Research article Special Issues

Basic reinfection number and backward bifurcation

  • Received: 22 June 2021 Accepted: 06 September 2021 Published: 16 September 2021
  • Some epidemiological models exhibit bi-stable dynamics even when the basic reproduction number $ {{{\cal R}_{0}}} $ is below $ 1 $, through a phenomenon known as a backward bifurcation. Causes for this phenomenon include exogenous reinfection, super-infection, relapse, vaccination exercises, heterogeneity among subpopulations, etc. To measure the reinfection forces, this paper defines a second threshold: the basic reinfection number. This number characterizes the type of bifurcation when the basic reproduction number is equal to one. If the basic reinfection number is greater than one, the bifurcation is backward. Otherwise it is forward. The basic reinfection number with the basic reproduction number together gives a complete measure for disease control whenever reinfections (or relapses) matter. We formulate the basic reinfection number for a variety of epidemiological models.

    Citation: Baojun Song. Basic reinfection number and backward bifurcation[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 8064-8083. doi: 10.3934/mbe.2021400

    Related Papers:

  • Some epidemiological models exhibit bi-stable dynamics even when the basic reproduction number $ {{{\cal R}_{0}}} $ is below $ 1 $, through a phenomenon known as a backward bifurcation. Causes for this phenomenon include exogenous reinfection, super-infection, relapse, vaccination exercises, heterogeneity among subpopulations, etc. To measure the reinfection forces, this paper defines a second threshold: the basic reinfection number. This number characterizes the type of bifurcation when the basic reproduction number is equal to one. If the basic reinfection number is greater than one, the bifurcation is backward. Otherwise it is forward. The basic reinfection number with the basic reproduction number together gives a complete measure for disease control whenever reinfections (or relapses) matter. We formulate the basic reinfection number for a variety of epidemiological models.



    加载中


    [1] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond., A115 (1927), 700–721.
    [2] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics, part II, Proc. Roy. Soc. Ser. A, 138 (1932), 55–83.
    [3] H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), 335–356. doi: 10.1016/0025-5564(76)90132-2
    [4] H. W. Hethcote, Three basic epidemiological models, in Applied Mathematical Ecology (eds. L. Gross, T. G. Hallam, S. A. Levin), Springer-Verlag, Berlin, (1989), 119–144.
    [5] A. Lajmanovich, J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), 221–236. doi: 10.1016/0025-5564(76)90125-5
    [6] H. W. Hethcote, J. W. van Ark, Epidemiological models for heterogeneous populations: Proportionate mixing, parameter estimation, and immunization programs, Math. Biosci., 84 (1987), 85–118. doi: 10.1016/0025-5564(87)90044-7
    [7] J. A. P. Heesterbeek, A brief history of ${{{\cal R}_{0}}}$ and a recipe for its calculation, Acta Biotheor., 50 (2002), 189–204. doi: 10.1023/A:1016599411804
    [8] R.M. Anderson, R. M. May, Infectious diseases of humans: Dynamics and control, Oxford University Press, Oxford, UK, 1991.
    [9] K. Dietz, Transmission and control of arbovirus diseases, in Epidemiology. SIMS 1974 Utah Conference Proceedings (eds. D. Ludwig, K. L. Cooke), SIAM, Philadelphia, (1975), 104–121.
    [10] G. Macdonald, The epidemiology and control of malaria, Oxford University Press, 1957.
    [11] H. W. Hethcote, Mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. doi: 10.1137/S0036144500371907
    [12] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio ${{{\cal R}_{0}}}$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382.
    [13] O. Diekmann, J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases, Wiley, New York, 2000.
    [14] K. Dietz, The estimation of the basic reproduction number for infectious diseases, Stat. Methods Med. Res., 2 (1993), 23–41. doi: 10.1177/096228029300200103
    [15] Z. Feng, C. Castillo-Chavez, A. F. Capurro, A model for tuberculosis with exogenous reinfection, Theor. Pop. Biol., 57 (2000), 235–247. doi: 10.1006/tpbi.2000.1451
    [16] B. Song, M. Castillo-Garsow, K. R. Ríos-Soto, M. Mejran, L. Henso, C. Castillo-Chavez, Raves, clubs, and ecstasy: The impact of peer pressure, Math. Biosci. Eng., 3 (2006), 249–266. doi: 10.3934/mbe.2006.3.249
    [17] B. Song, W. Du, J. Lou, Different types of backward bifurcations due to density-dependent treatments, Math. Biosci. Eng., 10 (2013), 1651–1668. doi: 10.3934/mbe.2013.10.1651
    [18] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/S0025-5564(02)00108-6
    [19] F. Brauer, Backward bifurcations in simple vaccination models, J. Math. Anal. Appl., 298 (2004), 418–431. doi: 10.1016/j.jmaa.2004.05.045
    [20] F. Brauer, Some simple epidemic models, Math. Biosci. Eng., 3 (2006), 1–15.
    [21] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361–404. doi: 10.3934/mbe.2004.1.361
    [22] K. P. Hadeler, P. van den Driessche, Backward bifurcation in epidemic control, Math. Biosci., 146 (1997), 15–35. doi: 10.1016/S0025-5564(97)00027-8
    [23] C. Castillo-Chavez, K. Cook, W. Huang, S. A. Levin, Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus, Appl. Math. Lett., 2 (1989), 327–331. doi: 10.1016/0893-9659(89)90080-3
    [24] W. Huang, K. L. Cook, C. Castillo-Chavez, Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission, SIAM J. Appl. Math., 52 (1992), 835–854. doi: 10.1137/0152047
    [25] O. Diekmann, M. Kretzschmar, Patterns in the effects of infectious diseases on population growth, J. Math. Biol., 29 (1991), 539–570. doi: 10.1007/BF00164051
    [26] K. P. Hadeler, C. Castillo-Chavez, A core group model for disease transmission, Math. Biosc., 128 (1995), 41–55. doi: 10.1016/0025-5564(94)00066-9
    [27] J. Dushoff, W. Huang, C. Castillo-Chavez, Backward bifurcations and catastrophe in simple models of fatal diseases, J. Math. Biol., 36 (1998), 227–248. doi: 10.1007/s002850050099
    [28] A. B. Gumel, B. Song, Existence of multiple-stable equilibria for a multi-drug-resistent model of mycobacterium tuberculosis, Math. Biosci. Eng., 5 (2008), 437–455. doi: 10.3934/mbe.2008.5.437
    [29] A. Jabbari, C. Castillo-Chavez, F. Nazari, B. Song, H. Kheiri, A two-strain TB model with multiple latent stages, Math. Biosci. Eng., 13 (2016), 741–785. doi: 10.3934/mbe.2016017
    [30] O. Sharomi, C. N. Podder, A. B. Gumel, B. Song, Mathematical analysis of the transmission dynamics of HIV/TB co-infection in the presence of treatment, Math. Biosci. Eng., 5 (2008), 145–174. doi: 10.3934/mbe.2008.5.145
    [31] C. M. Kribs-Zaleta, J. X. Velasco-Hernández, A simple vaccination model with multiple endemic states, Math. Biosci., 164 (2000), 183–201. doi: 10.1016/S0025-5564(00)00003-1
    [32] M. Martcheva, H. R. Thieme, Progression age enhanced backward bifurcation in an epidemic model with super-infection, J. Math. Biol., 46 (2003), 385–424. doi: 10.1007/s00285-002-0181-7
    [33] W. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006), 58–71. doi: 10.1016/j.mbs.2005.12.022
    [34] L. J. S. Allen, P. van den Driessche, Stochastic epidemic models with a backward bifurcation, Math. Biosci. Eng., 3 (2006), 445–458. doi: 10.3934/mbe.2006.3.445
    [35] H. Cao, Y. Zhou, B. Song, Complex Dynamics of Discrete SEIS Models with Simple Demography, Hindawi Publishing Corporation, Discrete Dynamics in Nature and Society, Volume 2011, Article ID 653937, 21 pages doi: 10.1155/2011/653937
    [36] L. J. S. Allen, P. van den Driessche, The basic reproduction number in some discrete-time epidemic models, J. Differ. Equat. Appl., 14 (2008), 1127–1147. doi: 10.1080/10236190802332308
    [37] J. A. Fidler, J. Wardle, N. H. Brodersen, M. J. Jarvis, R. West, Vulnerability to smoking after trying a single cigarette can lie dormant for three years or more, Tobacco Control, 15 (2006), 205–209. doi: 10.1136/tc.2005.014894
    [38] O. Colon-Rentas, L. Gordon, L. Montejo, P. Reitsma, F. Sánchez, B. Song, The impacts of the sleeper effect and relapse on the dynamics of cigarette smoking among adolescents, MTBI technical report series (2006), MTBI-03-04M, Arizona State University, Tempe. Available from https://qrlssp.asu.edu/2006-4.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7044) PDF downloads(466) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog