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Abstract: As a principal category in the promising field of medical image processing, medical image 
enhancement has a powerful influence on the intermedia features and final results of the computer 
aided diagnosis (CAD) system by increasing the capacity to transfer the image information in the 
optimal form. The enhanced region of interest (ROI) would contribute to the early diagnosis and the 
survival rate of patients. Meanwhile, the enhancement schema can be treated as the optimization 
approach of image grayscale values, and metaheuristics are adopted popularly as the mainstream 
technologies for medical image enhancement. In this study, we propose an innovative metaheuristic 
algorithm named group theoretic particle swarm optimization (GT-PSO) to tackle the optimization 
problem of image enhancement. Based on the mathematical foundation of symmetric group theory, 
GT-PSO comprises particle encoding, solution landscape, neighborhood movement and swarm 
topology. The corresponding search paradigm takes place simultaneously under the guidance of 
hierarchical operations and random components, and it could optimize the hybrid fitness function of 
multiple measurements of medical images and improve the contrast of intensity distribution. The 
numerical results generated from the comparative experiments show that the proposed GT-PSO has 
outperformed most other methods on the real-world dataset. The implication also indicates that it 
would balance both global and local intensity transformations during the enhancement process. 
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1. Introduction  

As an important substantial part of receiving, processing and analyzing images in the biomedical 
engineering and science domains, medical image enhancement aims to facilitate the quality of images 
and prevent them from poor illumination, noise interference and artifact influence, which is essential 
for detecting various clinical conditions, features, ailments and making suitable diagnostic decisions 
followed by [1]. As well known, the misdiagnosis of diseases would lead to severe mistakes and further 
exacerbate the life-threatening situation. Therefore, improving visual perception and machine 
understanding of medical images is imperative through enhancement technologies in the computer 
aided diagnosis (CAD) system [2].  

Considering the difference between black and white parts in an image, the contrast measures the 
contradiction of different objective brightest and darkest grayscale values. The display quality depends 
on the matter of contrast, the higher the contrast, the better the display and vice versa. Under most 
circumstances, there are noises, distortions and blurs in medical images so that low contrast is observed 
frequently from those images, which causes the complex and time-consuming action in the next stage 
of processing. As the enhancement is concerned, it is focused mainly on transferring the input image 
towards outputting the better one with less noise and more detailed information on intensity 
distribution [3,4]. To this effect, histogram equalization (HE) technology is one of the early 
enhancement methods that can adjust the contrast primitively by increasing or decreasing the global 
intensity of an image [5]. Thus, it always suffers from the problem of over-enhancement when both 
high and low occurring intensities are combined and transferred together. As a consequence, the bi-
histogram equalization (BHE) method is presented to double the histogram and maintain the quality 
of the original image [6,7]. However, the limitation of BHE cannot be eliminated due to the 
asymmetrical pixel distribution in the histogram. Furthermore, the adaptive histogram equalization 
(AHE) contains the non-linear transformation and correction of contrast to overcome the drawbacks 
of HE and BHE [8], but it becomes less effective when there are complicated differences in the 
illumination. Besides, enhancement technologies such as contrast limited adaptive histogram 
equalization (CLAHE), balance contrast enhancement (BCE), gamma correction, texture-cartoon 
separation and complement techniques are investigated for the effects of enhancing image contrast and 
brightness [9–12]. 

