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Abstract: Fever is a extremely common symptom in infants and young children. Due to the low
resistance of infants and young, long-term fever may cause damage to the child’s body. Clinically,
some children with long-term fever was eventually diagnosed with Kawasaki disease (KD). KD, an
autoimmune disease, is a systemic vasculitis mainly affecting children younger than 5 years old. Due
to the delayed therapy and diagnosis, coronary artery abnormalities (CAAs) develop in children with
KD, and leads to a high risk of acquired heart disease. Later, patients may have myocardial infarction
or even die a sudden death. Unfortunately, at present, the pathogenesis of KD remains unknown
and KD lacks of specific and sensitive biomarkers, thus bringing difficulties to diagnosis and therapy.
Therefore it is a highly focused topic to research on the mechanism of KD. Some scholars believe
that KD is caused by the cross reaction of external infection and organ tissue composition, hereby
triggering disorder of the immune system and producing a variety of cytokines. On the basis of
considering the cytokines such as vascular endothelial cells, inflammatory factors, adhesion factors
and chemokines, endothelial cell growth factors, put forward a kind of dynamic model of pathogenesis
of KD by the theory of ordinary differential equation. It is found that the dynamic model can show
complex dynamic behavior, such as the forward and backward bifurcation of the equilibria. This article
reveals the possible complexity of KD infection, and provides a theoretical references for the research
of pathogenic mechanism and clinical treatment of KD.
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1. Introduction

Autoimmune disease is the disease that the donor has an immune response to a certain part of its
own, resulting in damage to the function of tissues and organs. Many autoimmune diseases have been
found, and most of them are primary, but the pathogenesis of primary autoimmune disease is still
controversial [1]. The unknown mechanism and the lack of biomarkers are a major problem in the
study of autoimmune diseases. KD is a kind of primary autoimmune disease, also known as muco-
cutaneous lymph node syndrome (MCLS). KD was first described by T. Kawasaki in 1967, which often
associated coronary artery abnormalities (CAAs) [2].

Clinical features of KD usually includes long-time fever and generally more than thirty-nine
degree centigrade, changes in the extremities, polymorphous exanthema, bilateral conjunctival
injection, lesions of the lips and oral cavity and cervical lymphadenopathy [3]. There are many
involved organs in KD, especially for organs which have rich capillaries. Due to a delayed diagnosis
and therapy, CAAs develop in the part of children with KD, and leads to a high risk of acquired heart
disease [4]. In many areas of China, the incidence rate of Kawasaki disease is rising year by year [5].
However, the lack of specific biomarkers and unclear pathogenic mechanism limit accuracy of
diagnosis and timely treatment [6, 7]. Currently, diagnosis criteria is established on fever and at least
four of five clinical features of KD, but not all patients with KD have all been described symptoms in
the standard, which is known as incomplete kawasaki disease [8]. In the treatment, although the lack
of specific drugs for KD, intravenous immunoglobulin combined with aspirin is more effective for
most of the patients, it is because that immunoglobulin can inhibit the activation of the immune cells,
thereby inhibiting the production of inflammatory factors. However, there are some children who do
not respond to immunoglobulin [9–11]. For these children with no reaction to immunoglobulin, it is
possible to adopt new drugs such as glucocorticoid, infliximab and anti-tumor necrosis factor, but the
curative effect has not been widely accepted, and some drugs are still in the stage of
adaptation [9, 12–14].

Most scholars believe that foreign viruses or bacterias are related to the pathogenesis of
KD [15–17]. A. Harden et al first proposed that the etiology of KD is related with external
infection [18]. Subsequently, some scholars found that Candida albicans was the pathogen of infected
mice by establishing the animal model of KD [19]. Some scholars have also discovered that
parvovirus and bacterial pathogens related to the etiology of KD through the polymerase chain
reaction and DNA hybridization techniques [20]. So far, it is not possible to determine the pathogenic
bacteria of KD, but the body immune system disorder because of these external infection, which
triggered a series of inflammatory reaction.

Medium and small vessel vasculitis predominantly attack entire body of young children in
pathogenesis of KD. Abnormal activated immune cells release a large number of inflammatory factors
caused by immune system disorders in the body of patient with Kawasaki disease [21]. In the acute
stage of KD, the level of inflammatory factors are significantly changed. For example, A large
number of TNF-a and interleukin-6 produce in the patient’s body. These inflammatory factors are
directly related to the injury of vascular endothelial cells. TNF-a can directly damage vascular
endothelial cells, promote necrosis and apoptosis of endothelial cells and damage the barrier function
of endothelial cells, which can increase vascular permeability. On the other hand, it stimulates
immune cells to produce more inflammatory factors by autocrine, which forms the waterfall effect of
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inflammation [22–24]. A large number of adhesion factors and chemokines is generated on the
surface of injured endothelial cells, which cause waterfall growth of inflammatory factors. Because of
chemotactic of chemokines and adhesion of adhesion factors, making abnormal activated immune
cells in the lesion area increase [25]. At the same time, a large number of vascular endothelial growth
factors (VEGF) is produced when endothelial cells injury, which promotes the proliferation of
endothelial cells, thus changing vascular permeability [26]. VEGF also induces the expression of
adhesion factors and chemokines on the surface of endothelial cells. This series of reactions cause
vascular edema and aggravating inflammation [9, 26, 27].

It is well-known that differential equations have played an important role in predicting extinction
and persistence of population, infections of diseases, as well as growth of microorganism etc [28–
30]. Differential equations have also been successfully applied to the modeling of viral infections and
immune responses. They still play an important role in revealing some basic properties of immune
selection, interactions between disease and related bio-markers, evolution relationships among healthy
T-cells, free virus, infected T-cells and immune responses, as well as predicting outbreak of infectious
disease etc. [31–40].

Based on the experimental literature of the pathogenesis of KD, in the paper, a class of differential
equation model describing the interactions among the key elements of pathogenesis of KD has been
constructed. Then, by analyzing stability properties of the equilibria of the differential equation
model [28, 41], we study the interaction mechanism among endothelial cells, endothelial growth
factors, adhesion factors, chemokines and inflammatory factors, and finally provide some theory
reference in clinical treatment of KD.

This paper is organized as follows. In the second section, we give differential equation model
describing the interactions among endothelial cells, endothelial growth factors, adhesion factors,
chemokines and inflammatory factors. In the third section, we consider global existence, uniqueness
and nonnegativity of the solutions, and dissipation of the differential equation model. In the fourth
section, first of all, we calculate the basic reproduction number of the differential equation model by
the method of the next generation matrix [42, 43], and then give the classification of the equilibria,
and their stability analysis, further, we give some numerical simulations. Finally, in the last section,
some discussions are given.

2. Description of model

The following simplified Figure 1 of pathogenesis of KD visually demonstrates a series of
inflammatory processes in lesions of patients after the disorder of the immune system, and describes
the interactions between biomarkers in acute stage of KD.

Let the functions E(t), V(t), C(t), P(t) represent concentrations (pg/ml) of normal endothelial cells,
vascular endothelial growth factors (VEGF), activated adhesion factors and chemokines, inflammatory
factors, respectively, in the lesion area at time t in acute stage of KD. For each the function above, the
derivative at time t indicates the rate of change of the corresponding concentration. Based on Figure 1,
we have the block diagram Figure 2 which describes the interactions among E(t), V(t), C(t) and P(t).
All the parameters r, di (i = 1, 2, 3, 4) and k j ( j = 1, 2, · · · , 6) in Figure 2 are assumed to be positive
constants.
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Figure 1. The process of pathogenesis of Kawasaki disease.

Figure 2. The block diagram of the interactions among E, V, C and P.

From the block diagram Figure 2, for each component of E, V, C and P, the corresponding rate of
change follows the following rules:

(i) the rate of change of concentration (E) of normal endothelial cells = normal endothelial cells
proliferation (r) + proliferation (k6VE/(1 + V)) of normal endothelial cells promoted by vascular
endothelial growth factors − loss (k1EP) of normal endothelial cells because of inflammatory factors
− normal apoptosis (d1E);

(ii) the rate of change of concentration (V) of vascular endothelial growth factors = damage of
endothelial cells leading to production of vascular endothelial growth factors (k2EP) − normal
proteolysis (d2V);

(iii) the rate of change of concentration (C) of activated adhesion factors and chemokines = damage
of endothelial cells leading to production of activated adhesion factors and chemokines (k3EP) + the
production (k4V) of adhesion factors and chemokines induced by vascular endothelial growth factors
− normal proteolysis (d3C);

(iv) the rate of change of concentration (P) of inflammatory factors = the production of
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inflammatory factors induced by accumulation of abnormally activated immune cells induced by
increasing of adhesion factors and chemokines (k5C) − normal proteolysis (d4P).

Based on the above rules, we have the following four-dimensional differential equation model,
which describes the interaction among endothelial cells, vascular endothelial growth factors, adhesion
factors, chemokines and inflammatory factors,

Ė(t) =r +
k6V(t)E(t)
1 + V(t)

− k1E(t)P(t) − d1E(t),

V̇(t) =k2E(t)P(t) − d2V(t),
Ċ(t) =k3E(t)P(t) + k4V(t) − d3C(t),
Ṗ(t) =k5C(t) − d4P(t).

(1)

We would like to mention here that, in Figure 2 and the model (1), Holling-II functional response
(k6VE/(1 + V)) is used to denote the growth of normal endothelial cells promoted by vascular
endothelial growth factors. This is because that the proliferation of endothelial cells promoted by
vascular endothelial growth factors does not always satisfy proportional relationship, and with the
increasing of vascular endothelial growth factors, the amount of endothelial cells will approach
saturation state.

The biological meanings, units of all the parameters and fixed value of parameters in model (1) are
shown in Table 1. Here, the unit of time is depicted by day because of a long time in the disease state
of patients with kawasaki disease.

Table 1. Biological meanings and units of the parameters.

parameters biological meanings units values
r Proliferation rate of normal endothelial cells pg/ml/day 2
d1 Apoptosis rates of normal endothelial cells /day 0.5
d2 Hydrolytic rate of endothelial growth factors /day 1
d3 Hydrolytic rate of adhesion factors and chemokines /day 1
d4 Hydrolytic rate of inflammatory factors /day 1
k1 The rate of injury of endothelial cells caused by

inflammatory factors pg/ml/day 1
k2 Production rate of endothelial growth factors caused

by inflammatory factors pg/ml/day –
k3 Production rate of activated adhesion factors and

chemokines caused by inflammatory factors pg/ml/day –
k4 Production rate of activated adhesion factors and

chemokines caused by endothelial growth factors /day –
k5 Production rate of inflammatory factors by

increasing of abnormally activated immune cells /day –
k6 Proliferation rate of endothelial cells promoted

by endothelial growth factors /day –
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3. Global existence, uniqueness, nonnegativity and boundedness of solutions

Taking into account biological significance of the model (1), the initial condition is given as follows,

E(0) = E0 ≥ 0, V(0) = V0 ≥ 0, C(0) = C0 ≥ 0, P(0) = P0 ≥ 0, (2)

where, E0, V0, C0, P0 represent the initial concentrations of normal endothelial cells, vascular
endothelial growth factors, adhesion factors and chemokines and inflammatory factors in lesion area.

Throughout of the paper, in order to ensure that the model (1) is dissipative, it is always assumed
that the condition

(H) k6 < d1

holds.
For global existence, uniqueness, nonnegativity and boundedness of the solutions of the model (1),

we have the following result.

Theorem 3.1. The solution (E(t),V(t),C(t), P(t)) of the model (1) with the initial condition (2) is
existent, unique, nonnegative, and ultimately bounded in [0,+∞).

Proof. In fact, global existence, uniqueness and nonnegativity of the solutions easily follows from
standard theorems on the existence, uniqueness and continuation of the solutions of differential
equations [28, 41]. Let us consider ultimate boundedness. According to the first equation of the
model (1), we have that for t ≥ 0,

Ė(t) ≤ r − (d1 − k6)E(t). (3)

Hence, it follows from the condition (H) that lim supt→+∞ E(t) ≤ r/(d1 − k6). Define the function

N(t) = E(t) +
2k1k4

2k2k4 + d2k3
V(t) +

k1d2

2k2k4 + d2k3
C(t).

We have that for t ≥ 0,

Ṅ(t) ≤ r − (d1 − k6)E(t) −
d2k1k4

2k2k4 + d2k3
V(t) −

k1d2d3

2k2k4 + d2k3
C(t)

≤ r − µN(t),
(4)

where µ = min{d1 − k6, d2/2, d3}. Thus, lim supt→+∞ N(t) ≤ r/µ, which implies that

lim sup
t→+∞

V(t) ≤
r(2k2k4 + d2k3)

2µk1k4
, lim sup

t→+∞

C(t) ≤
r(2k2k4 + d2k3)

µk1d2
.

Finally, from the last equation of the model (1), we easily have

lim sup
t→+∞

P(t) ≤
rk5(2k2k4 + d2k3)

µk1d2d4
.

The proof of Theorem 3.1 is completed. �

From the biological point of view, ultimate boundedness of the solutions shows that the
concentrations of normal endothelial cells, vascular endothelial growth factors, adhesion factors,
chemokines and inflammatory factors in the lesion area are always limited within some limited ranges
at any time rather than suddenly erupt or tend to infinity.
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4. Existence of the equilibria and their dynamics analysis

The types of the equilibria of the model (1) and their asymptotic behaviors can be used to predict the
evolution of endothelial cells, vascular endothelial growth factors, adhesion factors and chemokines,
inflammatory factors in the lesion area over time, so as to provide some feasible control strategies for
the treatment of KD.

4.1. The basic reproductive number

Firstly, we derive the expression of the basic reproduction number of the model (1) by the method of
the next-generation matrix [42,43]. Obviously, the model (1) always has the inflammatory factors-free
equilibrium Q0 = (E0, 0, 0, 0), where E0 = r/d1. Let

x = (V,C, P, E)T .

Then the model (1) can be rewritten as

ẋ(t) = F (x) −V(x),

where

F (x) =


k2EP
k3EP

0
0

 ,V(x) =


d2V

d3C − k4V
d4P − k5C

d1E + k1EP − k6VE
1+V − r

 .
Jacobian determinant of F (x) andV(x) at the inflammatory factors-free equilibrium Q0 is

DF (Q0) =


0 0 k2E0 0
0 0 k3E0 0
0 0 0 0
0 0 0 0

 ,DV(Q0) =


d2 0 0 0
−k4 d3 0 0
0 −k5 d4 0

−k6E0 0 k1E0 d1

 .
Let

F =


0 0 k2E0

0 0 k3E0

0 0 0

 ,V =


d2 0 0
−k4 d3 0
0 −k5 d4

 .
FV−1 is the next-generation matrix for the model (1), and its spectral radius is

ρ(FV−1) =
k2k4k5E0 + d2k3k5E0

d2d3d4
=

rk5(k2k4 + k3d2)
d1d2d3d4

.

Hence, we get the basic reproduction number of the model (1) as follows,

R0 =
rk5(k2k4 + k3d2)

d1d2d3d4
= R1 + R2, (5)

where
R1 =

r
d1
·

k2

d2
·

k4

d3
·

k5

d4
, R2 =

r
d1
·

k3

d3
·

k5

d4
.
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It is noted that 1/d1, 1/d2, 1/d3 and 1/d4 is the average survival time of normal endothelial cells,
endothelial growth factors, adhesion factors and chemokines and inflammatory factors, respectively.
k2 is the growth rate of endothelial growth factors. k3 is the rate at which inflammatory factors cause
the growth of adhesion factors and chemokines. k4 is the rate at which the endothelial growth factors
causes the growth of adhesion factors and chemokines. k5 is the growth rate of inflammatory factors.

Therefore, R1 represents the amount of endothelial cells damage that a damaged endothelial cell
eventually causes in the average survival period when the endothelial growth factor causes the growth
of adhesion and chemokines in the acute phase of KD. R2 represents the amount of endothelial cells
damage that a damaged endothelial cell eventually causes in the average survival period when the
inflammatory factors increases the adhesion factors and chemokines in the acute phase of KD. R0 is
expressed as the number of endothelial cells damaged by an injured endothelial cell in the acute phase
of KD. It is worth noting that r and d1 are intrinsic values of endothelial cells.

If the ratio of k2/d2, k4/d3, k5/d4, or k3/d3 increases, then the value of R0 will increase. From a
biological point of view, the concentration of inflammatory factors, endothelial growth factors, and
adhesion factors and chemokines will rise and the degree of inflammation will increase. Conversely, if
the ratios of k2/d2, k4/d3, k5/d4 and k3/d3 are reduced, then the degree of vascular damage caused by
inflammation will be reduced and KD will likely be to treated.

4.2. Classification of equilibria

Assume that (E,V,C, P) is any equilibrium of the model (1), then it satisfy the nonlinear algebraic
equations: 

r +
k6VE
1 + V

− k1EP − d1E = 0,

k2EP − d2V = 0,
k3EP + k4V − d3C = 0,

k5C − d4P = 0.

(6)

As mentioned in Subsession 4.1 that the model (1) always has the inflammatory factors-free
equilibrium Q0 = (E0, 0, 0, 0).

From the biological point of view, the existence of the inflammatory factors-free equilibrium Q0

indicates that, under certain conditions, the concentrations of vascular endothelial growth factors,
adhesion factors, chemokines and inflammatory factors in the lesion area of patients with KD may
tend to zero, while the concentration of endothelial cells may tend to the value E0 = r/d1. These
indicate that the body will tend to normal state and inflammation caused by KD is controllable under
certain conditions.

When V > 0, the following relationship can be obtained from (6):

E =
d2d3d4

k5(k2k4 + d2k3)
,V =

d3k2

k2k4 + d2k3
C =

d3d4k2

k5(k2k4 + d2k3)
P. (7)

Then bring (7) to the first equation of (6) to get the following algebraic equation about V ,

d1d2k1R0V2 + [rk2(d1 − k6) − (rd1k2 − d1d2k1)R0]V
− rd1k2(R0 − 1) = 0.

(8)
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And then we get 
V1 =

rk2k6 − d1d2k1R0 + rd1k2(R0 − 1) +
√

∆

2d1d2k1R0
,

V2 =
rk2k6 − d1d2k1R0 + rd1k2(R0 − 1) −

√
∆

2d1d2k1R0
,

(9)

where,
∆ = [rk2(d1 − k6) − (rd1k2 − d1d2k1)R0]2 + 4d1d2k1rd1k2R0(R0 − 1).

We have the following two cases to be considered.

(a) rk2(d1 − k6) ≥ rd1k2 − d1d2k1, i.e., rk2k6 ≤ d1d2k1.
If R0 > 1, then there is a unique positive root V = V1 ≡ V∗ in (9). And then we can get the unique

inflammatory factors-existent equilibrium Q∗ = (E∗,V∗,C∗, P∗) from (7).
If R0 ≤ 1, it is easy to have that the model (1) does not have any inflammatory factors-existent

equilibrium.
(b) rk2(d1 − k6) < rd1k2 − d1d2k1, i.e., rk2k6 > d1d2k1.
If R0 ≥ 1, then there is a unique positive root V = V1 ≡ V∗1 in (9). Similarly, the unique inflammatory

factors-existent equilibrium Q∗1 = (E∗1,V
∗
1 ,C

∗
1, P

∗
1) can be obtained.

Next, let us discuss the case of R0 < 1. In this case, in order to ensure that the equation (8) has a
positive root, its symmetry axis must be positive. Hence, it should has rk2(d1−k6)−(rd1k2−d1d2k1)R0 <

0, i.e.,

R0 >
rk2(d1 − k6)

rd1k2 − d1d2k1
.

Based on ∆ in (9), let us consider the function,

F(x) =[rk2(d1 − k6) − (rd1k2 − d1d2k1)x]2 + 4d1d2k1rd1k2x(x − 1)
=(rd1k2 + d1d2k1)2x2 − 2[rk2(d1 − k6)(rd1k2 − d1d2k1) + 2d1d2k1rd1k2]x

+ r2k2
2(d1 − k6)2.

Let

41 =4[rk2(d1 − k6)(rd1k2 − d1d2k1) + 2d1d2k1rd1k2]2

− 4(rd1k2 + d1d2k1)2r2k2
2(d1 − k6)2.

It has from F(x) = 0 that
x1 =

2[rk2(d1 − k6)(rd1k2 − d1d2k1) + 2d1d2k1rd1k2] +
√
41

2(rd1k2 + d1d2k1)2 ,

x2 =
2[rk2(d1 − k6)(rd1k2 − d1d2k1) + 2d1d2k1rd1k2] −

√
41

2(rd1k2 + d1d2k1)2 .

By simple computations, it has

∆1 = 16[(d1d2k1rd1k2)2 + rk2(d1 − k6)(rk2k6 − d1d2k1)d1d2k1rd1k2] > 0.
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Moreover, notice

F(0) > 0, F(
rk2(d1 − k6)

rd1k2 − d1d2k1
) < 0, F(1) > 0.

We have
0 < x2 <

rk2(d1 − k6)
rd1k2 − d1d2k1

< x1 ≡ ω < 1.

If R0 = ω, the two roots of (8) are equal, that is V = V1 = V2 ≡ V∗ω, and further, from the
relationships between the roots and the coefficients of (8), we have

V∗2ω =
rd1k2(1 − R0)

d1d2k1R0
, V∗ω =

(rd1k2 − d1d2k1)R0 − rk2(d1 − k6)
2d1d2k1R0

. (10)

Similarly, the unique inflammatory factors-existent equilibrium Q∗ω(E∗ω,V
∗
ω,C

∗
ω, P

∗
ω) can be obtained.

If ω < R0 < 1, then both roots in (9) are positive, that is V = V1 ≡ V∗1 , V = V2 ≡ V∗2 . Hence,
we can have the two inflammatory factors-existent equilibria Q∗1(E∗1,V

∗
1 ,C

∗
1, P

∗
1) and Q∗2(E∗2,V

∗
2 ,C

∗
2, P

∗
2).

Furthermore, from (7), we also have the following relationships,

E∗1 = E∗2 =
d2d3d4

k5(k2k4 + d2k3)
, V∗1 > V∗2 , C∗1 > C∗2, P∗1 > P∗2.

If 0 < R0 < ω, it is easy to see that the model (1) does not have any inflammatory factors-existent
equilibrium.

Therefore, we have the following results.

Theorem 4.1. The model (1) always has the inflammatory factors-free equilibrium Q0 = (E0, 0, 0, 0).
In addition, there are also the inflammatory factors-existent equilibria:

(i) If rk2k6 ≤ d1d2k1 and R0 > 1, then the model (1) has a unique inflammatory factors-existent
equilibrium Q∗(E∗,V∗,C∗, P∗).

(ii) If rk2k6 > d1d2k1, then there are three cases:
(ii)1 if R0 ≥ 1, then the model (1) has a unique inflammatory factors-existent
equilibrium Q∗1(E∗1,V

∗
1 ,C

∗
1, P

∗
1).

(ii)2 if ω < R0 < 1, then the model (1) has two inflammatory factors-existent
equilibria Q∗1(E∗1,V

∗
1 ,C

∗
1, P

∗
1) and Q∗2(E∗2,V

∗
2 ,C

∗
2, P

∗
2).

(ii)3 if R0 = ω, then the model (1) has a unique inflammatory factors-existent
equilibrium Q∗ω(E∗ω,V

∗
ω,C

∗
ω, P

∗
ω).

The case (i) in Theorem 4.1 indicates that the equilibria of the model (1) exhibit a forward
bifurcation, and the cases (ii) in Theorem 4.1 indicate that the equilibria of the model (1) exhibit a
backward bifurcation. Figure 3 and 4 are bifurcation diagrams for the equilibria of the model (1)
under appropriate parameter values.

From the biological point of view, the existence of inflammatory factors-existent equilibria of the
model (1) indicates that the concentrations of endothelial cells, endothelial growth factors, adhesion
factors and chemokines, and inflammatory factors may tend to be some constants, which indicates that
inflammation will continue to exist in lesion area of bodies with KD under certain conditions over time.
In addition, the characteristics of the backward bifurcation mean that there are multiple equilibria. This
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shows that the disease may persist even when R0 < 1, which reveals the complexity of the pathogenesis
of KD.

It is worth noting that R0 is independent on the parameter k6. According to the classification of the
equilibria in Theorem 4.1, if the parameters r, d1, d2, k1 and k2 are fixed, then k6 is a very important
bifurcation parameter. In addition, there is no k5 in the expression of ω, and R0 and k5 are proportional
when all other parameters are fixed except k5. Hence, we could change the value of k5 to control R0.

Figure 3. The equilibria of the model
(1) exhibit a forward bifurcation when
rk2k6 ≤ d1d2k1, where, r = 2, d1 = 0.5,
d2 = d3 = d4 = 1, k1 = k4 = 1,
k2 = k3 = 2, k6 = 0.1, and k5 is variable.

Figure 4. The equilibria of the model
(1) exhibit a backward bifurcation when
rk2k6 > d1d2k1, where, k6 = 0.4, k5 is
variable, and all other parameters are the
same as in Figure 3. The value of ω is
0.80.

4.3. Local dynamics of inflammatory factors-free equilibrium

For the local stability of the inflammatory factors-free equilibrium Q0 = (E0, 0, 0, 0), there are the
following results.

Theorem 4.2. If R0 < 1, the inflammatory factors-free equilibrium Q0 is locally asymptotically stable;
If R0 > 1, the inflammatory factors-free equilibrium Q0 is unstable; If R0 = 1, the inflammatory
factors-free equilibrium Q0 is linear stable.

Proof. The corresponding linearization system at any equilibria Q(E,V,C, P) is

Ė(t) =(
k6V

1 + V
− k1P − d1)E(t) + (

k6E
(1 + V)2 )V(t) − (k1E)P(t),

V̇(t) =(k2P)E(t) − d2V(t) + (k2E)P(t),
Ċ(t) =(k3P)E(t) + k4V(t) − d3C(t) + (k3E)P(t),
Ṗ(t) =k5C(t) − d4P(t).

(11)

The corresponding Jacobian matrix is

J =


k6V
1+V − k1P − d1

k6E
(1+V)2 0 −k1E

k2P −d2 0 k2E
k3P k4 −d3 k3E
0 0 k5 −d4

 . (12)
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The characteristic equation at the inflammatory factors-free equilibrium Q0 is

(λ + d1)(λ3 + a1λ
2 + a2λ + a3) = 0, (13)

where

a1 = d2 + d3 + d4 > 0,

a2 = d2d3 + d2d4 + d3d4 − k3k5E0 = d2d3 + d2d4 + d3d4(1 − R0) +
rk2k4k5

d1d2
,

a3 = d2d3d4 − d2k3k5E0 − k2k4k5E0 = d2d3d4(1 − R0).

Obviously, λ = −d1 is a negative real root of (13). If R0 < 1, then, a2 > 0 and a3 > 0. Furthermore,
it is clear that a1a2 − a3 > 0 for R0 < 1. According to Routh-Hurwitz criterion, all the roots of (13)
have negative real parts. Hence, the inflammatory factors-free equilibrium Q0 is locally asymptotically
stable.

If R0 > 1, then, a3 < 0. Hence, there is a positive real root of (13), i.e., the inflammatory factors-free
equilibrium Q0 is unstable.

If R0 = 1, then, a3 = 0. It is easy to get that λ = 0 is a root of (13), and all other roots of (13) have
negative real parts. Thus, the inflammatory factors-free equilibrium Q0 is linear stable. This proves
Theorem 4.2.

�

The condition R0 < 1 in Theorem 4.2 is equivalent to r/d1 · k2/d2 · k4/d3 · k5/d4+

r/d1 · k3/d3 · k5/d4 < 1. Taking into account the biological meanings of the parameters, the local
asymptotic stability of the inflammatory factors-free equilibrium Q0 and the above inequality indicate
that, under certain initial conditions, if the proliferation rate (r) of normal endothelial cells, the growth
rates (k2, k3, k4, k5) of endothelial growth factors caused by inflammatory factors, activated adhesion
factors and chemokines caused by inflammatory factors, activated adhesion factors and chemokines
caused by endothelial growth factors, adhesion factors and chemokines caused by endothelial growth
factors are sufficiently small, or the rates (d1, d2, d3, d4) of proteolysis are large enough, then the
concentration of normal endothelial cells will tend to a stable value r/d1 and the concentrations of
endothelial cell growth factors, adhesion and chemokines, and inflammatory factors will tend to zero
over time. This reveals that, by controlling the corresponding parameters of the interactions of each
element in this model so that R0 < 1, the inflammation will be relieved or even cured over time.
Therefore, the ratio of k5/d4 can be reduced by the monoclonal antibody of anti inflammatory factors,
and the effects of adhesion and chemotaxis can be reduced by the competitive inhibitor of adhesion
factors and chemokines, so that the ratio of k5/d4 can also be reduced. Because inflammatory factors,
adhesion factors and chemokines, and endothelial growth factors are cytokines, the rate of proteolysis
can be increased through regulation, thus reducing the value of R0.

Figures 5 and 6 are the solution curves of the model (1) with the initial value (6, 2, 3, 5), and the
values of the parameters are shown in Tables 1 and 2.
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Table 2. The values of the parameters in the model (1).

Parameters Figure 5 Figure 6
k2 2 1
k3 2 1
k4 1 0.5
k5 0.05 0.12
k6 0.12 0.3
Equilibrium Q0(4,0,0,0) Q0(4,0,0,0)
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Figure 5. 0.48 = rk2k6 < d1d2k1 = 0.50,
the case of forward bifurcation, R0 =

0.80 < 1. The inflammatory factors-
free equilibrium Q0(4, 0, 0, 0) is locally
asymptotically stable.
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Figure 6. 0.60 = rk2k6 > d1d2k1 = 0.50,
the case of backward bifurcation, R0 =

0.72 < 0.99 ≈ ω < 1. The inflammatory
factors-free equilibrium Q0(4, 0, 0, 0) is
locally asymptotically stable.

4.4. Local dynamics of inflammatory factors-existent equilibria

From (12), it has that, at any inflammatory factors-existent equilibrium Q(E,V,C, P), the
corresponding Jacobian matrix can be rewritten as

J =


−d1R0

rk6
d1R0(1+V)2 0 −

rk1
d1R0

d1d2R0V
r −d2 0 rk2

d1R0
d1d2k3R0V

rk2
k4 −d3

rk3
d1R0

0 0 k5 −d4

 . (14)

From the first and second equations of (6), we can have

r +
k6VE
1 + V

− d1E =
d2k1V

k2
.

Hence,

V =
k2

d2k1
(r +

k6VE
1 + V

− d1E) <
k2

d2k1
(r + k6E − d1E) <

rk2

d2k1
.
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Hence,we have the following lemma which will be used in considering the local stability of the
inflammatory factors-existent equilibria.

Lemma 4.1. For any inflammatory factors-existent equilibrium Q(E,V,C, P), there is V < rk2/d2k1.

For the local stability of the inflammatory factors-existent equilibrium, there are the following
theorem.

Theorem 4.3. Assume rk2k6 ≤ d1d2k1 (the case of forward bifurcation). If R0 > 1, then the
inflammatory factors-existent equilibrium Q∗ is locally asymptotically stable.

Proof. The characteristic equation of Jacobian matrix (14) can be written as the following form,

L(λ) = λ4 + A1λ
3 + A2λ

2 + A3λ + A4 = 0, (15)

where,

A1 = d1R0 + d2 + d3 + d4,

A2 = d1d2R0 −
d2k6V

(1 + V)2 + d1d3R0 + d1d4R0 + d2d3 + d2d4 +
rk2k4k5

d1d2R0
,

A3 = (d3 + d4)(d1d2R0 −
d2k6V

(1 + V)2 ) +
rk2k4k5

d2
+

d2k1k3k5V
k2

,

A4 =
d2V

k2(1 + V)2 [k1k5(k2k4 + d2k3)(1 + 2V + V2) − d3d4k2k6].

At the inflammatory factors-existent equilibrium Q∗(E∗,V∗,C∗, P∗), it is obviously A1 > 0. To
determine the sign of A4, consider the function

G(x) = k1k5(k2k4 + d2k3)(1 + 2x + x2) − d3d4k2k6.

When x > 0, G(x) is a monotonically increasing function about x. From the relations between the
roots and coefficients of the algebraic equation (8), we have

V∗ >
d1(rk2 − d2k1)R0 − rk2(d1 − k6)

2d1d2k1R0
, V∗2 >

rk2(1 − R0)
d2k1R0

. (16)

Hence,

G(V∗) >k1k5(k2k4 + d2k3)[1 +
d1(rk2 − d2k1)R0 − rk2(d1 − k6)

d1d2k1R0

+
rk2(1 − R0)

d2k1R0
] − d3d4k2k6 = 0.

(17)

Thus, A4 > 0. According to Lemma 4.1, we have

rk2k4k5 > d2k1k4k5V∗, rd2k3k5 >
d2

2k1k3k5

k2
V∗. (18)

Therefore,

d1d2R0 −
d2k6V∗

(1 + V∗)2 =
1

d3d4
[rk2k4k5 + rd2k3k5 −

d2d3d4k6V∗

(1 + V∗)2 ]

>
1

d3d4
[d2k1k4k5V∗ +

d2
2k1k3k5

k2
V∗ −

d2d3d4k6V∗

(1 + V∗)2 ]

=
A4

d3d4
.

(19)
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Thus, A2 > 0 and A3 > 0.
Now, let us show that ∆2 = A2A3 − A1A4 > 0 and ∆3 = A1∆2 − A2

3 > 0.
By suitable computations, ∆2 can be rewritten as the form, ∆2 = ∆21 + ∆22, where,

∆21 =(d1R0 + d2)(d2
3 + d2

4 + d3d4)[d1d2R0 −
d2k6V∗

(1 + V∗)2 ] + d1d3d4R0[d1d2R0

−
d2k6V∗

(1 + V∗)2 ] + (d3 + d4)[d1d2R0 −
d2k6V∗

(1 + V∗)2 ]2

+
rk2k4k5

d2
(d1R0 + d2)(d3 + d4) +

(rk2k4k5)2

d1d2
2R0

+
d2k1k3k5V∗

k2
[d1R0(d3 + d4) +

rk2k4k5

d1d2R0
],

∆22 =(d1R0 + d3 + d4)(rk2k4k5 − d2k1k4k5V∗) + d2d3d4[d1d2R0 −
d2k6V∗

(1 + V∗)2 ]

− d2[d2k1k4k5V∗ +
d2

2k1k3k5

k2
V∗ −

d2d3d4k6V∗

(1 + V∗)2 ]

+
d2k6V∗

(1 + V∗)2 [d3d4(d1R0 + d3 + d4) −
rk2k4k5

d1d2R0
(d3 + d4)

−
rk2k4k5

d2
−

d2k1k3k5V∗

k2
]

=(d1R0 + d3 + d4)(rk2k4k5 − d2k1k4k5V∗) + d2d3d4[d1d2R0 −
d2k6V∗

(1 + V∗)2

−
A4

d3d4
] +

d2k6V∗

(1 + V∗)2 [(d3 + d4)(d3d4 −
rk2k4k5

d1d2R0
) + rk3k5 −

d2k1k3k5V∗

k2
].

Notice
d3d4 −

rk2k4k5

d1d2R0
=

rk3k5

d1R0
.

We have from (18) and (19) that ∆21 > 0 and ∆22 > 0.
∆3 can be rewritten as the form, ∆3 = A1∆2 − A2

3 = A1(∆21 + ∆22) − A2
3, where

A1∆21 = α1 + α2 + α3 + α4 + α5 + α6,

A2
3 = β1 + β2 + β3 + 2β4 + 2β5 + 2β6,

α1 = (d1R0 + d2)(d2
3 + d2

4 + d3d4)(d1R0 + d2 + d3 + d4)[d1d2R0 −
d2k6V∗

(1 + V∗)2 ],

α2 = d1d3d4R0(d1R0 + d2 + d3 + d4)[d1d2R0 −
d2k6V∗

(1 + V∗)2 ],

α3 = (d3 + d4)(d1R0 + d2 + d3 + d4)[d1d2R0 −
d2k6V∗

(1 + V∗)2 ]2,

α4 =
rk2k4k5

d2
(d1R0 + d2)(d3 + d4)(d1R0 + d2 + d3 + d4),
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α5 =
(rk2k4k5)2

d1d2
2R0

(d1R0 + d2 + d3 + d4),

α6 =
d2k1k3k5V∗

k2
[d1R0(d3 + d4) +

rk2k4k5

d1d2R0
](d1R0 + d2 + d3 + d4),

β1 = (d3 + d4)2[d1d2R0 −
d2k6V∗

(1 + V∗)2 ]2, β2 = (
rk2k4k5

d2
)2,

β3 = (
d2k1k3k5V∗

k2
)2, β4 = (d3 + d4)[d1d2R0 −

d2k6V∗

(1 + V∗)2 ]
rk2k4k5

d2
,

β5 = (d3 + d4)[d1d2R0 −
d2k6V∗

(1 + V∗)2 ]
d2k1k3k5V∗

k2
, β6 =

rk2k4k5

d2

d2k1k3k5V∗

k2
.

From Lemma 4.1, we have

d1d3d4R0 =
rk2k4k5

d2
+ rk3k5 >

rk2k4k5

d2
+

d2k1k3k5V∗

k2
. (20)

Hence, from (19) and (20), we have

α1 − β4 >(d3 + d4)[d1d2R0 −
d2k6V∗

(1 + V∗)2 ](d1d3d4R0 −
rk2k4k5

d2
) > 0,

α2 − (β4 + β5) >(d3 + d4)[d1d2R0 −
d2k6V∗

(1 + V∗)2 ]

(d1d3d4R0 −
rk2k4k5

d2
−

d2k1k3k5V∗

k2
) > 0,

α3 − β1 =(d3 + d4)(d1R0 + d2)[d1d2R0 −
d2k6V∗

(1 + V∗)2 ]2 > 0,

α4 − β6 >
rk2k4k5

d2
(d1d3d4R0 −

d2k1k3k5V∗

k2
) > 0,

α5 − β2 =
(rk2k4k5)2

d1d2
2R0

(d2 + d3 + d4) > 0,

α6 − (β3 + β5 + β6) =
d2k1k3k5V∗

k2
[d1R0(d3 + d4)(d1R0 + d3 + d4)

+ (d3 + d4)
d2k6V∗

(1 + V∗)2 −
d2k1k3k5V∗

k2

+
rk2k4k5

d1d2R0
(d2 + d3 + d4)]

>
d2k1k3k5V∗

k2
(d1d3d4R0 −

d2k1k3k5V∗

k2
) > 0.

Therefore, ∆3 = A1(∆21 + ∆22) − A2
3 > A1∆21 − A2

3 > 0. Furthermore, we have ∆4 = A4∆3 > 0.
By Routh-Hurwitz criterion, we have that the inflammatory factors-existent equilibrium Q∗ is

locally asymptotically stable. This completes the proof of Theorem 4.3. �

Theorem 4.4. Assume rk2k6 > d1d2k1 (the case of backward bifurcation). If R0 ≥ 1, then unique
inflammatory factors-existent equilibrium Q∗1 is locally asymptotically stable; If ω < R0 < 1, the
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inflammatory factors-existent equilibrium Q∗1 is locally asymptotically stable, and the inflammatory
factors-existent equilibrium Q∗2 is unstable; If R0 = ω, unique inflammatory factors-existent
equilibrium Q∗ω is linear stable.

Proof. Similar to the proof of Theorem 4.3, when the inflammatory factors-existent equilibrium Q∗2
exists, we have

V∗2 <
d1(rk2 − d2k1)R0 − rk2(d1 − k6)

2d1d2k1R0
, V∗22 <

rk2(1 − R0)
d2k1R0

.

Hence,

G(V∗2) <k1k5(k2k4 + d2k3)[1 +
d1(rk2 − d2k1)R0 − rk2(d1 − k6)

d1d2k1R0

+
rk2(1 − R0)

d2k1R0
] − d3d4k2k6 = 0,

which implies L(0) = A4 < 0. Since limλ→+∞ L(λ) = +∞, we have from the intermediate value theorem
of continuous functions that the equation L(λ) = 0 has at least one positive root. This shows that the
inflammatory factors-existent equilibrium Q∗2 is unstable.

When the inflammatory factors-existent equilibrium Q∗1 exists, V∗ in (16)-(20) can be replaced by
V∗1 . Similar to the proof of Theorem 4.3, we can also prove that the inflammatory factors-existent
equilibrium Q∗1 is locally asymptotically stable.

When R0 = ω, there exists unique inflammatory factors-existent equilibrium Q∗ω. According to (10),
we have G(V∗ω) = 0, i.e., A4 = 0. By using similar method in the proof of Theorem 4.3, we can get
∆2 > 0, ∆3 > 0 and ∆4 = 0. We can easily to check that λ = 0 is a simple root of (15), and that all other
roots of (15) have negative real parts. Therefore, the inflammatory factors-existent equilibrium Q∗ω is
linear stable. This completes the proof of Theorem 4.4. �

In Theorem 4.3, when rk2k6 ≤ d1d2k1 and R0 > 1, or in Theorem 4.4, when rk2k6 > d1d2k1 and R0 ≥

1, unique inflammatory factors-existent equilibrium Q∗ or Q∗1 of the model (1) is locally asymptotically
stable. This indicates that, if the proliferation rate (r) of normal endothelial cells, the growth rates (k2,
k3, k4, k5) of endothelial growth factors caused by inflammatory factors, activated adhesion factors
and chemokines caused by inflammatory factors, activated adhesion factors and chemokines caused by
endothelial growth factors, adhesion factors and chemokines caused by endothelial growth factors are
large enough, or the rates (d1, d2, d3, d4) of proteolysis are small enough, then the concentrations of
normal endothelial cells, endothelial cell growth factors, adhesion and chemokines, and inflammatory
factors will tend to some constants over time. This reveals that inflammation will not disappear in a
certain condition of the amount of the various elements of the pathogenesis in the acute phase of KD,
but will tend to stable state, which means that KD will continue to exist in patients.

Figures 7 and 8 are the numerical simulations of the solution curves of the model (1) with the initial
values (0.1, 1.2, 4.2, 1.6), (0.3, 1.4, 4.4, 1.8), (0.5, 1.6, 4.6, 2.0), (0.7, 1.8, 4.8, 2.2), (0.9, 2.0, 5.0, 2.4) and
(1.1, 2.2, 5.2, 2.6), The parameters are shown in Tables 1 and 3.

When rk2k6 > d1d2k1 and ω < R0 < 1, the situation is different from the previous case, and there
exits a backward bifurcation. In addition to the inflammatory factors-free equilibrium Q0(E0, 0, 0, 0),
there are two inflammatory factors-existent equilibria Q∗1(E∗1,V

∗
1 ,C

∗
1, P

∗
1) and Q∗2(E∗2,V

∗
2 ,C

∗
2, P

∗
2). In
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Table 3. The values of the parameters in the model (1).

Parameters Figure 7 Figure 8
k2 2 2
k3 2 2
k4 1 0.5
k5 0.4 0.15
k6 0.12 0.45
Equilibrium Q∗(0.63,3.49,6.98,2.79) Q∗1(2.22,3.31,4.97,0.75)
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Figure 7. 0.48 = rk2k6 < d1d2k1 =

0.50, the case of forward bifurcation,
R0 = 6.4 > 1, the inflammatory factors-
existent equilibrium Q∗(0.63, 3.49, 6.98,
2.79) is locally asymptotically stable.
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Figure 8. 1.80 = rk2k6 > d1d2k1 =

0.50, the case of backward bifurcation,
R0 = 1.8 > 1, the inflammatory factors-
existent equilibrium Q∗1(2.22, 3.31, 4.97,
0.75) is locally asymptotically stable.

this situation, it has from Theorems 4.2 and Theorem 4.4 that both the inflammatory factors-free
equilibrium Q0(E0, 0, 0, 0) and the inflammatory factors-existent equilibrium Q∗1(E∗1,V

∗
1 ,C

∗
1, P

∗
1) are

asymptotically stable, and the inflammatory factors-existent equilibrium Q∗2(E∗2,V
∗
2 ,C

∗
2, P

∗
2) is

unstable. The means that the treatment of KD cannot be judged only by the size of the basic
reproduction number and 1. The development trend of KD related to the initial concentrations (E0,

V0, C0, P0) of each element in the model.
In biology, when the initial concentration of the inflammatory factors is higher, then the initial

concentration of the corresponding endothelial cell growth factors is also higher, and the change of
the permeability of the blood vessel is larger, so that the vascular injury is serious, then the
concentration of elements of the model may approach constant over time. On the contrary, when the
initial concentration of the inflammatory factors is lower, then the initial concentration of the
corresponding endothelial cell growth factors is also lower, and the change of the permeability of the
blood vessel is smaller, then the concentration of elements of the model may approach zero over time
under certain conditions. That is to say that inflammation will be alleviated or even cured with time.
Bistability reveals the complexity of the pathogenesis of KD. The severity of the disease may depend
on the initial concentrations of endothelial cells, endothelial growth factors, adhesion factors and
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chemokines, cell inflammatory factors. So we have found a crucial parameter (ω) for controlling
disease and we not only need to control the basic reproduction number less than one, but also further
control less than ω to ensure that inflammation can be eliminated.

Figure 9 is the numerical simulations of the solution curves of the model (1) with the initial values
(4.0, 0.6, 0.6, 0.6), (3.0, 0.4, 0.4, 0.4), (2.0, 0.3, 0.2, 0.2), (1.0, 0.2, 0.1, 0.1) and (0.8, 0.1, 0.05, 0.05). We
take k5 = 0.16, k6 = 0.45, and the other parameters are the same as those in Figure 6 of Table 2.
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Figure 9. 0.60 = rk2k6 > d1d2k1 = 0.50, the case of backward bifurcation, ω ≈ 0.93 <

0.96 = R0 < 1. The inflammatory factors-free equilibrium Q0(4, 0, 0, 0) and the inflammatory
factors-existent equilibrium Q∗1(4.17, 0.67, 1.00, 0.16) are locally asymptotically stable, but
the inflammatory factors-existent equilibrium Q∗2(4.17, 0.13, 0.19, 0.03) is unstable.

5. Conclusion and prospect

In this article, we establish the dynamic model (1) of the interactions between various factors in the
pathogenesis of KD, and then study the existence and local stability of the inflammatory factors-free
equilibrium and the inflammatory factors-existent equilibria by using the stability theory of differential
equations.

Theorem 4.1 gives the conditions for the existence of the equilibria in the model (1). The analysis
shows that the equilibria of the model (1) exhibit forward bifurcation and backward bifurcation. Then,
we obtain the expression of the reproduction number R0 by the method of next generation matrix.
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Studies have shown that the inflammatory factors-free equilibrium Q0 is locally asymptotically stable,
unstable, and linear stable when R0 < 1, R0 > 1 and R0 = 1, respectively. If rk2k6 ≤ d1d2k1 (the case of
forward bifurcation) and R0 > 1, or rk2k6 > d1d2k1 (the case of backward bifurcation) and R0 ≥ 1, the
model (1) has a unique inflammatory factors-existent equilibrium Q∗ or Q∗1, and it is locally
asymptotically stable. However, if rk2k6 > d1d2k1 (the case of backward bifurcation) and ω < R0 < 1,
then the model (1) has two inflammatory factors-existent equilibria Q∗1 and Q∗2. We have shown that
the inflammatory factors-existent equilibrium Q∗1 is locally asymptotically stable, but the
inflammatory factors-existent equilibrium Q∗2 is unstable. Interestingly, there is bistable, i.e., the
inflammatory factors-free equilibrium Q0 and the inflammatory factors-existent equilibrium Q∗1 is
locally asymptotically stable.

Note that when rk2k6 ≤ d1d2k1 (the case of forward bifurcation), R0 < 1 is equivalent to
rk5(k2k4 + k3d2) < d1d2d3d4. The proliferation rate (r) of normal endothelial cells and its apoptotic
rate (d1), the rates of proteolysis of endothelial growth factors, adhesion factors and chemokines and
inflammatory factors (d2, d3 and d4) are considered as relatively fixed parameters. The local stability
of the inflammatory factors-free equilibrium Q0 indicates that if the growth rate (k2) of endothelial
growth factors caused by inflammatory factors, the growth rate (k3) of activated adhesion factors and
chemokines caused by inflammatory factors, the growth rate (k4) of activated adhesion factors and
chemokines caused by endothelial growth factors and the growth rate (k5) of adhesion factors and
chemokines caused by endothelial growth factors are small enough, then whether KD is eliminated or
not can be determined by the reproduction number R0 < 1.

Contrary to the above situation, i.e., when rk2k6 > d1d2k1 (the case of forward bifurcation), if the
growth rates (k2, k3, k4 and k5) are large enough, it is necessary to control the reproduction number R0

such that R0 < ω < 1 to eliminate KD. Furthermore, when ω < R0 < 1, there are two inflammatory
factors-existent equilibria. This shows the complexity of the pathogenesis of KD.

In the study of clinical treatment of KD, the development of KD can be controlled by controlling
the corresponding parameters. In model (1), due to adhesion of adhesion factors and chemotaxis of
chemokines, activated immune cells are greatly increased, which leads to an increase in inflammatory
factors.

We know from the expressions of R1 and R2 that R1 and R2 are positively proportional to the
parameter k5. We could reduce the value of k5 through the effective biological method such that the
value of R0 is reduced. In clinical research, monoclonal antibodies of anti inflammatory factors can be
used to reduce the rate of production of cytokines, so that the parameter k5 decreases. It is also
possible to use the competitive inhibitor of adhesion factors and chemokines to regulate the number of
abnormally activated immune cells, which produced by adhesion and chemotaxis, leading to the rate
of growth of inflammatory factors decrease. In addition, it is also possible to regulate the rate of
hydrolyzation of endothelial growth factors, adhesion factors and chemokines, and inflammatory
factors without affecting other proteins in the body, making the values of the parameters d2, d3 and d4

increase. By adjusting the above parameters, it can reduce the value of the basic reproductive
number R0.

In addition to the adhesion factors and chemokines, other factors can also lead to produce a large
number of inflammatory factors, such as inflammasome. However, the pathogenesis of Kawasaki
disease is unclear, and adhesion factors and chemokines have obvious influence on production of
inflammatory factors. Therefore, only the influence of adhesion factors and chemokines have been
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considered in the model (1). In fact, inflammation is more complex and serious in the actual
clinical settings.

Finally, through numerical simulations, we give some problems which may be worth of further
discussions.

(i) When rk2k6 ≤ d1d2k1 (the case of forward bifurcation) and R0 < 1, or rk2k6 > d1d2k1 (the case of
backward bifurcation) and R0 < ω, the inflammatory factors-free equilibrium Q0 is likely to be globally
asymptotically stable.

(ii) When R0 > 1, then the inflammatory factors-existent equilibria Q∗ and Q∗1 may also be globally
asymptotically stable.

(iii) In addition, throughout of this paper, we have assumed the condition (H) k6 < d1 in order to
ensure the dissipativeness of the model (1). However, Figure 10 suggest that, if k6 ≥ d1, the model (1)
is also likely dissipative, and it maybe exhibits more complicated dynamic phenomena.
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Figure 10. The phase trajectory and solution curves of the model (1) with the initial value
(4, 1, 2, 3), where k6 = 1.8 and the other parameters are the same as those in Figure 5 of
Table 2.
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