Research article Special Issues

Construction and validation of a novel prognostic signature for uveal melanoma based on five metabolism-related genes

  • These authors contributed equally to this work
  • Received: 03 August 2021 Accepted: 07 September 2021 Published: 15 September 2021
  • Background 

    Uveal melanoma (UM) is the most aggressive intraocular tumor worldwide. Accurate prognostic models are urgently needed. The present research aimed to construct and validate a prognostic signature is associated with overall survival (OS) for UM patients based on metabolism-related genes (MRGs).

    Methods 

    MRGs were obtained from molecular signature database (MSigDB). The gene expression profiles and patient clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. In the training datasets, MRGs were analyzed through univariate Cox regression analyses and least absolute shrinkage and selection operator (LASSO) Cox analyses to build a prognostic model. The GSE84976 was treated as the validation cohort. In addition, time-dependent receiver operating characteristic (ROC) and Kaplan-Meier survival curve analyses the reliability of the developed model. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. Nomogram that combined the five-gene signature was used to evaluate the predictive OS value of UM patients.

    Results 

    Five MRGs were identified and used to establish the prognostic model for UM patients. The model was successfully validated using the testing cohort. Moreover, ROC analysis demonstrated a strong predictive ability that our prognostic signature had for UM prognosis. Multivariable Cox regression analysis revealed that the risk model was an independent predictor of prognosis. UM patients with a high-risk score showed a higher level of immune checkpoint molecules.

    Conclusion 

    We established a novel metabolism-related signature that could predict survival and might be therapeutic targets for the treatment of UM patients.

    Citation: Han Zhao, Yun Chen, Peijun Shen, Lan Gong. Construction and validation of a novel prognostic signature for uveal melanoma based on five metabolism-related genes[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 8045-8063. doi: 10.3934/mbe.2021399

    Related Papers:

  • Background 

    Uveal melanoma (UM) is the most aggressive intraocular tumor worldwide. Accurate prognostic models are urgently needed. The present research aimed to construct and validate a prognostic signature is associated with overall survival (OS) for UM patients based on metabolism-related genes (MRGs).

    Methods 

    MRGs were obtained from molecular signature database (MSigDB). The gene expression profiles and patient clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. In the training datasets, MRGs were analyzed through univariate Cox regression analyses and least absolute shrinkage and selection operator (LASSO) Cox analyses to build a prognostic model. The GSE84976 was treated as the validation cohort. In addition, time-dependent receiver operating characteristic (ROC) and Kaplan-Meier survival curve analyses the reliability of the developed model. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. Nomogram that combined the five-gene signature was used to evaluate the predictive OS value of UM patients.

    Results 

    Five MRGs were identified and used to establish the prognostic model for UM patients. The model was successfully validated using the testing cohort. Moreover, ROC analysis demonstrated a strong predictive ability that our prognostic signature had for UM prognosis. Multivariable Cox regression analysis revealed that the risk model was an independent predictor of prognosis. UM patients with a high-risk score showed a higher level of immune checkpoint molecules.

    Conclusion 

    We established a novel metabolism-related signature that could predict survival and might be therapeutic targets for the treatment of UM patients.



    加载中


    [1] A. D. Singh, M. E. Turell, A. K. Topham, Uveal melanoma: trends in incidence, treatment, and survival, Ophthalmology, 118 (2011), 1881-1885.
    [2] M. H. Abdel-Rahman, K. M. Sample, R. Pilarski, T. Qalsh, T. Grosel, D. Kinnamon, et al., Whole exome sequencing identifies candidate genes associated with hereditary predisposition to uveal melanoma, Ophthalmology, 127 (2020), 668-678. doi: 10.1016/j.ophtha.2019.11.009
    [3] M. W. Wilson, J. L. Hungerford, Comparison of episcleral plaque and proton beam radiation therapy for the treatment of choroidal melanoma, Ophthalmology, 106 (1999), 1579-1587. doi: 10.1016/S0161-6420(99)90456-6
    [4] B. Damato, S. E. Coupland, An audit of conjunctival melanoma treatment in liverpool, Eye, 23 (2009), 801-809. doi: 10.1038/eye.2008.154
    [5] S. Tuomaala, S. Eskelin, A. Tarkkanen, T. Kivela, Population-based assessment of clinical characteristics predicting outcome of conjunctival melanoma in whites, Invest. Ophth. Vis. Sci., 43 (2002), 3399-3408.
    [6] P. Rietschel, K. S. Panageas, C. Hanlon, A. Patel, D. H. Abramson, P. B. Chapman, Variates of survival in metastatic uveal melanoma, J. Clin. Oncol., 23 (2005), 8076-8080. doi: 10.1200/JCO.2005.02.6534
    [7] M. V. Heppt, T. Steeb, J. G. Schlager, S. Rosumeck, C. Dressler, T. Ruzicka, et al., Immune checkpoint blockade for unresectable or metastatic uveal melanoma: A systematic review, Cancer Treat. Rev., 60 (2017), 44-52. doi: 10.1016/j.ctrv.2017.08.009
    [8] M. G. Vander Heiden, R. J. DeBerardinis, Understanding the intersections between metabolism and cancer biology, Cell, 168 (2017), 657-669. doi: 10.1016/j.cell.2016.12.039
    [9] S. Katada, A. Imhof, P. Sassone-Corsi, Connecting threads: epigenetics and metabolism, Cell, 148 (2012), 24-28.
    [10] O. Warburg, On the origin of cancer cells, Sci., 123 (1956), 309-314. doi: 10.1126/science.123.3191.309
    [11] C. Chattopadhyay, J. Oba, J. Roszik, J. R. Marszalek, K. Chen, Y. Qi, et al., Elevated endogenous SDHA drives pathological metabolism in highly metastatic uveal melanoma, Invest. Ophth. Vis. Sci., 60 (2019), 4187-4195. doi: 10.1167/iovs.19-28082
    [12] S. Vardanyan, A. Brosig, H. Merz, M. Ranjbar, V. Kakkassery, S. Grisanti, et al., Metastasis of uveal melanoma with monosomy-3 is associated with a less glycogenetic gene expression profile and the dysregulation of glycogen storage, Cancers, 12 (2020), 2101.
    [13] K. Slater, A. B. Heeran, S. Garcia-Mulero, H. Kalirai, R. Sanz-Pamplona, A. Rahman, et al., High cysteinyl leukotriene receptor 1 expression correlates with poor survival of uveal melanoma patients and cognate antagonist drugs modulate the growth, cancer secretome, and metabolism of uveal melanoma cells, Cancers, 12 (2020), 2950.
    [14] L. B. Yan, K. Shi, Z. T. Bing, Y. L. Sun, Y. Shen, Proteomic analysis of energy metabolism and signal transduction in irradiated melanoma cells, Int. J. Ophthalmol., 6 (2013), 286-294.
    [15] D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, et al., String v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res., 47 (2019), D607-d613.
    [16] R. Tibshirani, The lasso method for variable selection in the Cox model, Stat. Med., 16 (1997), 385-395. doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
    [17] J. Friedman, T. Hastie, R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, J. Stat. Softw., 33 (2010), 1-22.
    [18] C. L. Dieck, A. Ferrando, Genetics and mechanisms of NT5C2-driven chemotherapy resistance in relapsed ALL, Blood, 133 (2019), 2263-2268. doi: 10.1182/blood-2019-01-852392
    [19] F. Cividini, E. Cros-Perrial, R. Pesi, C. Machon, S. Allegrini, M. Camici, et al., Cell proliferation and drug sensitivity of human glioblastoma cells are altered by the stable modulation of cytosolic 5'-nucleotidase Ⅱ, Int. J. Biochem. Cell Biol., 65 (2015), 222-229. doi: 10.1016/j.biocel.2015.06.011
    [20] A. D. Lietzan, M. Maurice, Functionally diverse biotin-dependent enzymes with oxaloacetate decarboxylase activity, Arch. Biochem. Biophys., 544 (2014), 75-86. doi: 10.1016/j.abb.2013.10.014
    [21] K. Sellers, M. P. Fox, M. Bousamra, S. P. Slone, R. M. Higashi, D. M. Miller, et al., Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation, J. Clin. Invest., 125 (2015), 687-698. doi: 10.1172/JCI72873
    [22] T. Delgado-Goñ i, T. C. Galobart, S. Wantuch, D. Normantaite, M. O. Leach, S. R. Whittaker, et al, Increased inflammatory lipid metabolism and anaplerotic mitochondrial activation follow acquired resistance to vemurafenib in BRAF-mutant melanoma cells, Brit. J. Cancer, 122 (2020), 72-81.
    [23] T. Delgado-Goni, M. F. Miniotis, S. Wantuch, H. G. Parkes, R. Marais, P. Workman, et al. The BRAF inhibitor vemurafenib activates mitochondrial metabolism and inhibits hyperpolarized pyruvate-lactate exchange in BRAF-mutant human melanoma cells, Mol. Cancer Ther., 15 (2016), 2987-2999. doi: 10.1158/1535-7163.MCT-16-0068
    [24] P. Minárik, N. Tomásková, M. Kollárová, M. Antalik, Malate dehydrogenases-structure and function, Gen. Physiol. Biophys., 21 (2002), 257-265.
    [25] Y. Zhuang, J. Xiang, W. Bao, Y. Sun, L. Wang, M. Tan, et al., MDH2 stimulated by estrogen-GPR30 pathway down-regulated pten expression promoting the proliferation and invasion of cells in endometrial cancer, Transl. Oncol., 10 (2017), 203-210. doi: 10.1016/j.tranon.2017.01.009
    [26] R. Naik, H. S. Ban, K. Jang, I. Kim, X. Xu, D. Harmalkar, et al., Methyl 3-(3-(4-(2, 4, 4-Trimethylpentan-2-yl)phenoxy)-propanamido)benzoate as a novel and dual malate dehydrogenase (MDH) 1/2 inhibitor targeting cancer metabolism, J Med. Chem., 60 (2017), 8631-8646. doi: 10.1021/acs.jmedchem.7b01231
    [27] K. Kato, H. Nishimasu, S. Okudaira, E. Mihara, R. Ishitani, J. Takagi, et al., Crystal structure of Enpp1, an extracellular glycoprotein involved in bone mineralization and insulin signaling, P. Natl. Acad. Sci. USA, 109 (2012), 16876-16881. doi: 10.1073/pnas.1208017109
    [28] M. Hu, W. Guo, Y. Liao, D. Xu, B. Sun, H. Song, et al., Dysregulated ENPP1 increases the malignancy of human lung cancer by inducing epithelial-mesenchymal transition phenotypes and stem cell features, Am. J. Cancer Res., 9 (2019), 134-144.
    [29] M. Kawaguchi, X. Han, T. Hisada, S. Nishikawa, K. Kano, N. Ieda, et al., Development of an ENPP1 fluorescence probe for inhibitor screening, cellular imaging, and prognostic assessment of malignant breast cancer, J. Med. Chem., 62 (2019), 9254-9269. doi: 10.1021/acs.jmedchem.9b01213
    [30] S. Qu, J. Long, Q. Cai, X. O. Shu, H. Cai, Y. T. Gao, et al., Genetic polymorphisms of metastasis suppressor gene NME1 and breast cancer survival, Clin. Cancer Res., 14 (2008), 4787-4793. doi: 10.1158/1078-0432.CCR-08-0083
    [31] N. Pamidimukkala, G. S. Puts, M. K. Leonard, D. Snyder, S. Dabernat, E. C. De Fabo, et al., Nme1 and Nme2 genes exert metastasis-suppressor activities in a genetically engineered mouse model of UV-induced melanoma, Brit. J. Cancer, 124 (2021), 161-165. doi: 10.1038/s41416-020-01096-w
    [32] Y. Wang, M. K. Leonard, D. E. Snyder, M. L. Fisher, R. L. Eckert, D. M. Kaetzel, NME1 Drives Expansion of Melanoma Cells with Enhanced Tumor Growth and Metastatic Properties, Mol. Cancer Res., 17 (2019), 1665-1674. doi: 10.1158/1541-7786.MCR-18-0019
    [33] A. J. Freemerman, A. R. Johnson, G. N. Sacks, J. J. Milner, E. L. Kirk, M. A. Troester, et al., Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype, J. Biol. Chem., 289 (2014), 7884-7896. doi: 10.1074/jbc.M113.522037
    [34] T. Cascone, J. A. McKenzie, R. M. Mbofung, S. Punt, Z. Wang, C. Xu, et al., Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy, Cell Metab., 27 (2018), 977-987. doi: 10.1016/j.cmet.2018.02.024
    [35] S. R. Jacobs, C. E. Herman, N. J. MacIver, J. A. Wofford, H. L. Wieman, J. J. Hammen, et al., Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways, J. Immunol., 180 (2008), 4476-4486. doi: 10.4049/jimmunol.180.7.4476
    [36] R. Samaniego, A. Gutiérrez-González, A. Gutiérrez-Seijo, S. Sánchez-Gregorio, J. García-Giménez, E. Mercader, et al., CCL20 expression by tumor-associated macrophages predicts progression of human primary cutaneous melanoma, Cancer Immunol. Res., 6 (2018), 267-275.
    [37] H. Bagheri, M. H. Pourhanifeh, M. Derakhshan, M. Mahjoubin-Tehran, F. Ghasemi, S. Mousavi, et al, CXCL-10: a new candidate for melanoma therapy?, Cell. Oncol., 43 (2020), 353-365.
    [38] Z. S. Chheda, R. K. Sharma, V. R. Jala, A. D. Luster, B. Haribabu, Chemoattractant receptors BLT1 and CXCR3 regulate antitumor immunity by facilitating CD8+ t cell migration into tumors, J. Immunol., 197 (2016), 2016-2026. doi: 10.4049/jimmunol.1502376
    [39] R. R. Ji, S. D. Chasalow, L. Wang, O. Hamid, H. Schmidt, J. Cogswell, et al., An immune-active tumor microenvironment favors clinical response to ipilimumab, Cancer Immunol. Immun., 61 (2012), 1019-1031. doi: 10.1007/s00262-011-1172-6
    [40] D. Bedognetti, T. L. Spivey, Y. Zhao, L. Uccellini, S. Tomei, M. E. Dudley, et al., CXCR3/CCR5 pathways in metastatic melanoma patients treated with adoptive therapy and interleukin-2, Brit. J. Cancer, 109 (2013), 2412-2423. doi: 10.1038/bjc.2013.557
  • mbe-18-06-399-supplementary.docx
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3556) PDF downloads(176) Cited by(4)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog