Processing math: 100%
Research article Special Issues

The Unique ergodic stationary distribution of two stochastic SEIVS epidemic models with higher order perturbation


  • Two types of susceptible, exposed, infectious, vaccinated/recovered, susceptible (SEIVS) epidemic models with saturation incidence and temporary immunity, driven by higher order white noise and telegraph noise, are investigated. The key aim of this work is to explore and obtain the existence of the unique ergodic stationary distribution for the above two models, which reveals whether the disease will be prevalent and persistent under some noise intensity assumptions. We also use meticulous numerical examples to validate the feasibility of the analytical findings. Finally, a brief biological discussion shows that the intensities of noises play a significant role in the stationary distributions of the two models.

    Citation: Yan Xie, Zhijun Liu. The Unique ergodic stationary distribution of two stochastic SEIVS epidemic models with higher order perturbation[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 1317-1343. doi: 10.3934/mbe.2023060

    Related Papers:

    [1] Yan Xie, Zhijun Liu, Ke Qi, Dongchen Shangguan, Qinglong Wang . A stochastic mussel-algae model under regime switching. Mathematical Biosciences and Engineering, 2022, 19(5): 4794-4811. doi: 10.3934/mbe.2022224
    [2] Fathalla A. Rihan, Hebatallah J. Alsakaji . Analysis of a stochastic HBV infection model with delayed immune response. Mathematical Biosciences and Engineering, 2021, 18(5): 5194-5220. doi: 10.3934/mbe.2021264
    [3] H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaibi . Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem. Mathematical Biosciences and Engineering, 2023, 20(11): 19270-19299. doi: 10.3934/mbe.2023852
    [4] Saima Rashid, Rehana Ashraf, Qurat-Ul-Ain Asif, Fahd Jarad . Novel stochastic dynamics of a fractal-fractional immune effector response to viral infection via latently infectious tissues. Mathematical Biosciences and Engineering, 2022, 19(11): 11563-11594. doi: 10.3934/mbe.2022539
    [5] Yansong Pei, Bing Liu, Haokun Qi . Extinction and stationary distribution of stochastic predator-prey model with group defense behavior. Mathematical Biosciences and Engineering, 2022, 19(12): 13062-13078. doi: 10.3934/mbe.2022610
    [6] Dengxia Zhou, Meng Liu, Ke Qi, Zhijun Liu . Long-time behaviors of two stochastic mussel-algae models. Mathematical Biosciences and Engineering, 2021, 18(6): 8392-8414. doi: 10.3934/mbe.2021416
    [7] Sanling Yuan, Xuehui Ji, Huaiping Zhu . Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1477-1498. doi: 10.3934/mbe.2017077
    [8] An Ma, Shuting Lyu, Qimin Zhang . Stationary distribution and optimal control of a stochastic population model in a polluted environment. Mathematical Biosciences and Engineering, 2022, 19(11): 11260-11280. doi: 10.3934/mbe.2022525
    [9] Xueqing He, Ming Liu, Xiaofeng Xu . Analysis of stochastic disease including predator-prey model with fear factor and Lévy jump. Mathematical Biosciences and Engineering, 2023, 20(2): 1750-1773. doi: 10.3934/mbe.2023080
    [10] Ming-Zhen Xin, Bin-Guo Wang, Yashi Wang . Stationary distribution and extinction of a stochastic influenza virus model with disease resistance. Mathematical Biosciences and Engineering, 2022, 19(9): 9125-9146. doi: 10.3934/mbe.2022424
  • Two types of susceptible, exposed, infectious, vaccinated/recovered, susceptible (SEIVS) epidemic models with saturation incidence and temporary immunity, driven by higher order white noise and telegraph noise, are investigated. The key aim of this work is to explore and obtain the existence of the unique ergodic stationary distribution for the above two models, which reveals whether the disease will be prevalent and persistent under some noise intensity assumptions. We also use meticulous numerical examples to validate the feasibility of the analytical findings. Finally, a brief biological discussion shows that the intensities of noises play a significant role in the stationary distributions of the two models.



    Recent years have witnessed a rapid development in the understanding of the transmission mechanism and the prevalence of diseases in mathematical epidemiology by compartmental modeling. Common categories of compartmental epidemic models, such as SIS [1,2], SIR [3,4,5], SEIR[6,7,8,9] and some other types of epidemic models [10,11,12,13], have been extensively studied by many researchers. Considering that using a vaccine to inhibit the spread of disease is an effective and sustainable method, researchers try to explore the effect of the vaccination measure by introducing a vaccinated (V) class into a mathematical model. Some clinical outcomes [14,15,16] have demonstrated that vaccines only provide temporary immunity to the disease, i.e., a person who has received the vaccination will once again be susceptible to the disease after the vaccine wears off. This contributes significantly to improving our understanding of disease prevention and control. Thus, it is necessary to investigate the SEIVS epidemic model (see [17,18]). Recently, Wang et al.[19] put forward the following SEIVS epidemic model with latency and temporary immunity described by a system of ordinary differential equations:

    {dS=[(1p)AμSβIρSα1+eIκ+δV]dt,dE=[βIρSα1+eIκ(μ+ε+η)E]dt,dI=[εE(μ+τ)I]dt,dV=[pA+τI+ηE(μ+δ)V]dt, (1.1)

    where 0<ρ1, 0κ2, α>0, V stands for the vaccinated compartment and the recovered and all parameters are positive. Parameter A is the recruitment rate, p stands for the fraction of the newborns vaccinated, μ represents the natural death rate, β measures the disease transmission coefficient, e refers to the inhibitory effect, η depicts the recovery rate of E due to natural immunity, 1/δ means the average time of immunity waning, 1/ε represents the latent period and 1/τ represents the mean infectious period. In particular, if α=κ=ρ=1 for the nonlinear incidence rate βIρSα/(1+eIκ) in model (1.1), then the regressive epidemic model with a saturated incidence rate becomes

    {dS=[(1p)AμSβIS1+eI+δV]dt,dE=[βIS1+eI(μ+ε+η)E]dt,dI=[εE(μ+τ)I]dt,dV=[pA+τI+ηE(μ+δ)V]dt. (1.2)

    Similar to [19], the matrices F and V of model (1.2) respectively take the form F=(fij)2×2 and V=(vij)2×2 where f11=0, f12=βS0, f21=0, f22=0, v11=μ+ε+η, v12=0, v21=ε, v22=μ+τ and Q0=(S0,0,0,V0)=(A((1p)μ+δ)μ(μ+δ),0,0,pAμ+δ), so the basic reproduction number Rc=ρ(FV1)=εβA((1p)μ+δ)μ(μ+τ)(μ+ε+η)(μ+δ) of model (1.2), which determines whether an epidemic will develop. Moreover, the corresponding dynamical results are summarized as follows:

    If Rc1, the disease-free equilibrium Q0=(S0,0,0,V0) of model (1.2) is globally asymptotically stable, which means that the disease cannot spread.

    If Rc>1, the endemic equilibrium Q=(S,E,I,V) of model (1.2) is globally asymptotically stable, which means that the disease always remains in a population.

    Figure 1.  Left: the phase trajectories of S, I and V around (S0,0,V0). Right: the phase trajectories of S, I and V around (S,I,V).

    In the real world, environmental noises are ubiquitous and may more and less affect the transmission of epidemics. To reflect this fact, it is more realistic to research the corresponding stochastic model by incorporating environmental noises into the deterministic model (1.2). Particularly, white noise and telephone noise are two common types of noises. On the one hand, many scholars have done numerous significant studies by considering white noise and obtained rich results[20,21,22,23]. For example, an insightful work of Mao et al.[20] clearly indicated that white noise could effectively inhibit the explosion of a potential population. Note that Lu et al.[21] investigated an SEIQV epidemic model by considering higher-order perturbation and proved the ergodic stationary distribution (ESD) and the extinction, and they also discussed the equilibrium stability of the model. Rajasekar et al.[22] derived sufficient conditions for the ESD and the extinction of a second-order perturbed SIRS epidemic model with relapse and media impact. Along with the interesting idea of higher-order white noise, we introduce it into model (1.2) and formulate a stochastic version:

    {dS=[(1p)AμSβIS1+eI+δV]dt+(σ11+σ12S)SdB1(t),dE=[βIS1+eI(μ+ε+η)E]dt+(σ21+σ22E)EdB2(t),dI=[εE(μ+τ)I]dt+(σ31+σ32I)IdB3(t),dV=[pA+τI+ηE(μ+δ)V]dt+(σ41+σ42V)VdB4(t), (1.3)

    where the initial values and all parameters are positive, Bi(t) (i=1,,4) are independent standard Brownians and σ2i1 and σ2i2 represent their intensities.

    On the other hand, the system may switch from an environmental regime to another when it is affected by telegraph noise[24,25,26]. The switching is generally memoryless and the waiting time for the next switch follows exponential distribution. Mathematically, this switching of environmental regimes can be characterized by a continuous-time Markov chain (r(t))t0 with a finite state space S={1,2,...,N} and the generator matrix Γ=(γij)N×N, for Δ>0,γij0:

    P(r(t+Δ)=j|r(t)=i)={γijΔ+o(Δ),         if  ij,1+γijΔ+o(Δ),   if  i=j,

    where γij>0 is the transition rate from state i to state j satisfying Nj=1γij=0 when ij (see [27,28]). It is worthy of attention that a mass of epidemic models with both white noise and telegraph noise have been studied[29,30,31,32]. For instance, Han and Zhao investigated an SIRS epidemic model influenced by two types of noises and obtained the asymptotic stability of the disease-free equilibrium point of the corresponding deterministic model [29]. Zhou et al. constructed an SEQIHR epidemic model with media coverage and Markov switching, and obtained the extinction and the ESD [31]. Motivated by these arguments, we further formulate a new stochastic version of model (1.2) with white noise and Markov switching, as follows:

    {dS=[(1p(r(t)))A(r(t))μ(r(t))Sβ(r(t))IS1+e(r(t))I+δ(r(t))V]dtdS=+[σ11(r(t))+σ12(r(t))S]SdB1(t),dE=[β(r(t))IS1+e(r(t))I(μ(r(t))+ε(r(t))+η(r(t)))E]dtdE=+[σ21(r(t))+σ22(r(t))E]EdB2(t),dI=[ε(r(t))E(μ(r(t))+τ(r(t)))I]dt+[σ31(r(t))+σ32(r(t))I]IdB3(t),dV=[p(r(t))A(r(t))+τ(r(t))I+η(r(t))E(μ(r(t))+δ(r(t)))V]dtdV)=+[σ41(r(t))+σ42(r(t))V]VdB4(t). (1.4)

    As a continuation of the work previously studied by Wang et al. [19], we introduce white noise and telegraph noise into the regression model (1.2) with saturation incidence and temporary immunity and further propose two stochastic SEIVS models (models (1.3) and (1.4)) with high-order perturbation. Furthermore, the primary contributions of this study aim to analyze the stationary distributions of models (1.3) and (1.4), which are concerned with the stochastic statistical characteristic of the long-term behaviors of the sample trajectories. To the best of our knowledge, the existence and uniqueness of the stationary distributions of models (1.3) and (1.4) have not been investigated in any of the published articles so far. We now provide a brief outline of the paper. First, we define some crucial mathematical concepts and lemmas in Section 2. Section 3 focuses on the theoretical analysis results of models (1.3) and (1.4) by using Has'minskii theory and Lyapunov functionals. Numerical examples are given in Section 4. In the end, this paper's conclusions and future directions are provided in Section 5.

