831. |
[20] | A.H.Rowley, S.M.Wolinsky, D.A.Relman, etal., Searchforhighlyconservedviralandbacterialnucleic acid sequences corresponding to an etiologic agent of Kawasaki disease, Pediatr. Res., 36(1994), 567–571. |
[21] | R. S. M. Yeung, The etiology of Kawasaki disease: a superantigen-mediated process, Progress Pediatr. Cardiol., 19 (2004), 115–122. |
[22] | C. Lin, C. Lin, B. Hwang, et al., Serial changes of serum interleukin-6, interleukin-8, and tumornecrosis factor alpha among patients with Kawasaki disease,J. Pediatr, 121 (1992), 924–926. |
[23] | M. Xiao, L. Men, M. Xu, et al., Berberine protects endothelial progenitor cell from damage ofTNF- via the PI3K/AKT/eNOS signaling pathway, J. Pediatr., 743 (2014), 11–16. |
[24] | J. S. Hui-Yuen, T. T. Duong and R. S. Yeung, TNF- is necessary for induction of coronary arteryinflammation and aneurysm formation in an animal model of Kawasaki disease, J. Immunol., 176(2006), 6294–6301. |
[25] | R. Fukazawa, Y. Uchikoba, Y. Kuramochi, et al., Leukocyte adhesion factor Mac-1 and migrationinhibitory factor-related protein (MRP) on granulocyte plays the essential role for causingvasculitis in kawasaki disease and the gamma globulin therapy inhibit leukocyte-endothelial celladhesion, JACC, 39 (2002), 409. |
[26] | M. Terai, K. Yasukawa, S. Narumoto, et al., Vascular endothelial growth factor in acute Kawasakidisease, J. Pediatr., 83 (1999), 337–339. |
[27] | S. T. Shulman and A. H. Rowley, Etiology and pathogenesis of Kawasaki disease, Progress Pediatr. Cardiol., 6 (1997), 187–192. |
[28] | Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, AcademicPress, Boston, 1993. |
[29] | L. Chen, X. Meng and J. Jiao, Biodynamics, Science Press, Beijing, 2009.30. Z. Ma, Y. Zhou and W. Wang, et al., Mathematical Modeling and Research of Epidemic Dynamics,Science Press, Beijing, 2004. |
[30] | 31. M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistentvirus, Science, 272 (1996), 74–79. |
[31] | 32. A. S. Perelson, A. U. Neumann, M. Markowitz, et al., HIV-1 dynamics in vivo: virion clearancerate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582–1586. |
[32] | 33. D. E. Kirschner and G. F. Webb, A model for the treatment strategy in the chemotherapy of AIDS,Bull. Math. Biol., 58 (1996), 367–390. |
[33] | 34. A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev.,41 (1999), 3–44. |
[34] | 35. R. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4 + T-cells,Math. Biosci., 165 (2000), 27–39. |
[35] | 36. M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, 2000. |
[36] | 37. Y. Iwasa, F. Michor and M. A. Nowak, Some basic properties of immune selection, J. Theor. Biol.,229 (2004), 179–188. |
[37] | 38. R. Kumar, G. Clermont, Y. Vodovotz, et al., The dynamics of acute inflammation, J. Theor. Biol.,230 (2004), 145–155. |
[38] | 39. Y. Xiao, S. Tang and J. Wu, Media impact switching surface during an infectious disease outbreak,Sci. Rep., 5 (2015), 78 |
[39] | 40. S. K. Sasmal, Y. Dong and Y. Takeuchi, Mathematical modeling on T-cell me diate d adaptiveimmunity in primary dengue infections, J. Theor. Biol., 429 (2017), 229–240. |
[40] | 41. J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer Verlag,New York, 1993. |
[41] | 42. O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation ofthe basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. |
[42] | 43. P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemicequilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. |