According to the subjective nature of the human intervention in image enhancement, the 
parameter configuration of contrast adjustments is the key to solving enhancement problems at the 
level of different grayscales [13]. Several metaheuristics are applied in the enhancement domain, 
Archana et al. [14] presented the improved genetic algorithm (GA) for setting the parameters of 
contrast transformation with the fitness function of entropy and edge properties. Its results showed 
better performance than linear contrast stretching (LCS) method. The proposed differential evolution 
(DE) in Suresh and Lal [15] and Bhandari et al. [16] was appropriately utilized for color images 
enhancement with the parameters of color quality such as peak signal to noise ratio (PSNR), feature 
similarity index measure (FSIM), structural similarity index measure (SSIM), etc. And DE 
outperformed several state-of-the-art methods based on the above measurements. A modified sigmoid 
function combining the information of edge and entropy cooperates with particle swarm optimization 
(PSO) [17] to reduce the noise and enhance the quality of grayscale images. The results were better 
than HE, AHE and GA. A fuzzy framework with S-shape membership function [18] is embedded into 
PSO to overcome the issues when upgrading the imprecise nature of retinal images. The visual quality 
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and contrast were increased after the comparative experiments. The weighted vector median filtering-
based ant colony optimization (ACO) [19] proved its effort of finding the appropriate transformation where 
the objective functions are minimum square error (MSE) and minimum absolute error (MAE) [20]. An 
improved algorithm of monarch butterfly optimization (MBO) [21] was proposed to equalize the 
distribution of multiple grayscale levels in terms of PSNR and SSIM values, the migration and 
adjusting operators were refined and a new adaptive crossover rate was adopted to enhance the 
optimization process. Li et al. [22] presented the slime mould algorithm (SMA) for thresholding-based 
contrast enhancement, cooperating with the Lévy flight and quasi opposition-based learning method 
to improve the image quality. Moth swarm algorithm (MSA) [23] optimized the maximum kullback-
leibler entropy (KL-entropy) and redistributed the intensities of pixels in the reduced histogram, 
thus the noisy and irrelevant information would be eliminated and the pixel intensities became more 
significant in the enhanced image. The dimension learning-based hunting (DLH) search strategy was 
integrated with harris hawks optimization (HHO) approach [24], which alleviated the lack of 
premature convergence, crowd diversity and the imbalance between the exploration and exploitation 
for enhancement optimization. Three core procedures including rule updating, vector combining and 
a local search were employed for the weighted mean of vectors (WMV) optimizer [25] to filter the 
noise of the enhanced image, and the results showed better performance than traditional methods. 
hunger games search (HGS) with dynamic and fitness-wise search methods allowed hunger-driven 
activities during the contrast optimization process [26], and an adaptive hunger weight was used to 
simulate the effects of behavioral choices of animals, the results with high quality, fast convergence 
and stable balance were obtained. Colony predation algorithm (CPA) utilized the mapping functions 
of animal hunting groups with targeting, dispersing and encircling strategies to search the solution 
space of image enhancement [27], the success rate was introduced to adjust the cross-border situations 
for the optimization approach. Rime optimization algorithm (RIME) simulated the soft-rime search 
mechanism and hard-rime puncture process to generate the optimal solutions [28], the exploitation 
capability of the population was enhanced by the greedy selection approach for the optimization 
process. Oloyede et al. [29] conducted the overall comparison of nine metaheuristics involving the 
most popular algorithms on magnetic resonance imaging (MRI) datasets with the fitness computation 
rate (FCR) in the fairer sense. They summarized that there was no substantial difference among those 
methods considering both qualitative and quantitative analyses. However, the pros and cons of the 
compared methods were not discussed in detail, and the conclusion empirically depended on the 
particular types of various medical images [30–32]. 

To sum up briefly, the reviewed literature about the metaheuristics-based medical image 
enhancement has implicated that the supremacy of different metaheuristics over other existing 
enhancement technologies is obtained. But more importantly, interactive procedures are required to 
achieve the satisfactory results and it is unsuitable for routine scenarios. And there are still major 
challenges of medical image enhancement, for example the selection of various evaluation functions, 
the satisfaction of different intensity transformations, the employment of multiple grayscale level 
technologies, etc. 

Theoretically, the medical image enhancement task can be formulized as non-linear and multi-modal 
optimizations in terms of its complicated characteristics. To address these problems, a novel 
metaheuristic algorithm named group theoretic particle swarm optimization (GT-PSO) [33–35] is 
presented to provide a new framework of metaheuristics and give a different view of enhancement 
methods in this research work. With the solid mathematical foundation of symmetric group theory, the 
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proposed GT-PSO comprising four major components (particle encoding, solution landscape, 
neighborhood movement and swarm topology) would rebuild the search paradigm for specific 
optimization tasks. The problem is represented by the particle encoding properly, and the solution 
landscape is decomposed into four different hierarchical partitions according to symmetric group 
theory. Under the guidance of corresponding operators of each hierarchical level, GT-PSO can move 
the particle neighborhoods in a systematical way and upgrade the dynamic particle swarm topology 
to solve the problem efficiently. The contributions of GT-PSO in this paper are primarily 
summarized below: 

•An innovative framework of metaheuristic search mechanism based on symmetric group theory 
is proposed for non-linear and multi-modal optimizations 

•Both global and local intensity transformations of medical images are considered in the process 
of enhancement, and the balance between them is maintained during the search 

•The hybrid of the transferred image contents of intensity, entropy and edge is designed as the 
comprehensive fitness function of medical image enhancement 

The remainder of this paper is organized below: Section 2 describes the materials and methods of 
the proposed work; Section 3 displays the experimental results of case studies from MRI datasets; 
Section 4 analyzes the performance and reasons behind the proposed method; Section 5 concludes the 
entire paper. 

2. Materials and methods 

2.1. Methods 

2.1.1. Problem formulation 

As the main purpose of medical image enhancement, the technology of the intensity-based 
transformation function is employed to map the brightness values of an input image to a new grayscale 
matrix in the non-linear form. Therefore, the efficient function is needed for achieving the optimal 
values of intensity mapping for the enhancement process. The equation of the non-linear 
transformation function is described as follows. 

𝐸 , 𝑇 𝐼 , 𝐾 , 𝐼 , 𝛾 𝜇 , 𝜇 ,  (1) 

where 𝑇 is the mapping operation of transformation function, 𝐸 ,  is the enhanced grayscale value 
at the position of pixel 𝑚, 𝑛  of the original image 𝐼  with the size of 𝑀, 𝑁  , 𝛼  and 𝛾  are 
enhancement related parameters, 𝐾 ,   is the enhancement factor function and 𝜇 ,   is the local 
mean of pixel 𝑚, 𝑛  of the original image over a sliding window with the size of 𝑤, 𝑤 . 

𝜇 , ∑ ∑ 𝐼 ,         (2) 

𝐾 ,
,

          (3) 

where 𝛽 and 𝛿 are enhancement related parameters, 𝜇  is the global mean of the original image 
and 𝜎 ,  is the local standard deviation of pixel 𝑚, 𝑛  of the original image. 
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𝜇 ∑ ∑ 𝐼 ,          (4) 

𝜎 , ∑ ∑ 𝐼 , 𝜇 ,        (5) 

Through the above equations of the transformation function, the contrast of the original image is 
made to be stretched in the center of its local mean with the range of its local standard deviation. It has 
brightening and smoothing effects compared to the original one so that the quality of the contrast is 
improved in terms of both global and local information about the image. 

2.1.2. Fitness function 

As the cost evaluation of the single objective optimization, the hybrid components of intensity, 
entropy and edge of a transferred medical image constitute the fitness function during the enhancement 
process, where the global information of intensity and entropy cooperates with the local content of edge. 
The fitness function is formulated as the multiplication of the aforementioned three parts as follows. 

𝐹 𝐸 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑆 𝐸 𝐻 𝐸        (6) 

where 𝐸 is the enhanced image after the transformation in Eq (1), 𝑆 is the sum of all pixels in 𝐸 
after Sobel edge detection containing the gradient magnitude and direction of the enhanced image. 

𝑆 𝐸 ∑ ∑ ∆ 𝐸 , ∆ 𝐸 ,       (7) 

where ∆ is the Sobel gradient operation. 

∆ 𝐸 , 𝐸 , 2𝐸 , 𝐸 , 𝐸 , 2𝐸 , 𝐸 ,   (8) 

∆ 𝐸 , 𝐸 , 2𝐸 , 𝐸 , 𝐸 , 2𝐸 , 𝐸 ,    (9) 

𝐶 is the count of non-zero pixels whose intensity value is greater than a certain threshold 𝜃 after 
Sobel edge detection in 𝐸. 

𝐶 𝐸 ∑ ∑ 𝑐 , , 𝑐 ,

⎩
⎨

⎧1, 𝑖𝑓 ∆ 𝐸 , ∆ 𝐸 , 𝜃

0, 𝑖𝑓 ∆ 𝐸 , ∆ 𝐸 , 𝜃

     (10) 

𝐻 is the entropy of 𝐸. 

𝐻 𝐸 ∑ 𝑃 𝑙𝑜𝑔 𝑃        (11) 

where 𝑚  is maximum value of grayscales in the histogram of 𝐸 , 𝑃   is the observed statistical 
probability of the occurrence of pixels with 𝑖  grayscale quantity in 𝐸. 

The efficiency of medical image enhancement is facilitated by selecting the optimal parameters 
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of the fitness function. Basically, it is the optimization problem of combinatorial solutions of multiple 
parameters that can be mathematically modeled and solved via the proposed GT-PSO. In the following, 
the GT-PSO methodology will be investigated to tackle this kind of issue in medical image 
enhancement as the non-linear and multi-modal optimization problems and the target of the 
corresponding optimization is to maximize the objective function formulated in Eq (1). 

2.1.3. Particle encoding 

The solution of the optimized problem is encoded in the form of cycles of permutations for each 
particle of GT-PSO, whose degree equals to the dimension 𝐷 of the fitness function. The candidates 
of different solutions are carried out using various permutations of the symmetric group, where 𝑝 is 
the mapping operation from one possible value to another for each dimension 𝑥  in the solution. 

𝑠𝑜𝑙 𝑝 𝑥   𝑝 𝑥   ⋯ ⋯ ⋯   𝑝 𝑥   𝑝 𝑥       (12) 

2.1.4. Solution landscape 

The four layer-based hierarchical decomposition of search landscape is applied to provide the 
systematic perspective of the whole solution space, which consists of four main components: 
conjugacy class, cyclic form, orbital plane and orbit, respectively. The hierarchical partitions of the 
solution space landscape are demonstrated in Figure 1. Note that the hierarchical partitions can ensure 
the complete and exclusive decomposition of the solution space. 

 

Figure 1. The demonstration of four layer-based hierarchical partitions of the solution landscape. 

Conjugacy class is the first-order partition of the hierarchy, and it contains several sequential 
items with the structure that is similar to the exponential form. 𝑖  means that there are 𝑘  cycles 
with the size of 𝑖 in the conjugacy class. 

𝑐𝑛𝑗 1 2 ⋯ 𝑖 ⋯ 𝐷 , ∀𝑖 ∈ 1, 𝐷 , 𝑘 ∈ 0, 𝐷       (13) 

∑ 𝑖𝑘 𝐷          (14) 
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Cyclic form is the second-order partition of the hierarchy, and it has different cyclic factors based 
on the permutation form. A specific permutation is implemented via the combination of multiple group 
actions, and each of them is denoted by the notation of the pair of parentheses. 

𝑐𝑦𝑐 𝑥   𝑥   ⋯  ⋯ ⋯  𝑥   𝑥        (15) 

Orbital plane is the third-order partition of the hierarchy, and it is the collection of all possible 
elements if the results after two group actions 𝑔  and 𝑔  are the same applied to a sequence set 𝑋. 
The sequence set 𝑋 is the collection of candidates of the solutions. 

𝑜𝑏𝑝 𝑋 , 𝑖𝑓𝑓 𝑋 𝑔 𝑋 𝑔 , ∀𝑖 ∈ 1, 𝑘      (16) 

Orbit is the fourth-order partition of the hierarchy, and it is the aggregation of all possible results 
after the specific group action 𝑔 from a given group 𝐺. The content of the orbit is determined by 
different group actions on the sequence set 𝑋. 

𝑜𝑏𝑡 𝑔𝑥|𝑔 ∈ 𝐺 , ∀𝑥 ∈ 𝑋         (17) 

2.1.5. Neighborhood movement 

The operations of neighborhood movements of specific particles are manipulated to search the 
incumbent solutions with the guidance of multiple group action combinations. Based on the 
hierarchical partitions of four layers, the corresponding four types of operations are carried out. The 
illustration of details of neighborhood movements with respect to particle update is displayed in Figure 2.  

 

Figure 2. The illustration of neighborhood movement with the guidance trends of 
hierarchical operations of four layers. 

The yellow arrows are the orbiter operations that can search along the orbits consecutively within 
one orbital plane, and the green arrows are the orbital planer operations that would change the orbital 
plane from one to another within one cyclic form. Meanwhile, the red arrows are the cycler operations 
that could move across different cyclic forms within the one conjugacy class, and the blue arrows are 
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the conjugator operations that may jump over various conjugacy classes in the solution space. The 
previous two operations of orbiter and orbital planer belong to the category of search exploitation 
during the optimization to facilitate the ability of intensification, and the latter two operations of cycler 
and conjugator belong to the category of search exploration during the optimization to enhance the 
capacity of diversification. 

2.1.6. Swarm topology 

The swarm topology for updating all particles after neighborhood movements is formulated below. 
Let ∇ denote the operation generated by group action combinations via group multiplication ⊗, the 
evolutionary formulae of the whole swarm are induced. 

∇ 𝑟 ∇ ⊗ 𝑟 ∇ ⊗ 𝑟 ∇ ⊗ 𝑟 ∇       (18) 

𝑣 ∇ ⊗ 𝑣 𝑟 𝑐 𝑝 𝑥 𝑟 𝑐 𝑝 𝑥     (19) 

𝑥 𝑥 𝑣          (20) 

where 𝑟   to 𝑟   are the random numbers, 𝑐   and 𝑐   are the acceleration coefficients, 𝑘  is the 
iteration number, 𝑖 is the particle index, 𝑝  is the local best fitness value of the objective function of 
𝑖  particle after 𝑘 iterations while 𝑝  is the global best one.  

 

Figure 3. The flowchart of image enhancement with GT-PSO optimizer. 

Equation (18) shows the concurrent cooperation of four operations from different hierarchical 
layers and the velocity upgrade of a single particle. The new velocity and final position of a particle 
are obtained in Eqs (19) and (20), respectively. The overall workflow of the proposed GT-PSO as the 
image enhancement optimizer is observed in Figure 3 simultaneously. The input images will be 
preprocessed and transferred to the proper format, whereby the GT-PSO optimizer calculates the 
fitness score of the hybrid of the transferred contents and searches for the optimal solutions. The search 
stops when certain conditions are satisfied, for instance the minimal error rate is reached, or the 
maximal number of iterations is counted. 
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2.2. Materials 

The materials used in this paper are chosen from the MedPix dataset presented by the National 
Library of Medicine, which is a free and open access online database covering many types of clinical 
materials. Within this database, the medical images are categorized into different groups such as 
cardiovascular, pulmonary, abdomen, chest, eye orbit, brain neuro, etc. The selected case comprises a 
contrast enhanced axial computed tomographic (CT) scan of the disease of acute appendicitis, and the 
case study containing 1000 images is conducted to test the effects of gray-level enhancement by the 
proposed GT-PSO compared to other alternative metaheuristic methods like GA, ACO, PSO and DE. 
The configuration of parameters of those comparative algorithms is listed in Table 1 with the empirical 
studies from a wide range of research works. In order to make the comparisons between the proposed 
and alternative methods more meaningful, the pairwise non-parametric Wilcoxon’s rank sum test is 
carried out to determine the statistical significance of those comparisons. The significance level 𝛼 
is 0.05 and the number of independent runs of each comparative method is 30. 

Table 1. The parameter setting of the comparative methods. 

Method Parameter Value 
Fitness Input image size 

Sliding window size 
512 
5 

GA Population size 
Crossover rate 
Mutation rate 

30 
0.5 
0.15 

ACO Population size 
Pheromone factor 
Heuristic factor 
Evaporation rate 

30 
1.0 
1.5 
0.3 

PSO Population size 
Inertial weight 
Acceleration coefficient 

30 
1.0 
2.0 

DE Population size 
Crossover rate 
Low bound 
High bound 

30 
0.5 
0.3 
0.6 

INFO Population size 
Exponential coefficient 
Generation distance 

30 
2 
4 

HHO Population size 
Control parameter 
Scaling factor 

30 
2.5 
0.5 

GT-PSO Population size 
Random 1&2 
Random 3&4 
Random 5&6 
Acceleration coefficient 

30 
0.5 
0.6 
0.4 
2.0 
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3. Results 

In the case study of the real-life application of acute appendicitis in MedPix, the example of an 
original image coded “synpic28644” is illustrated in Figure 4(a),(b) shows the enhanced example of 
the same image by the proposed GT-PSO. In Figure 4(a), there exists the distended appendix with 
thickened enhancing walls in ROI, as well as the changes of periappendiceal inflammatory with fat 
stranding. In Figure 4(b), it depicts that the better boundaries of the lesion in the target organ are 
delineated than in Figure 4(a). The brightness around the boundaries of the wall protruding to the 
caecum gets enhanced so that the contrast is more vivid and the radiologist could provide an advanced 
diagnostic procedure. 

  

     (a) Original               (b) Enhanced by GT-PSO 

Figure 4. The illustration of acute appendicitis with the original example and the enhanced 
one by GT-PSO from MedPix. 

The fitness score obtained from the fitness function is the main factor in measuring the 
performance of those comparative methods, followed by another performance metric of the 
convergence rate shown in Figure 5. In detail, the numerical results of fitness scores involve mean, 
standard deviation, best values from 30 independent runs of 2000 tested CT images and p-values 
between two comparative methods of the hypothesis test are tabulated in Table 2. It can be observed 
that the proposed GT-PSO outperforms the rest of the alternative algorithms and the results from Figure 5 
and Table 2 can prove the conclusion mutually. In all situations, GT-PSO has the superior averaged 
fitness score of 11.885 that is 4.2% higher than the worst case of GA, its performance is also evidenced 
by the best values in Table 2. HHO has the second best averaged fitness score, followed by DE, INFO 
and PSO and ACO performs almost equivalently to GA. The standard deviation of GT-PSO is 0.358 
which is nearly the lowest value of all except DE and the result indicates that the distribution of the 
fitness scores of GT-PSO is very converged while ACO gets the scattered distribution. As far as the p-
value is concerned, there is indeed significant difference between pairwise comparison of two 
algorithms if the result is less than the threshold of the significance level. All the p-values of GT-PSO 
and other methods are less than 0.05, thus GT-PSO is statistically better than others in terms of the 
balance between random nature and systematic behaviour by symmetric group theory.  
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Table 2. The measure of mean, standard deviation, best and p-value of fitness scores of 
the comparative methods. 

Measure GA ACO PSO DE HHO INFO GT-PSO 

Mean 11.407 11.449 11.732 11.810 11.854 11.798 11.885 

Std 0.547 0.556 0.437 0.341 0.483 0.416 0.358 

Best 11.829 11.887 11.932 12.165 12.354 12.214 12.286 

P-value 0.000 0.000 0.000 0.005 0.023 0.016 / 

The visualization of fitness scores of comparative methods over iteration numbers is displayed in 
Figure 5. The results represented by those curves in different describe the convergence trends of each 
method. The total number of iterations is set to be 1000 and after 800 iterations all methods get 
converged in the latter phase of the search process. Compared to other methods, GT-PSO shows the rapid 
convergence speed and high convergence rate in the initial phase and converges finally around 500 
iterations, which is much earlier than others. ACO performs the lower fitness score but the faster 
convergence rate in the initial phase and GA converges stably during the most majority of the search 
process. DE has a good convergence speed and convergence rate and would achieve the optimum 
performance before 800 iterations, while the PSO curve shares a similar shape compared to GT-PSO 
but its result is medium among all. The convergence speed of HHO is faster than GT-PSO in the 
initialization stage around 50 iterations, but it performs worse than GT-PSO finally. INFO is superior 
to DE but worse than GT-PSO and HHO. 

 

Figure 5. The visualization of fitness score curves of comparative methods over iterations. 

4. Discussion 

Generally speaking, the image enhancement is the optimization problem with NP-hard feature 
and the experimental results reveal that all comparative metaheuristics could tackle this type of 
problem using their own search strategies. More specifically, the population-based metaheuristics 
utilize the trial-and-error mechanism of the collaborative search of multiple agents and the 
approximation approach of random access. Besides that, it is worth mentioning that the proposed GT-
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PSO comprises an extra mathematical framework of symmetric group theory, therefore that is the 
reason why GT-PSO outperforms others on medical image datasets. Theoretically, the search paradigm 
of GT-PSO is classified into the categories of intensification and diversification via the operations of 
hierarchical partitions and the adaptive parameter configuration of the swarm topology. In Figure 5, 
GT-PSO gets converged towards the global optimum rapidly due to the concentration on intensification 
implemented by orbital planer and orbiter operations in the previous iterations around 100, meanwhile it 
works stably in the latter iterations around 500 because of the focus of diversification achieved by 
conjugator and cycler operations. The stagnation at the local optimum is prevented through the balanced 
control of parameters when the dimension of the objective function increases severely. However in 
this case study, the dimension of the optimization problem is not so large, so the GT-PSO would 
converge soon. Then the implication of GT-PSO convergence performance is interpreted according to 
the theory of symmetric group. 

For the discussion of the rest of the comparative methods, GA curve (in yellow) suffers from the 
limitation of the consequence of early maturing that is stuck in the local stagnation around 50 iterations 
with the less optimum result. The reason behind this case may reside in the complex operations of 
selection, crossover, mutation and the determination of a large number of parameters during the search 
correspondingly. ACO curve (in green) has inferior performance than other methods because the 
positive feedback of accumulated pheromones of the solution candidates would descend the escape 
strategies of multiple agents to generate the potential solutions with better quality, and furthermore the 
bad ones occupy the majority of all solutions. The shape of PSO curve (in black) is like the GT-PSO 
since it is the extension of PSO with the refined foundation of symmetric group theory, basically they 
share some features of the search paradigm in common. DE curve (in blue) could improve the 
convergence obviously in the middle stage of the search because there are solid foundations of adaptive 
dynamic turbulence strategies during the differential evolution approaches that may lead to a fairly 
decent performance compared to other algorithms. HHO curve (in purple) could cooperatively pounce 
the optimal target from different directions and escape from various dangers, so a variety of chasing 
patterns containing diversification and intensification are mimicked to generate the superior 
performance. INFO curve (in brown) uses updating rule and vector combining steps to increase the 
capacities of exploitation and exploration, but the local search limits its converging performance in the 
initialization stage. 

The time complexity of the proposed GT-PSO is analyzed as follows. Suppose that 𝐷 is the 
parameter dimension of the fitness function in Eq (1), 𝐶𝑜𝑓  is the evaluation cost of the fitness 
function in Eq (1), 𝑃 is the size of swarm population and 𝐾 is the number of iterations. The time 
complexity of 𝐶𝑜𝑓  is 𝑂 𝐷   since those independent parameters are the linear sequences that 
constitute the fitness function in Eq (1). The time complexity of the initialization stage of GT-PSO is 
𝑇 𝑂 𝑃 ∗ 𝐷 𝑃 ∗ 𝐶𝑜𝑓 𝑂 𝑃 ∗ 𝐷 , and the time complexity of GT-PSO operations in iteration 
stage is 𝑇 𝑇 𝑇 𝑇 𝑇 𝑂 𝑃 ∗ 𝐷  . So the total time complexity is 𝑂 𝐾 ∗ 𝑃 ∗
𝐷 𝐶𝑜𝑓 𝑂 𝐾 ∗ 𝑃 ∗ 𝐷 , which is polynomial and acceptable for NP-hard problem solutions. 

The space complexity of the proposed GT-PSO is discussed as follows. Similar to time complexity, 
the space complexity of the initialization stage of GT-PSO is 𝑆 𝑂 𝑃 ∗ 𝐷 𝑃 ∗ 𝐶𝑜𝑓 𝑂 𝑃 ∗ 𝐷 , 
the space complexity of the search stage of GT-PSO is 𝑆 𝑆 𝑆 𝑆 𝑆 𝑂 𝑃 ∗ 𝐷 , 
thus the total space complexity is 𝑂 𝑃 ∗ 𝐷 𝐶𝑜𝑓 𝑂 𝑃 ∗ 𝐷   and the iteration number 𝐾  is 
excluded compared to the analysis of the time complexity. 



10491 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 10479–10494. 

5. Conclusions 

The gray-level image enhancement problem remains a continuous challenge and a longstanding 
issue to be addressed in the field of medical image analysis research. We propose the novel 
metaheuristic algorithm named Group Theoretic Particle Swarm Optimization (GT-PSO) based on the 
solid mathematical foundation of symmetric group theory to provide a new search paradigm. It consists 
of four systematic parts including particle encoding, solution landscape, neighborhood movement and 
swarm topology. The enhancement problem is formulated and the combined objective function on the 
grayscale level of pixels is designed correspondingly. Our proposed method is tested by using a real-
world dataset and compared with other classic and practical optimization algorithms in the experiments. 
The results show that GT-PSO outperforms all other selected conventional metaheuristics methods, 
which proves that GT-PSO has the potential for further research of real-life applications with good 
quality and great value of related theoretical studies. Although GT-PSO has achieved many advantages, 
there are still some limitations of the existing algorithm. It can not guarantee to reach the global 
optimum theoretically because of the essentials of metaheuristics, and the enormous computational 
time is caused when objective functions become highly complex. 

The future works may include but not limited to the following tasks. A further investigation of 
the mapping function to transfer discrete and continuous representations so that more continuous 
optimization problems can be solved by GT-PSO. The balanced relationship between diversification 
and intensification could be enhanced by the incremental strategy of parameter configuration. As a 
step forward, the theories of Lie group and fiber bundles can be applied to enrich the mathematical 
foundations of metaheuristics frameworks. The improved GT-PSO would be utilized to address the 
multi-objective optimization problems. 
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