Research article Special Issues

A chaos-based adaptive equilibrium optimizer algorithm for solving global optimization problems


  • Received: 12 June 2023 Revised: 19 July 2023 Accepted: 02 August 2023 Published: 04 September 2023
  • The equilibrium optimizer (EO) algorithm is a newly developed physics-based optimization algorithm, which inspired by a mixed dynamic mass balance equation on a controlled fixed volume. The EO algorithm has a number of strengths, such as simple structure, easy implementation, few parameters and its effectiveness has been demonstrated on numerical optimization problems. However, the canonical EO still presents some drawbacks, such as poor balance between exploration and exploitation operation, tendency to get stuck in local optima and low convergence accuracy. To tackle these limitations, this paper proposes a new EO-based approach with an adaptive gbest-guided search mechanism and a chaos mechanism (called a chaos-based adaptive equilibrium optimizer algorithm (ACEO)). Firstly, an adaptive gbest-guided mechanism is injected to enrich the population diversity and expand the search range. Next, the chaos mechanism is incorporated to enable the algorithm to escape from the local optima. The effectiveness of the developed ACEO is demonstrated on 23 classical benchmark functions, and compared with the canonical EO, EO variants and other frontier metaheuristic approaches. The experimental results reveal that the developed ACEO method remarkably outperforms the canonical EO and other competitors. In addition, ACEO is implemented to solve a mobile robot path planning (MRPP) task, and compared with other typical metaheuristic techniques. The comparison indicates that ACEO beats its competitors, and the ACEO algorithm can provide high-quality feasible solutions for MRPP.

    Citation: Yuting Liu, Hongwei Ding, Zongshan Wang, Gushen Jin, Bo Li, Zhijun Yang, Gaurav Dhiman. A chaos-based adaptive equilibrium optimizer algorithm for solving global optimization problems[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 17242-17271. doi: 10.3934/mbe.2023768

    Related Papers:

  • The equilibrium optimizer (EO) algorithm is a newly developed physics-based optimization algorithm, which inspired by a mixed dynamic mass balance equation on a controlled fixed volume. The EO algorithm has a number of strengths, such as simple structure, easy implementation, few parameters and its effectiveness has been demonstrated on numerical optimization problems. However, the canonical EO still presents some drawbacks, such as poor balance between exploration and exploitation operation, tendency to get stuck in local optima and low convergence accuracy. To tackle these limitations, this paper proposes a new EO-based approach with an adaptive gbest-guided search mechanism and a chaos mechanism (called a chaos-based adaptive equilibrium optimizer algorithm (ACEO)). Firstly, an adaptive gbest-guided mechanism is injected to enrich the population diversity and expand the search range. Next, the chaos mechanism is incorporated to enable the algorithm to escape from the local optima. The effectiveness of the developed ACEO is demonstrated on 23 classical benchmark functions, and compared with the canonical EO, EO variants and other frontier metaheuristic approaches. The experimental results reveal that the developed ACEO method remarkably outperforms the canonical EO and other competitors. In addition, ACEO is implemented to solve a mobile robot path planning (MRPP) task, and compared with other typical metaheuristic techniques. The comparison indicates that ACEO beats its competitors, and the ACEO algorithm can provide high-quality feasible solutions for MRPP.



    加载中


    [1] W. Y. Wang, Z. H. Xu, Y. H. Fan, D. D. Pan, P. Lin, X. T Wang, Disturbance inspired equilibrium optimizer with application to constrained engineering design problems, Appl. Math. Modell., 116 (2023), 254–276. https://doi.org/10.1016/j.apm.2022.11.016 doi: 10.1016/j.apm.2022.11.016
    [2] F. A. Hashim, E. H. Houssein, M. S. Mabrouk, W. Al-Atabany, S. Mirjalili, Henry gas solubility optimization: A novel physics-based algorithm, Future Gener. Comput. Syst., 101 (2019), 646–667. https://doi.org/10.1016/j.future.2019.07.015 doi: 10.1016/j.future.2019.07.015
    [3] Z. Wang, H. Ding, J. Yang, P. Hou, G. Dhiman, J. Wang, et al., Orthogonal pinhole-imaging-based learning salp swarm algorithm with self-adaptive structure for global optimization, Front. Bioeng. Biotechnol., 10 (2022), 1018895. https://doi.org/10.3389/fbioe.2022.1018895 doi: 10.3389/fbioe.2022.1018895
    [4] F. Zhao, L. Zhang, J. Cao, J. Tang, A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem, Comput. Ind. Eng., 153 (2021), 107082. https://doi.org/10.1016/j.cie.2020.107082 doi: 10.1016/j.cie.2020.107082
    [5] Y. Zhang, Y. Zhou, G. Zhou, Q. Luo, An effective multi-objective bald eagle search algorithm for solving engineering design problems, Appl. Soft Comput., 145 (2023) 110585. https://doi.org/10.1016/j.asoc.2023.110585 doi: 10.1016/j.asoc.2023.110585
    [6] T. Zhang, Y. Zhou, G. Zhou, W. Deng, Q. Luo, Discrete Mayfly Algorithm for spherical asymmetric traveling salesman problem, Expert Syst. Appl., 221 (2023), 119765. https://doi.org/10.1016/j.eswa.2023.119765 doi: 10.1016/j.eswa.2023.119765
    [7] A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm, Knowl.-Based Syst., 191 (2020), 105190. https://doi.org/10.1016/j.knosys.2019.105190 doi: 10.1016/j.knosys.2019.105190
    [8] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, S. Dam, A genetic algorithm (GA) based load balancing strategy for cloud computing, Proc. Technol., 10 (2013), 340–347. https://doi.org/10.1016/j.protcy.2013.12.369 doi: 10.1016/j.protcy.2013.12.369
    [9] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization: An overview, Swarm Intell., 1 (2007), 33–57. https://doi.org/10.1007/s11721-007-0002-0 doi: 10.1007/s11721-007-0002-0
    [10] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [11] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm, Inf. Sci., 179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 doi: 10.1016/j.ins.2009.03.004
    [12] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software, 114 (2017), 163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002 doi: 10.1016/j.advengsoft.2017.07.002
    [13] N. Hansen, S. D. Müller, P. Koumoutsakos, Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Evol. Comput., 11 (2003), 1–18. https://doi.org/10.1162/106365603321828970 doi: 10.1162/106365603321828970
    [14] C. Zhong, G. Li, Z. Meng, W. He, Opposition-based learning equilibrium optimizer with Levy flight and evolutionary population dynamics for high-dimensional global optimization problems, Expert Syst. Appl., 215 (2023), 119303. https://doi.org/10.1016/j.eswa.2022.119303 doi: 10.1016/j.eswa.2022.119303
    [15] Y. Sun, J. S. Pan, P. Hu, S. C. Chu, Enhanced equilibrium optimizer algorithm applied in job shop scheduling problem, J. Intell. Manuf., 34 (2023), 1639–1665. https://doi.org/10.1007/s10845-021-01899-5 doi: 10.1007/s10845-021-01899-5
    [16] E. H. Houssein, E. Çelik, M. A. Mahdy, R. M. Ghoniem, Self-adaptive equilibrium optimizer for solving global, combinatorial, engineering, and multi-objective problems, Expert Syst. Appl., 195 (2022), 116552. https://doi.org/10.1016/j.eswa.2022.116552 doi: 10.1016/j.eswa.2022.116552
    [17] M. Premkumar, P. Jangir, R. Sowmya, H. H. Alhelou, S. Mirjalili, B. S. Kumar, Multi-objective equilibrium optimizer: Framework and development for solving multi-objective optimization problems, J. Comput. Des. Eng., 9 (2022), 24–50. https://doi.org/10.1093/jcde/qwab065 doi: 10.1093/jcde/qwab065
    [18] E. H. Houssein, M. H. Hassan, M. A. Mahdy, S. Kamel, Development and application of equilibrium optimizer for optimal power flow calculation of power system, Appl. Intell., 53 (2023), 7232–7253. https://doi.org/10.1007/s10489-022-03796-7 doi: 10.1007/s10489-022-03796-7
    [19] R. M. Rizk-Allah, A. E. Hassanien, A hybrid equilibrium algorithm and pattern search technique for wind farm layout optimization problem, ISA Trans., 132 (2023), 402–418. https://doi.org/10.1016/j.isatra.2022.06.014 doi: 10.1016/j.isatra.2022.06.014
    [20] Q. Luo, S. Yin, G. Zhou, W. Meng, Y. Zhao, Y. Zhou, Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems, Struct. Multidisc. Optim., 66 (2023), 114. https://doi.org/10.1007/s00158-023-03568-y doi: 10.1007/s00158-023-03568-y
    [21] B. Zhu, Q. Luo, Y. Zhou, Quantum-inspired equilibrium optimizer for linear antenna array, Comput. Model. Eng. Sci., 137 (2023), 385–413. https://doi.org/10.32604/cmes.2023.026097 doi: 10.32604/cmes.2023.026097
    [22] S. Yin, Q. Luo, Y. Zhou, EOSMA: an equilibrium optimizer slime mould algorithm for engineering design problems, Arab. J. Sci. Eng., 47 (2022), 10115–10146. https://doi.org/10.1007/s13369-021-06513-7 doi: 10.1007/s13369-021-06513-7
    [23] J. J. Wang, L. Wang, A cooperative memetic algorithm with feedback for the energy-aware distributed flow-shops with flexible assembly scheduling, Comput. Ind. Eng., 168 (2022), 108126. https://doi.org/10.1016/j.cie.2022.108126 doi: 10.1016/j.cie.2022.108126
    [24] F. Zhao, H. Zhang, L. Wang, A pareto-based discrete jaya algorithm for multiobjective carbon-efficient distributed blocking flow shop scheduling problem, IEEE Trans. Ind. Inform., 19 (2022), 8588–8599. https://doi.org/10.1109/TⅡ.2022.3220860 doi: 10.1109/TⅡ.2022.3220860
    [25] Z. Wang, H. Ding, J. Wang, P. Hou, A. Li, Z. Yang, et al., Adaptive guided salp swarm algorithm with velocity clamping mechanism for solving optimization problems, J. Comput. Des. Eng., 9 (2022), 2196–2234. https://doi.org/10.1093/jcde/qwac094 doi: 10.1093/jcde/qwac094
    [26] V. K. Pathak, A. K. Srivastava, A novel upgraded bat algorithm based on cuckoo search and Sugeno inertia weight for large scale and constrained engineering design optimization problems, Eng. Comput., 38 (2022), 1731–1758. https://doi.org/10.1007/s00366-020-01127-3 doi: 10.1007/s00366-020-01127-3
    [27] Y. Chen, J. Xi, H. Wang, X. Liu, Grey wolf optimization algorithm based on dynamically adjusting inertial weight and levy flight strategy, Evol. Intell., 16 (2023) 917–927. https://doi.org/10.1007/s12065-022-00705-2 doi: 10.1007/s12065-022-00705-2
    [28] H. Ding, X. Cao, Z. Wang, G. Dhiman, P. Hou, J. Wang, et al., Velocity clamping-assisted adaptive salp swarm algorithm: balance analysis and case studies, Math. Biosci. Eng., 19 (2022), 7756–7804. https://doi.org/10.3934/mbe.2022364 doi: 10.3934/mbe.2022364
    [29] C. Yin, S. Mao, Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting, Energy, 269 (2023), 126844. https://doi.org/10.1016/j.energy.2023.126844 doi: 10.1016/j.energy.2023.126844
    [30] H. Gezici, H. Livatyalı, Chaotic Harris hawks optimization algorithm, J. Comput. Des. Eng., 9 (2022), 216–245. https://doi.org/10.1093/jcde/qwab082 doi: 10.1093/jcde/qwab082
    [31] S. Liang, Y. Pan, H. Zhang, J. Zhang, F. Wang, Z. Chen, Marine predators algorithm based on adaptive weight and chaos factor and its application, Sci. Program., (2022), 4623980. https://doi.org/10.1155/2022/4623980 doi: 10.1155/2022/4623980
    [32] J. Feng, H. Kuang, L. Zhang, EBBA: An enhanced binary bat algorithm integrated with chaos theory and lévy flight for feature selection, Future Internet, 14 (2022), 178. https://doi.org/10.3390/fi14060178 doi: 10.3390/fi14060178
    [33] F. S. Gharehchopogh, M. H. Nadimi-Shahraki, S. Barshandeh, B. Abdollahzadeh, H. Zamani, CQFFA: A chaotic quasi-oppositional farmland fertility algorithm for solving engineering optimization problems, J. Bionic Eng., 20 (2023), 158–183. https://doi.org/10.1007/s42235-022-00255-4 doi: 10.1007/s42235-022-00255-4
    [34] S. K. Joshi, Chaos embedded opposition based learning for gravitational search algorithm, Appl. Intell., 53 (2023), 5567–5586. https://doi.org/10.1007/s10489-022-03786-9 doi: 10.1007/s10489-022-03786-9
    [35] W. Long, J. Jiao, X. Liang, T. Wu, M. Xu, S. Cai, Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection, Appl. Soft Comput., 103 (2021), 107146. https://doi.org/10.1016/j.asoc.2021.107146 doi: 10.1016/j.asoc.2021.107146
    [36] S. Gupta, K. Deep, S. Mirjalili, An efficient equilibrium optimizer with mutation strategy for numerical optimization, Appl. Soft Comput., 96 (2020), 106542. https://doi.org/10.1016/j.asoc.2020.106542 doi: 10.1016/j.asoc.2020.106542
    [37] J. Liu, W. Li, Y. Li, LWMEO: An efficient equilibrium optimizer for complex functions and engineering design problems, Expert Syst. Appl., 198 (2022), 116828. https://doi.org/10.1016/j.eswa.2022.116828 doi: 10.1016/j.eswa.2022.116828
    [38] X. Zhang, Q. Lin, Information-utilization strengthened equilibrium optimizer, Artif. Intell. Rev., 55 (2022), 4241–4274. https://doi.org/10.1007/s10462-021-10105-0 doi: 10.1007/s10462-021-10105-0
    [39] L. Yang, Z. Xu, Y. Liu, G. Tian, An improved equilibrium optimizer with a decreasing equilibrium pool, Symmetry, 14 (2022), 1227. https://doi.org/10.3390/sym14061227 doi: 10.3390/sym14061227
    [40] H. Ren, J. Li, H. Chen, C. Li, Stability of salp swarm algorithm with random replacement and double adaptive weighting, Appl. Math. Modell., 95 (2021), 503–523. https://doi.org/10.1016/j.apm.2021.02.002 doi: 10.1016/j.apm.2021.02.002
    [41] M. M. Saafan, E. M. El-Gendy, IWOSSA: An improved whale optimization salp swarm algorithm for solving optimization problems, Expert Syst. Appl., 176 (2021), 114901. https://doi.org/10.1016/j.eswa.2021.114901 doi: 10.1016/j.eswa.2021.114901
    [42] S. Dhargupta, M. Ghosh, S. Mirjalili, R. Sarkar, Selective opposition based grey wolf optimization, Expert Syst. Appl., 151 (2020), 113389. https://doi.org/10.1016/j.eswa.2020.113389 doi: 10.1016/j.eswa.2020.113389
    [43] X. Yu, W. Xu, C. Li, Opposition-based learning grey wolf optimizer for global optimization, Knowl.-Based Syst., 226 (2021), 107139. https://doi.org/10.1016/j.knosys.2021.107139 doi: 10.1016/j.knosys.2021.107139
    [44] L. Ma, C. Wang, N. Xie, M. Shi, Y. Ye, L. Wang, Moth-flame optimization algorithm based on diversity and mutation strategy, Appl. Intell., 51 (2021), 5836–5872. https://doi.org/10.1007/s10489-020-02081-9 doi: 10.1007/s10489-020-02081-9
    [45] Z. Wang, H. Ding, B. Li, L. Bao, Z. Yang, Q. Liu, Energy efficient cluster based routing protocol for WSN using firefly algorithm and ant colony optimization, Wireless Pers. Commun., 125 (2022), 2167–2200. https://doi.org/10.1007/s11277-022-09651-9 doi: 10.1007/s11277-022-09651-9
    [46] Y. Li, J. Zhao, Z. Chen, G. Xiong, S. Liu, A robot path planning method based on improved genetic algorithm and improved dynamic window approach, Sustainability, 15 (2023), 4656. https://doi.org/10.3390/su15054656 doi: 10.3390/su15054656
    [47] Z. Wang, H. Ding, J. Yang, J. Wang, B. Li, Z. Yang, et al., Advanced orthogonal opposition‐based learning‐driven dynamic salp swarm algorithm: framework and case studies, IET Control Theory Appl., 16 (2022), 945–971. https://doi.org/10.1049/cth2.12277 doi: 10.1049/cth2.12277
    [48] Z. Wang, H. Ding, Z. Yang, B. Li, Z. Guan, L. Bao, Rank-driven salp swarm algorithm with orthogonal opposition-based learning for global optimization, Appl. Intell., 52 (2022), 7922–7964. https://doi.org/10.1007/s10489-021-02776-7 doi: 10.1007/s10489-021-02776-7
    [49] D. R. Parhi, A. K. Kashyap, Humanoid robot path planning using memory-based gravity search algorithm and enhanced differential evolution approach in a complex environment, Expert Syst. Appl., 215 (2023), 119423. https://doi.org/10.1016/j.eswa.2022.119423 doi: 10.1016/j.eswa.2022.119423
    [50] L. Wu, X. Huang, J. Cui, C. Liu, W. Xiao, Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot, Expert Syst. Appl., 215 (2023), 119410. https://doi.org/10.1016/j.eswa.2022.119410 doi: 10.1016/j.eswa.2022.119410
    [51] D. Agarwal, P. S. Bharti, Implementing modified swarm intelligence algorithm based on Slime moulds for path planning and obstacle avoidance problem in mobile robots, Appl. Soft Comput., 107 (2021), 107372. https://doi.org/10.1016/j.asoc.2021.107372 doi: 10.1016/j.asoc.2021.107372
    [52] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J Glob. Optim., 39 (2007), 459–471. https://doi.org/10.1007/s10898-007-9149-x doi: 10.1007/s10898-007-9149-x
    [53] I. Fister, I. Fister Jr, X. Yang, J. Brest, A comprehensive review of firefly algorithms, Swarm Evol. Comput., 13 (2013), 34–46. https://doi.org/10.1016/j.swevo.2013.06.001 doi: 10.1016/j.swevo.2013.06.001
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1416) PDF downloads(171) Cited by(5)

Article outline

Figures and Tables

Figures(11)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog