Research article Special Issues

Global dynamics and pattern formation for predator-prey system with density-dependent motion


  • Received: 15 September 2022 Revised: 12 October 2022 Accepted: 20 October 2022 Published: 18 November 2022
  • In this paper, we concern with the predator-prey system with generalist predator and density-dependent prey-taxis in two-dimensional bounded domains. We derive the existence of classical solutions with uniform-in-time bound and global stability for steady states under suitable conditions through the Lyapunov functionals. In addition, by linear instability analysis and numerical simulations, we conclude that the prey density-dependent motility function can trigger the periodic pattern formation when it is monotone increasing.

    Citation: Tingfu Feng, Leyun Wu. Global dynamics and pattern formation for predator-prey system with density-dependent motion[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 2296-2320. doi: 10.3934/mbe.2023108

    Related Papers:

  • In this paper, we concern with the predator-prey system with generalist predator and density-dependent prey-taxis in two-dimensional bounded domains. We derive the existence of classical solutions with uniform-in-time bound and global stability for steady states under suitable conditions through the Lyapunov functionals. In addition, by linear instability analysis and numerical simulations, we conclude that the prey density-dependent motility function can trigger the periodic pattern formation when it is monotone increasing.



    加载中


    [1] H. I. Freedman, Deterministic mathematical models in population ecology, volume 57. Marcel Dekker Incorporated, 1980.
    [2] A. J. Lotka, Elements of mathematical biology, Dover Publications, 1956.
    [3] A. D Bazykin, Nonlinear dynamics of interacting populations, World Scientific, 1998. https://doi.org/10.1142/2284
    [4] H. I. Freedman, R. M. Mathsen, Persistence in predator-prey systems with ratio-dependent predator influence, Bull. Math. Biol., 55 (1993), 817–827. https://doi.org/10.1016/S0092-8240(05)80190-9 doi: 10.1016/S0092-8240(05)80190-9
    [5] G. F. Gause, N. P. Smaragdova, A. A. Witt, Further studies of interaction between predators and prey, J. Anim. Ecol., 5 (1936), 1–18. https://doi.org/10.2307/1087 doi: 10.2307/1087
    [6] M. P. Hassell, R. M. May, Generalist and specialist natural enemies in insect predator-prey interactions, J. Anim. Ecol., 55 (1986), 923–940. https://doi.org/10.2307/4425 doi: 10.2307/4425
    [7] H.-Y. Jin, Z.-A. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equ., 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
    [8] J. Maynard-Smith, Models in ecology, Cambridge university press, 1974.
    [9] P. Kareiva, G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, Am. Nat., 130 (1987), 233–270. https://doi.org/10.1086/284707 doi: 10.1086/284707
    [10] X. Fu, L.-H. Tang, C. Liu, J.-D. Huang, T. Hwa, P. Lenz, Stripe formation in bacterial systems with density-suppressed motility, Phys. Rev. Lett., 108 (2012), 198102. https://doi.org/10.1103/PhysRevLett.108.198102 doi: 10.1103/PhysRevLett.108.198102
    [11] C. Liu, X. Fu, L. Liu, X. Ren, C. Chau, S. Li, et al., Sequential establishment of stripe patterns in an expanding cell population, Science, 334 (2011), 238–241. https://doi.org/10.1126/science.1209042 doi: 10.1126/science.1209042
    [12] H.-Y. Jin, Y.-J. Kim, Z.-A Wang, Boundedness, stabilization, and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78 (2018), 1632–1657. https://doi.org/10.1137/17M1144647 doi: 10.1137/17M1144647
    [13] M. Ma, R. Peng, Z.-A. Wang, Stationary and non-stationary patterns of the density-suppressed motility model, Phys. D, 402 (2020), 132259. https://doi.org/10.1016/j.physd.2019.132259 doi: 10.1016/j.physd.2019.132259
    [14] J. Smith-Roberge, D. Iron, T. Kolokolnikov, Pattern formation in bacterial colonies with density-dependent diffusion, Eur. J. Appl. Math., 30 (2019), 196–218. https://doi.org/10.1017/S0956792518000013 doi: 10.1017/S0956792518000013
    [15] Z.-A. Wang, L. Y. Wu, Global solvability of a class of reaction-diffusion systems with cross-diffusion, Appl. Math. Lett., 124 (2022), 107699. https://doi.org/10.1016/j.aml.2021.107699 doi: 10.1016/j.aml.2021.107699
    [16] C. Yoon, Y. J. Kim, Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Appl. Math., 149 (2017), 101–123. https://doi.org/10.1007/s10440-016-0089-7 doi: 10.1007/s10440-016-0089-7
    [17] J. Ahn, C. Yoon, Global well-posedness and stability of constant equilibria in parabolic–elliptic chemotaxis systems without gradient sensing, Nonlinearity, 32 (2019), 1327–1351. https://doi.org/10.1088/1361-6544/aaf513 doi: 10.1088/1361-6544/aaf513
    [18] Y. S. Tao, M. Winkler, Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Methods Appl. Sci., 27 (2017), 1645–1683. https://doi.org/10.1142/S0218202517500282 doi: 10.1142/S0218202517500282
    [19] K. Fujie, J. Jiang, Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differ. Equ., 269 (2020), 5338–5378. https://doi.org/10.1016/j.jde.2020.04.001 doi: 10.1016/j.jde.2020.04.001
    [20] K. Fujie, J. Jiang, Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities, Calc. Var. Partial Differ. Equ., 60 (2021), 37. https://doi.org/10.1007/s00526-021-01943-5 doi: 10.1007/s00526-021-01943-5
    [21] H.-Y. Jin, Z.-A. Wang, Critical mass on the Keller-Segel system with signal-dependent motility, Proc. Amer. Math. Soc., 148 (2020), 4855–4873. https://doi.org/10.1090/proc/15124 doi: 10.1090/proc/15124
    [22] Z. R. Liu, J. Xu, Large time behavior of solutions for density-suppressed motility system in higher dimensions, J. Math. Anal. Appl., 475 (2019), 1596–1613. https://doi.org/10.1016/j.jmaa.2019.03.033 doi: 10.1016/j.jmaa.2019.03.033
    [23] W. B. Lyu, Z.-A. Wang, Global classical solutions for a class of reaction-diffusion system with density-suppressed motility, Electron. Res. Arch., 30 (2022), 995–1035. https://doi.org/10.3934/era.2022052 doi: 10.3934/era.2022052
    [24] H.-Y. Jin, Z.-A. Wang, The Keller-Segel system with logistic growth and signal-dependent motility, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 3023–3041. https://doi.org/10.3934/dcdsb.2020218 doi: 10.3934/dcdsb.2020218
    [25] J. P. Wang, M. X. Wang, Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth, J. Math. Phys., 60 (2019), 011507. https://doi.org/10.1063/1.5061738 doi: 10.1063/1.5061738
    [26] Z.-A. Wang, On the parabolic-elliptic Keller-Segel system with signal-dependent motilities: a paradigm for global boundedness and steady states, Math. Methods Appl. Sci., 44 (2021), 10881–10998. https://doi.org/10.1002/mma.7455 doi: 10.1002/mma.7455
    [27] Z.-A. Wang, J. Xu, On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion, J. Math. Biol., 82 (2021), Paper No. 7. https://doi.org/10.1007/s00285-021-01562-w
    [28] Z.-A. Wang, X. Xu, Steady states and pattern formation of the density-suppressed motility model, IMA J. Appl. Math., 86 (2021), 577–603. https://doi.org/10.1093/imamat/hxab006 doi: 10.1093/imamat/hxab006
    [29] H.-Y. Jin, Z.-A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, Eur. J. Appl. Math., 32 (2021), 652–682. https://doi.org/10.1017/S0956792520000248 doi: 10.1017/S0956792520000248
    [30] K. Nakashima, Y. Yamada, Positive steady states for prey-predator models with cross-diffusion, Adv. Differ. Equ., 1 (1996), 1099–1122.
    [31] H.-Y. Jin, Z.-A. Wang, Global stability of prey-taxis systems, J. Differ. Equ., 262 (2017), 1257–1290. https://doi.org/10.1016/j.jde.2016.10.010 doi: 10.1016/j.jde.2016.10.010
    [32] H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ. reaction-diffusion systems, Diff. Integral Eqns., 3 (1990), 13–75.
    [33] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, In Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), volume 133 of Teubner-Texte Math., pages 9–126. Teubner, Stuttgart, 1993.
    [34] N. D. Alikakos, $L^{p}$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differ. Equ., 4 (1979), 827–868. https://doi.org/10.1080/03605307908820113 doi: 10.1080/03605307908820113
    [35] H. Amann, Dynamic theory of quasilinear parabolic equations Ⅲ. Global existence, Math. Z., 202 (1989), 219–250. https://doi.org/10.1007/BF01215256 doi: 10.1007/BF01215256
    [36] I. Barbălat, Systèmes d'équations différentielles d'oscillations non linéaires, Rev. Math. Pures Appl., 4 (1959), 267–270.
    [37] R. Kowalczyk, Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379–398. https://doi.org/10.1016/j.jmaa.2008.01.005 doi: 10.1016/j.jmaa.2008.01.005
    [38] O. A. Ladyźenskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968.
    [39] G. M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. https://doi.org/10.1142/3302
    [40] F. Q. Yi, J. J. Wei, J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equ., 246 (2009), 1944–1977. https://doi.org/10.1016/j.jde.2008.10.024 doi: 10.1016/j.jde.2008.10.024
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1774) PDF downloads(167) Cited by(1)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog