The purpose of this article is to research the existence of solutions for fractional periodic boundary value problems with $ p\left(t \right) $-Laplacian operator. In this regard, the article needs to establish a continuation theorem corresponding to the above problem. By applying the continuation theorem, a new existence result for the problem is obtained, which enriches existing literature. In addition, we provide an example to verify the main result.
Citation: Tingting Xue, Xiaolin Fan, Hong Cao, Lina Fu. A periodic boundary value problem of fractional differential equation involving $ p\left(t \right) $-Laplacian operator[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 4421-4436. doi: 10.3934/mbe.2023205
The purpose of this article is to research the existence of solutions for fractional periodic boundary value problems with $ p\left(t \right) $-Laplacian operator. In this regard, the article needs to establish a continuation theorem corresponding to the above problem. By applying the continuation theorem, a new existence result for the problem is obtained, which enriches existing literature. In addition, we provide an example to verify the main result.
[1] | J. Li, X. Su, K. Zhao, Barycentric interpolation collocation algorithm to solve fractional differential equations, Math. Comput. Simul., 205 (2023), 340–367. https://doi.org/10.1016/j.matcom.2022.10.005 doi: 10.1016/j.matcom.2022.10.005 |
[2] | J. Zhou, S. Zhang, Y. He, Existence and stability of solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 498 (2021), 124921. https://doi.org/10.1016/j.jmaa.2020.124921 doi: 10.1016/j.jmaa.2020.124921 |
[3] | T. Xue, F. Kong, L. Zhang, Research on Sturm-Liouville boundary value problems of fractional p-Laplacian equation, Adv. Differ. Equations, 177 (2021), 1–20. https://doi.org/10.1186/s13662-021-03339-3 doi: 10.1186/s13662-021-03339-3 |
[4] | J. Zhou, S. Zhang, Y. He, Existence and stability of solution for nonlinear differential equations with $\psi$-Hilfer fractional derivative, Appl. Math. Lett., 121 (2021), 107457. https://doi.org/10.1016/j.aml.2021.107457 doi: 10.1016/j.aml.2021.107457 |
[5] | T. T. Xue, X. L. Fan, J. Zhu, A class of deterministic and stochastic fractional epidemic models with vaccination, Comput. Math. Methods Med., 2022 (2022), 1–22. https://doi.org/10.1155/2022/1797258 doi: 10.1155/2022/1797258 |
[6] | Z. L. Wei, W. Dong, J. L. Che, Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative, Nonlinear Anal. Theory Methods Appl., 73 (2010), 3232–3238. https://doi.org/10.1016/j.na.2010.07.003 doi: 10.1016/j.na.2010.07.003 |
[7] | R. Manasevich, J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-Like operators, J. Differ. Equations, 145 (1998), 367–393. |
[8] | W. Zhang, Z. B. Bai, S. J. Sun, Extremal solutions for some periodic fractional differential equations, Adv. Differ. Equations, 179 (2016), 1–8. https://doi.org/10.1186/s13662-016-0869-4 doi: 10.1186/s13662-016-0869-4 |
[9] | J. S. Leszczynski, T. Blaszczyk, Modeling the transition between stable and unstable operation while emptying a silo, Granular Matter, 13 (2011), 429–438. https://doi.org/10.1007/s10035-010-0240-5 doi: 10.1007/s10035-010-0240-5 |
[10] | C. Z. Bai, Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 384 (2011), 211–231. https://doi.org/10.1016/j.jmaa.2011.05.082 doi: 10.1016/j.jmaa.2011.05.082 |
[11] | T. Y. Chen, W. B. Liu, Solvability of periodic boundary-value problems for second-order nonlinear differential equation involving fractional derivatives, Electron. J. Differ. Equations, 2014 (2014), 1–9. |
[12] | W. H. Jiang, Solvability of fractional differential equations with p-Laplacian at resonance, Appl. Math. Comput., 260 (2015), 48–56. https://doi.org/10.1016/j.amc.2015.03.036 doi: 10.1016/j.amc.2015.03.036 |
[13] | Y. M. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383–1406. https://doi.org/10.1137/050624522 doi: 10.1137/050624522 |
[14] | G. T. Wang, B. Ahmad, L. H. Zhang, Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal. Theory Methods Appl., 74 (2011), 792–804. https://doi.org/10.1016/j.na.2010.09.030 doi: 10.1016/j.na.2010.09.030 |
[15] | N. Kosmatov, A boundary value problem of fractional order at resonance, Electron. J. Differ. Equations, 135 (2010), 1655–1666. |
[16] | K. Cherednichenko, M. Waurick, Resolvent estimates in homogenisation of periodic problems of fractional elasticity, J. Differ. Equations, 264 (2018), 3811–3835. https://doi.org/10.1016/j.jde.2017.11.038 doi: 10.1016/j.jde.2017.11.038 |
[17] | M. Belmekki, J. J. Nieto, R. Rodriguez-Lopez, Existence of solution to a periodic boundary value problem for a nonlinear impulsive fractional differential equation, Electron. J. Qual. Theory Differ. Equations, 16 (2014), 1–27. |
[18] | T. Y. Chen, W. B. Liu, J. Y. Liu, Solvability of periodic boundary value problem for fractional p-Laplacian equation, Appl. Math. Comput., 244 (2014), 422–431. https://doi.org/10.1016/j.amc.2014.06.105 doi: 10.1016/j.amc.2014.06.105 |
[19] | W. Guo, J. F. Yang, J. F. Zhang, Existence results of nontrivial solutions for a new p(x)-biharmonic problem with weight function, AIMS Math., 7 (2022), 8491–8509. https://doi.org/10.3934/math.2022473 doi: 10.3934/math.2022473 |
[20] | H. Jin, W. B. Liu, On the periodic boundary value problem for Duffing type fractional differential equation with p-Laplacian operator, Boundary Value Probl., 144 (2015). https://doi.org/10.1186/s13661-015-0408-3 doi: 10.1186/s13661-015-0408-3 |
[21] | X. J. Wang, R. Yuan, Existence of periodic solutions for p(t)-Laplacian systems, Nonlinear Anal. Theory Methods Appl., 70 (2009), 866–880. https://doi.org/10.1016/j.na.2008.01.017 doi: 10.1016/j.na.2008.01.017 |
[22] | Z. G. Hu, W. B. Liu, W. J. Rui, Periodic boundary value problem for fractional differential equation, Int. J. Math., 23 (2012), 57–64. https://doi.org/10.1142/S0129167X12501005 doi: 10.1142/S0129167X12501005 |
[23] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izvestiya, 29 (1987), 675–710. |
[24] | Y. M. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383–1406. https://doi.org/10.1137/050624522 doi: 10.1137/050624522 |
[25] | M. Ruzicka, Electrorheological Fluids : Modeling and Mathematical Theory, Springer, 2000. |
[26] | L. Zhang, Y. Chen, Existence of periodic solutions of p(t)-Laplacian systems, Bull. Malays. Math. Sci. Soc., 35 (2012), 25–38. |
[27] | P. Chen, X. H. Tang, R. P. Agarwal, Infinitely many homoclinic solutions for nonautonomous p(t)-Laplacian Hamiltonian systems, Comput. Math. Appl., 63 (2012), 751–763. https://doi.org/10.1016/j.camwa.2011.11.039 doi: 10.1016/j.camwa.2011.11.039 |
[28] | Q. H. Zhang, X. P. Liu, Z. M. Qiu, Existence of solutions for weighted p(t)-Laplacian system multi-point boundary value problems, Nonlinear Anal. Theory Methods Appl., 71 (2009), 3715–3727. https://doi.org/10.1016/j.na.2009.02.031 doi: 10.1016/j.na.2009.02.031 |
[29] | C. Y. Li, C. Q. Song, L. Y. Quan, J. H. Xiang, M. Q. Xiang, Global existence and asymptotic behavior of solutions to fractional (p, q)-Laplacian equations, Asymptotic Anal., 129 (2022), 321–338. https://doi.org/10.3233/ASY-211731 doi: 10.3233/ASY-211731 |
[30] | Q. H. Zhang, Existence of solutions for weighted p(r)-Laplacian system boundary value problems, J. Math. Anal. Appl., 327 (2007) 127–141. https://doi.org/10.1016/j.jmaa.2006.03.087 doi: 10.1016/j.jmaa.2006.03.087 |
[31] | T. T. Xue, W. B. Liu, T. F. Shen, Existence of solutions for fractional Sturm-Liouville boundary value problems with p(t)-Laplacian operator, Boundary Value Probl., 169 (2017). https://doi.org/10.1186/s13661-017-0900-z doi: 10.1186/s13661-017-0900-z |
[32] | T. F. Shen, W. B. Liu, Existence of solutions for fractional integral boundary value problems with p(t)-Laplacian operator, J. Nonlinear Sci. Appl., 9 (2016), 5000–5010. http://dx.doi.org/10.22436/jnsa.009.07.04 doi: 10.22436/jnsa.009.07.04 |
[33] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[34] | J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations, in Topological Methods for Ordinary Differential Equations, Springer, Berlin, Heidelberg, 1993. https://doi.org/10.1007/BFb0085076 |