    This section provides several useful preliminaries and lemmas that will be applied to the proof of the dynamic behaviors of models (1.3) and (1.4). Define Rn+={zRn|zi>0,1in}. For the Markov chain r(t), assume that it is irreducible; then, there is a unique stationary distribution π={π1,π2,...,πN} which is determined by πΓ=0 and Nk=1πk=1 (πk>0) for any kS. For the bounded constant sequence h(k), assign ˆh=minkS{h(k)} and ˇh=maxkS{h(k)}. The Markov chain r(t) is independent of the Brownian motion Bi(t)(i=1,2,3,4). The initial values and coefficients p(k), A(k), μ(k), e(k), β(k), δ(k), ε(k), η(k), τ(k), σi1(k) and σi2(k) of model (1.4) are positive for any kS.

    Lemma 2.1. [33] For any x0, one has

    (i) x3(x12)(x2+1);   (ii) x4(34x214)(x2+1).

    Let X(t) be a regular time-homogeneous Markov process in Rn described by the following stochastic differential equation

    dX(t)=f1(X(t))dt+n=1g(X(t))dB(t).

    The diffusion matrix of the Markov process X(t) is given by

    Λ(x)=(mij(x)),mij(x)=n=1gi(x)gj(x). (2.1)

    Lemma 2.2. [34] The Markov process X(t) admits a unique ESD π() if there exists an open domain ζRn with the regular boundary such that

    (H1): for all xζ, the diffusion matrix Λ(x) is strictly positive definite;

    (H2): for any Rnζ, LU is negative, where U is a nonnegative C2-function.

    Suppose that the diffusion process (X(t),r(t)) satisfies the following equation

    {dX(t)=f2(X(t),r(t))dt+G(X(t),r(t))dB(t),X(0)=x0,r(0)=r0. (2.2)

    Assign f2(,):Rn×SRn and G(,):Rn×SRn×n such that G(x,k)GT(x,k)=(dij(x,k)). Define the operator L related to (2.2) as below

    LH(x,k)=ni=1f2i(x,k)H(x,k)xi+12ni,j=1dij(x,k)2H(x,k)xixj+Nι=1ϖkιH(x,ι),

    where H(x,k) is twice continuously differentiable with respect to x.

    Lemma 2.3. [34] System (2.2) admits a unique ESD if the following assumptions hold:

    (i) γij>0 for any ij;

    (ii) For each kS, the matrix P(x,k)=(Pij(x,k)) is symmetric satisfying

    φ|ξ|2P(x,k)ξ,ξφ1|ξ|2, ξRn,

    with some constant φ(0,1];

    (iii) There exists a twice continuously differentiable function H(,k):Dc×SR such that

    LH(x,k)ω,  for some  ω>0,

    where Dc is the complement of a bounded open subset DRn with a smooth boundary. Moreover, there exists a unique stationary density π(,) for any Borel measurable function ς(,):Rn×SR such that

    kS Rn|ς(x,k)|π(dx,k)<+,

    which means that

    P(limt1tt0ς(X(s),r(s))ds=kSRnς(x,k)π(dx,k))=1.

    In what follows, two lemmas are exhibited to prove the existence and uniqueness of global positive solutions for models (1.3) and (1.4), respectively.

    Lemma 2.4. For any initial data X(0)=(S(0),E(0),I(0),V(0))R4+ and t[0,+), model (1.3) admits a unique global positive solution X(t)=(S(t),E(t),I(t),V(t)) a.s.

    Proof. Define a C2-function W1: R4+R+ for 0<a<1:

    W1(X(t))=(Saa1lnS)+(Eaa1lnE)+(Iaa1lnI)+(Vaa1lnV). (2.3)

    Utilizing Itô's formula, we get

    LW1=12(1a)σ212Sa+2(1a)σ11σ12Sa+1(μ+βI1+eI+12(1a)σ211)SaLW1=12(1a)σ222Ea+2(1a)σ21σ22Ea+1(μ+ε+η+12(1a)σ221)EaLW1=12(1a)σ232Ia+2(1a)σ31σ32Ia+1(μ+τ+12(1a)σ231)IaLW1=12(1a)σ242Va+2(1a)σ41σ42Va+1(μ+δ+12(1a)σ241)VaLW1=+((1p)A+δV)(1S1a1S)+βI1+eI+σ11σ12S+σ2122S2+σ2112LW1=+(pA+τI+ηE)(1V1a1V)+4μ+ε+σ41σ42V+σ2422V2+σ2412LW1=+βSI1+eI(1E1a1E)+η+τ+δ+σ21σ22E+σ2222E2+σ2212LW1=+εE(1I1a1I)+σ31σ32I+σ2322I2+σ2312LW112(1a)σ212Sa+2+σ2122S2+σ11σ12S+σ2112+((1p)A+δV)(1S1a1S)LW1=12(1a)σ222Ea+2+σ2222E2+σ21σ22E+σ2212+βSe(1E1a1E)+4μ+εLW1=12(1a)σ232Ia+2+σ2322I2+σ31σ32I+σ2312+εE(1I1a1I)+η+τ+δ+βeLW1=12(1a)σ242Va+2+σ2422V2+σ41σ42V+σ2412+(pA+τI+ηE)(1V1a1V)LW112(1a)σ212Sa+2+σ2122S2+σ11σ12S+σ2112+((1p)A+δV)C1LW1=12(1a)σ222Ea+2+σ2222E2+σ21σ22E+σ2212+βSeC2+4μ+εLW1=12(1a)σ232Ia+2+σ2322I2+σ31σ32I+σ2312+εEC3+η+τ+δ+βeLW1=12(1a)σ242Va+2+σ2422V2+σ41σ42V+σ2412+(pA+τI+ηE)C4LW1=y1(S,E,I,V), (2.4)

    where

    C1=maxSR+{1S1a1S},  C2=maxER+{1E1a1E},  C3=maxIR+{1I1a1I},  C4=maxVR+{1V1a1V}.

    Define

    f(S)=12(1a)σ212Sa+2+σ2122S2+(βC2e+σ11σ12)S; (2.5)

    we can obtain

    f(S)=12(1a)σ212(a+2)Sa+1+σ212S+βC2e+σ11σ12, (2.6)

    and

    f(S)=12(1a)σ212(a+2)(a+1)Sa+σ212. (2.7)

    Let f(S)=0, we get

    S0=a2σ212(1a)σ212(a+2)(a+1)Sa. (2.8)

    When S<S0, we have f(S)>0; then, f(S) is monotonically increasing. While S>S0, we have f(S)<0; then, f(S) is monotonically decreasing. Obviously, f(0)=βC2e+σ11σ12>0, so we can obtain that f(S) has a maximum value f(S0)>0.

    Also, when S+, f(S) which means that there must exist S1 such that f(S1)=0. Similarly, f(S)>0 when S(0,S1); then, f(S) is monotonically increasing and f(S)<0 when S(S1,+); then, f(S) is monotonically decreasing. Since f(S) is a continuous function, f(S) has a guaranteed upper-bound which is positive. The same analysis can be applied to E, I and V. Then we obtain

    sup(S,E,I,V)R+4y1(S,E,I,V)=P1<+. (2.9)

    Thus P1 is a positive constant. Hence we can obtain LW1P1. The remaining proof is analogous to that of Theorem 2.1 in [35]; hence, we skip the details.

    Lemma 2.5. For any initial data (X(0),r(0))R4+×S, model (1.4) has a unique positive solution (X(t),r(t)) on t0 a.s.

    Proof. Define W2(S,E,I,V,k):R4+×SR:

    W2=((ˆσ11S+ˆσ12)ϱϱlnS)+((ˆσ21E+ˆσ22)ϱϱlnE)W2=+((ˆσ31I+ˆσ32)ϱϱlnI)+((ˆσ41V+ˆσ42)ϱϱlnV), (2.10)

    where ϱ(0,1) is a constant and kS. Note that

    lim infn+,(S,E,I,V,k)(R4+Gn)×SW2(S,E,I,V,k)=+, (2.11)

    where Gn=(1n,n)×(1n,n)×(1n,n)×(1n,n). It is easy to see that W2 has a minimal value ¯W0 in R4+×S; then, we consider a function ¯W2(S,E,I,V,k), as follows:

    ¯W2(S,E,I,V,k)=W2(S,E,I,V,k)¯W0. (2.12)

    By using Itô's formula, we have

    L¯W2=ˆσ11(ˆσ11+ˆσ12S)ϱ1[(1p(k))A(k)μ(k)Sβ(k)ISI+e(k)I+δ(k)V]+β(k)I1+e(k)IL¯W2=+ˆσ21(ˆσ21+ˆσ22E)ϱ1[β(k)ISI+e(k)IE(μ(k)+ε(k)+η(k))](1p(k))A(k)SL¯W2=+ˆσ31(ˆσ31+ˆσ32I)ϱ1[ε(k)E(μ(k)+τ(k))I]β(k)IS(1+e(k)I)E+4μ(k)L¯W2=+ˆσ41(ˆσ41+ˆσ42V)ϱ1[p(k)A(k)+τ(k)I+η(k)E(μ(k)+δ(k))V]δ(k)VSL¯W2=(1ϱ)ˆσ211(σ11(k)+σ12(k)S)2S22(ˆσ11+ˆσ12S)2ϱ+12(σ11(k)+σ12(k)S)2+ε(k)L¯W2=(1ϱ)ˆσ221(σ21(k)+σ22(k)E)2E22(ˆσ21+ˆσ22E)2ϱ+12(σ21(k)+σ22(k)E)2+η(k)L¯W2=(1ϱ)ˆσ231(σ31(k)+σ32(k)I)2I22(ˆσ31+ˆσ32I)2ϱ+12(σ31(k)+σ32(k)I)2+τ(k)L¯W2=(1ϱ)ˆσ241(σ41(k)+σ42(k)V)2V22(ˆσ41+ˆσ42V)2ϱ+12(σ41(k)+σ42(k)V)2+δ(k)L¯W2=p(k)A(k)+τ(k)I+η(k)EVε(k)EIL¯W2(1ϱ)ˆσ2+ϱ122S2+ϱ+ˆσϱ11(ˇA+ˇδV)+4ˇμ+ˇβˆe+12(ˇσ11+ˇσ12S)2L¯W2=(1ϱ)ˆσ2+ϱ222E2+ϱ+ˆσϱ21ˇβIS1+ˆeI+ˇε+ˇη+12(ˇσ21+ˇσ22E)2L¯W2=(1ϱ)ˆσ2+ϱ322I2+ϱ+ˆσϱ31(ˇεE)+ˇτ+12(ˇσ31+ˇσ32I)2L¯W2=(1ϱ)ˆσ2+ϱ422V2+ϱ+ˆσϱ41(ˇpˇA+ˇτI+ˇηE)+ˇδ+12(ˇσ41+ˇσ42V)2L¯W2(1ϱ)ˆσ2+ϱ122S2+ϱ+12ˇσ12S2+(ˇσ11ˇσ12+ˆσϱ21ˇβˆe)SL¯W2=(1ϱ)ˆσ2+ϱ222E2+ϱ+12ˇσ22E2+(ˇσ21ˇσ22+ˆσϱ31ˇε+ˆσϱ41ˇη)EL¯W2=(1ϱ)ˆσ2+ϱ322I2+ϱ+12ˇσ32I2+(ˇσ31ˇσ32+ˆσϱ41ˇτ)IL¯W2=(1ϱ)ˆσ2+ϱ422V2+ϱ+12ˇσ42V2+(ˆσϱ11ˇδ+ˇσ41ˇσ42)V+λL¯W2:=y2(S,E,I,V), (2.13)

    where

    λ:=ˆσϱ11ˇA+ˆσϱ41ˇpˇA+4ˇμ+ˇε+ˇη+ˇτ+ˇδ+ˇβˆe+12ˇσ211+12ˇσ221+12ˇσ231+12ˇσ241.

    Similar to the proof of the upper-bound P1 of y1(S,E,I,V) (see (2.5)–(2.9)), we can obtain a positive constant P2 such that

    sup(S,E,I,V)R+4y2(S,E,I,V)=P2<+. (2.14)

    As a result, we can get L¯W2P2. The remaining proof is nearly identical to those in Theorem 2.1 of [36] and is omitted.

    In this section, by using the Has'minskii theory [34] and a Lyapunov functional, we shall prove the existence of the unique ESD for models (1.3) and (1.4), respectively.

    Theorem 3.1. If

    Rs0=(1p)Aβε[(μ+σ2112+2(1p)Aσ11σ12+23(1p)2A2σ212)Rs0=×(μ+ε+η+σ2212+23(1p)2A2σ222)(μ+τ+σ2312)]1>1,

    then for any initial data X(0)R4+, model (1.3) admits a unique ESD.

    Proof. We only need to verify that each assumption in Lemma 2.2 holds when Theorem 3.1 is valid. In what follows, we divide this proof into the following two steps.

    Step 1 (Positive definiteness of diffusion matrix). According to model (1.3), we have

    Λ(S,E,I,V)=diag((σ11+σ12S)2S2,(σ21+σ22E)2E2,(σ31+σ32I)2I2,(σ41+σ42V)2V2).

    Obviously, Λ(S,E,I,V) is positive definite. Therefore, the assumption (H1) in Lemma 2.2 holds.

    Step 2 (Construction of a non negative C2-function). It is worth mentioning that the crucial part of this step is to construct a suitable non negative Lyapunov function so that the assumption (H2) holds. For convenience, we first define the following q-stochastic critical value Rs0(q) corresponding to Rs0:

    Rs0(q)=(1p)Aβε[(μ+σ2112+2(1p)Aσ11σ121q+23(1p)2A2σ212(1q)2)Rs0(q)=×(μ+ε+η+σ2212+23(1p)2A2σ222(1q)2)(μ+τ+σ2312)]1,

    where q(0,1) is a sufficiently small constant. Thus, it is easy to derive that

    infq(0,1)Rs0(q)=limq0+Rs0(q)=Rs0.

    When Rs0>1, it follows from the continuity of Rs0(q) that there exists an adequately small q such that Rs0(q)>1. To do so, we define

    U1=U11+U12, (3.1)

    where

    U11=D1lnS,  U12=D12i=1ai(S+bi)qq,

    and D1, ai and bi (i=1,2) will be given later. According to model (1.3), we calculate

    LU11=D1(1p)A+δVS+D1βI1+eI+D1(σ2112+σ2122S2+σ11σ12S)+D1μ, (3.2)

    and

    LU12=D12i=1[ai(S+bi)q1((1p)AμSβIS1+eI+δV)ai(1q)2(S+bi)2q(σ11+σ12S)2S2]LU12D1[2i=1ai((1p)A+δV)b1qia1(1q)bq+21σ212(Sb1)42(Sb1+1)2a2(1q)bq+12σ11σ12(Sb2)3(Sb2+1)2]LU12D1[2i=1ai((1p)A+δV)b1qia1(1q)bq+21σ212(Sb1)44((Sb1)2+1)a2(1q)bq+12σ11σ12(Sb2)32((Sb2)2+1)]LU12D1[2i=1ai((1p)A+δV)b1qia1(1q)bq+21σ212[34(Sb1)214]4]LU12=D1[a2(1q)bq+12σ11σ12(Sb212)2]LU12=D1[a1((1p)A+δV)b1q1+a1(1q)bq+21σ21216]3D1S2a1(1q)bq1σ21216LU12=+D1[a2((1p)A+δV)b1q2+a2(1q)bq+12σ11σ124]D1a2(1q)bq2σ11σ12S2. (3.3)

    Let us choose

    a1=83(1q)bq1,  a2=2(1q)bq2,  b1=23(1p)A(1q)σ212,  b2=2(1p)A(1q)σ11σ12,

    and then (3.3) can be simplified as

    LU122D1(1p)Aσ11σ121q+2D13(1p)2A2σ212(1q)2D1σ212S22LU12+4D1δVσ23123(1q)23(1p)13A13+D1δVσ1211σ1212(1q)12(1p)12A12D1σ11σ12S; (3.4)

    combining this with (3.1) and (3.2) we get

    LU12D1(1p)Aσ11σ121q+D1δVσ1211σ1212(1q)12(1p)12A12+D1βI1+eID1σ11σ12SLU1+2D13(1p)2A2σ212(1q)2+4D1δVσ23123(1q)23(1p)13A13D1σ212S22+D1μLU1+D1(σ11σ12S+σ2112+σ2122S2)D1(δV+(1p)A)SLU12D1(1p)Aσ11σ121q+D1δVσ1211σ1212(1q)12(1p)12A12+D1μ+D1βI1+eI+D1σ2112LU1+2D13(1p)2A2σ212(1q)2+4D1δVσ23123(1q)23(1p)13A13D1(δV+(1p)A)S. (3.5)

    Similarly, let

    U2=U21+U22, (3.6)

    where

    U21=D2lnE,  U22=D2(d1S+d2(E+d3)qq),

    D2 and di (i=1,2,3) will be given later. Applying Itô's formula, one has

    LU21=D2βISE(1+eI)+D2(σ2212+σ2222E2+σ21σ22E)+D2(μ+ε+η), (3.7)

    and

    LU22=D2d2(E+d3)q1[βIS1+eI(μ+ε+η)E]+D2d1[(1p)AμSβIS1+eI+δV]LU22=D2d2(1q)(σ21+σ22E)2E22(E+d3)2qLU22D2(d2dq13d1)βIS1+eID2d2(1q)dq232(Ed3+1)2qσ222E4+D2d1((1p)A+δV)LU22D2(d2dq13d1)βIS1+eID2d2(1q)dq232(Ed3+1)2σ222E4+D2d1((1p)A+δV)LU22D2(d2dq13d1)βIS1+eID2d2(1q)dq+234((Ed3)2+1)σ222(Ed3)4+D2d1((1p)A+δV)LU22D2(d2dq13d1)βIS1+eID2d2(1q)dq+23σ2224[34(Ed3)214]+D2d1((1p)A+δV)LU22=D2(d2dq13d1)βIS1+eI3D2d2(1q)dq3σ222E216+D2d2(1q)dq+23σ22216LU22=+D2d1((1p)A+δV). (3.8)

    Assign

    d1=d2dq13,  d2=83(1q)dq3,  d3=23(1p)A(1q)σ222; (3.9)

    then, (3.8) can be written as

    LU222D23(1p)2A2σ222(1q)2+4D2δVσ23223(1q)23(1p)13A13D2σ222E22, (3.10)

    which, together with (3.6) and (3.7), leads to

    LU22D23(1p)2A2σ222(1q)2+4D2δVσ23223(1q)23(1p)13A13D2βIS(1+eI)ELU2+D2(μ+ε+η)+D2(σ21σ22E+σ2212+σ2222E2)D2σ222E22LU2=2D23(1p)2A2σ222(1q)2+4D2δVσ23223(1q)23(1p)13A13D2βIS(1+eI)ELU2+D2(μ+ε+η)+D2σ21σ22E+D2σ2212. (3.11)

    Assign

    U3=U31+U32, (3.12)

    where

    U31=D3lnI,  U32=D3θ1q(σ31+σ32I)q+D3σ31σ32μ+τI+e+D1βμ+τI,

    D3 and θ1 will be given later. Applying Itô's formula, one can obtain that

    LU31=D3εEI+D3(σ2312+σ2322I2+σ31σ32I)+D3(μ+τ). (3.13)

    Combining (3.12) and (3.13), one has

    LU3=D3εEID3θ1σ232(1q)(σ31+σ32I)qI22+D3(σ31σ32I+σ2312+σ2322I2)LU3=+D3σ31σ32μ+τ(εE(μ+τ)I)+D3θ1σ32(σ31+σ32I)q1(εE(μ+τ)I)LU3=+D3(μ+τ)+(e+D1βμ+τ)εE(e+D1β)I
    LU3D3σ31σ32εEμ+τD3εEID3θ1σ232(1q)σq31I22+D3σ2312+D3σ232I22LU3=+D3θ1σq131σ32εE+(μ+τ)D3+(e+D1βμ+τ)εE(e+D1β)I.

    Let θ1=1/(1q)σq31; then,

    LU3  D3εEI+D3σ2312+(D3σ31σ32εμ+τ+D3σ32ε(1q)σ31)E+D3(μ+τ)+(e+D1βμ+τ)εE(e+D1β)I. (3.14)

    Assign

    U4=U1+U2+U3. (3.15)

    Adding (3.5), (3.11) and (3.14), one can get

    LU4D1(1p)ASD2βIS(1+eI)ED3εEI(1+eI)D1δVS+D1βI1+eI+D1μLU4+2D1(1p)Aσ11σ121q+4D1δVσ23123(1q)23(1p)13A13+D1σ2112D1βI+1LU4+2D13(1p)2A2σ212(1q)2+D1δVσ1211σ1212(1q)12(1p)12A12+D2σ2212+D2(μ+ε+η)LU4+2D23(1p)2A2σ222(1q)2+4D2δVσ23223(1q)23(1p)13A13+D3σ2312+D2σ21σ22ELU4+(D3σ31σ32εμ+τ+D3σ32ε(1q)σ31+(e+D1β)εμ+τ)E+D3(μ+τ)LU444D1D2D3(1p)Aβε+D1δVσ1211σ1212(1q)12(1p)12A12+4D2δVσ23223(1q)23(1p)13A13LU4+E(D2σ21σ22+D3εσ32(1q)σ31+ε(e+D1β)μ+τ+ε(e+D1β)μ+τ)LU4+D1(μ+σ2112+2(1p)Aσ11σ121q+23(1p)2A2σ212(1q)2)+1LU4+D2(μ+ε+η+σ2212+23(1p)2A2σ222(1q)2)+4D1δVσ23123(1q)23(1p)13A13LU4+D3(μ+τ+σ2312)LU4=(Rs0(q)1)+E(D2σ21σ22+D3σ31σ32εμ+τ+D3εσ32(1q)σ31+ε(e+D1β)μ+τ)LU4+4D1δVσ23123(1q)23(1p)13A13+D1δVσ1211σ1212(1q)12(1p)12A12+4D2δVσ23223(1q)23(1p)13A13, (3.16)

    where

    D1=(1p)Aβε[(μ+σ2112+2(1p)Aσ11σ121q+23(1p)2A2σ212(1q)2)2D1=×(μ+ε+η+σ2212+23(1p)2A2σ222(1q)2)(μ+τ+σ2312)]1,
    D2=(1p)Aβε[(μ+σ2112+2(1p)Aσ11σ121q+23(1p)2A2σ212(1q)2)D2=×(μ+ε+η+σ2212+23(1p)2A2σ222(1q)2)2(μ+τ+σ2312)]1,
    D3=(1p)Aβε[(μ+σ2112+2(1p)Aσ11σ121q+23(1p)2A2σ212(1q)2)D3=×(μ+ε+η+σ2212+23(1p)2A2σ222(1q)2)(μ+τ+σ2312)2]1.

    Define

    U5=(σ11+σ12S)qq+(σ21+σ22E)qq+(σ31+σ32I)qq+(σ41+σ42V)qq; (3.17)

    utilizing Itô's formula, we get

    LU5=σ12(σ11+σ12S)q1((1p)AμSβIS1+eI+δV)σ2122(1q)(σ11+σ12S)qS2LU5=+σ42(σ41+σ42V)q1(pA+τI+ηE(μ+δ)V)σ2422(1q)(σ41+σ42V)qV2LU5=+σ22(σ21+σ22E)q1(βIS1+eI(μ+ε+η)E)σ2222(1q)(σ21+σ22E)qE2LU5=+σ32(σ31+σ32I)q1(εE(μ+τ)I)σ2322(1q)(σ31+σ32I)qI2LU51q2σq+212Sq+21q2σq+242Vq+21q2σq+222Eq+21q2σq+232Iq+2+σq111σ12δVLU5=+σq111σ12(1p)A+σq141σ42(pA+τI+ηE)+σq121σ22βSI+σq131σ32εE. (3.18)

    Let

    ˜U=MU4lnSlnIlnV+U5, (3.19)

    where the positive number M is large enough to satisfy M(Rs0(q)1)+C52 and C5 will be established later. Since ˜U(S,E,I,V) is a continuous function, it follows that

    limϑ+,(S,E,I,V)R4+Wϑ˜U(S,E,I,V)=+,

    where Wϑ=(1ϑ,ϑ)×(1ϑ,ϑ)×(1ϑ,ϑ)×(1ϑ,ϑ) and ϑ>1 is a sufficiently large integer.

    Now, we consider the following nonnegative C2-function:

    U(S,E,I,V)=˜U˜U0, (3.20)

    where ˜U0 is the minimal value of ˜U. Consequently, we have

    LUM(Rs0(q)1)+ME(D2σ21σ22+D3σ31σ32εμ+τ+D3εσ32(1q)σ31+ε(e+D1β)μ+τ)LU4+M(4D1δVσ23323(1q)23(1p)13A13+D1δVσ1211σ1212(1q)12(1p)12A12+4D2δVσ23223(1q)23(1p)13A13)LU41q2σq+212Sq+2+12(σ11+σ12S)2+σq121σ22βIS+3μ+τ+δLU41q2σq+222Eq+2+12(σ31+σ32I)2+σq141σ42(pA+τI+ηE)δVSLU41q2σq+132Iq+2+σq111σ12(1p)A+σq111σ12δVεEI(1p)ASLU41q2σq+242Vq+2+12(σ41+σ42V)2+σq131σ32εE+βepAVτIVηEV. (3.21)

    Assign a suitable compact subset as follows:

    Wϵ={(S,E,I,V)R4+:ϵ<S<1ϵ,ϵ<E<1ϵ,ϵ2<I<1ϵ2,ϵ2<V<1ϵ2},

    where 0<ϵ<1 is a suitably small constant to satisfy the following inequalities:

    (1p)Aϵ+J1, (3.22)
    1q4σq+212ϵq2+J1, (3.23)
    Mϵ(D2σ21σ22+D3σ31σ32εμ+τ+ε(e+D1β)μ+τ+D3εσ32(1q)σ32)+C51, (3.24)
    (1q)4σq+222ϵq2+J1, (3.25)
    εϵ+J1, (3.26)
    1q4σq+232ϵq2+J1, (3.27)
    ηϵ+J1, (3.28)
    1q4σq+242ϵq2+J1, (3.29)

    and the constants J and C5 are given explicitly in (3.30) and (3.31), respectively. We split R4+Wϵ into the following eight regions:

    W1={(S,E,I,V)R4+:Sϵ},    W2={(S,E,I,V)R4+:S1ϵ},W3={(S,E,I,V)R4+:Eϵ},    W4={(S,E,I,V)R4+:E1ϵ},W5={(S,E,I,V)R4+:Iϵ2,E>ϵ},    W6={(S,E,I,V)R4+:I1ϵ2},W7={(S,E,I,V)R4+:Vϵ2,E>ϵ},    W8={(S,E,I,V)R4+:V1ϵ2}.

    Obviously, R4+Wϵ=Wcϵ=W1W2W3W4W5W6W7W8. Then, we need to verify that LU(S,E,I,V)1 on (S,E,I,V)R4+Wϵ.

    Case 1. If (S,E,I,V)W1, then we obtain

    LU(1p)AS+J(1p)Aϵ+J1,

    where

    J=sup(S,E,I,V)R4+{ME(D2σ21σ22+D3σ31σ32εμ+τ+D3εσ32(1q)σ31+ε(e+D1β)μ+τ)J=+M(4D1δVσ23323(1q)23(1p)13A13+D1δVσ1211σ1212(1q)12(1p)12A12+4D2δVσ23223(1q)23(1p)13A13)J=1q4σq+212Sq+2+σq111σ12(1p)A+σq111σ21δV+12(σ11+σ12S)2J=1q4σq+242Vq+2+σq141σ42(pA+τI+ηE)+12(σ41+σ42V)2J=1q4σq+222Eq+2+σq121σ22βIS+12(σ31+σ32I)2J=1q4σq+132Iq+2+σq131σ32εE+3μ+τ+δ+βe}+. (3.30)

    Case 2. If (S,E,I,V)W2, then combining (3.21) with (3.23), one gets that

    LU(1q)4σq+212Sq+2+J(1q)4σq+212ϵq2+J1.

    Case 3. If (S,E,I,V)W3, then by (3.21) and (3.24), we derive

    LUM(Rs0(q)1)+ME(D2σ21σ22+D3σ31σ32εμ+τ+D3εσ32(1q)σ31+ε(e+D1β)μ+τ)+C5LU4M(Rs0(q)1)+Mϵ(D2σ21σ22+D3σ31σ32εμ+τ+D3εσ32(1q)σ31+ε(e+D1β)μ+τ)+C51,

    where

    C5=sup(S,E,I,V)R4+{1q4σq+242Vq+2+σq141σ42(pA+τI+ηE)+12(σ41+σ42V)2C=+M(4D1δVσ23323(1q)23(1p)13A13+D1δVσ1211σ1212(1q)12(1p)12A12+4D2δVσ23223(1q)23(1p)13A13)C=1q4σq+212Sq+2+σq111σ12(1p)A+σq111σ21δV+12(σ11+σ12S)2C=1q4σq+222Eq+2+σq121σ22βIS+12(σ31+σ32I)2C=1q4σq+132Iq+2+σq131σ32εE+3μ+τ+δ+βe}+. (3.31)

    Case 4. If (S,E,I,V)W4, according to (3.21) and (3.25), we obtain

    LU(1q)4σq+222Eq+2+J(1q)4σq+222ϵq2+J1.

    Case 5. If (S,E,I,V)W5, in accordance with (3.21) and (3.26), one can see that

    LUεEI+Jεϵϵ2+Jεϵ+J1.

    Case 6. If (S,E,I,V)W6, it follows from (3.21) and (3.27) that

    LU(1q)4σq+232Iq+2+J(1q)4σq+232ϵq2+J1.

    Case 7. If (S,E,I,V)W7, by (3.21) and (3.28), one has

    LUηEV+Jηϵϵ2+Jηϵ+J1.

    Case 8. If (S,E,I,V)W8, in view of (3.21) and (3.29), we have

    LU(1q)4σq+242Vq+2+J(1q)4σq+242ϵq2+J1.

    In short, there is a sufficiently small ϵ such that

    LU1  for all  (S,E,I,V)R4+Wϵ.

    Then we draw a conclusion from Steps 1 and 2 that model (1.3) has a unique ESD.

    Theorem 3.2. The solution (X(t),r(t))R4+×S of model (1.4) admits a unique ESD when

    Rs1=(Nk=1πk(1p(k))A(k)β(k)ε(k))[(2(Nk=1πk(1p(k))A(k))23(Nk=1πkσ212(k))13F1=+Nk=1πk(μ(k)+σ211(k)2)+2(Nk=1πk(1p(k))A(k))12(Nk=1πkσ11(k)σ12(k))12)F1=×(2(Nk=1πk(1p(k))A(k))23(Nk=1πkσ222(k))13+Nk=1πk(μ(k)+ε(k)+η(k)F1=+σ221(k)2))(Nk=1πk(μ(k)+τ(k)+σ231(k)2))]1>1.

    Proof. We employ Lemma 2.3 to verify Theorem 3.2, which needs to satisfy the assumptions (ⅰ)–(ⅲ). Here, we shall divide the whole proof of Theorem 3.2 into three steps.

    Step 1 (Transition coefficient). According to the basic property of the generator Γ in Section 2, namely γij>0, assumption (ⅰ) in Lemma 2.3 is clearly valid.

    Step 2 (Positive definiteness of diffusion matrix). The diffusion matrix of model (1.4) is

    Φ(S,E,I,V,k)=diag((σ11(k)+σ12(k)S)2S2,(σ21(k)+σ22(k)E)2E2,Φ(S,E,I,V,k)=diag((σ31(k)+σ32(k)I)2I2,(σ41(k)+σ42(k)V)2V2).

    Evidently, the matrix Φ(S,E,I,V,k) is positive definite and assumption (ⅱ) is verified.

    Step 3 (Construction of a non negative C2-function). In this step, we will show that assumption (ⅲ) holds. Since the proof is similar to Step 2 in the proof of Theorem 3.1, we pay attention to the different parts. For an adequately small constant ψ(0,1), define

    Rs1(ψ)=(Nk=1πk(1p(k))A(k)β(k)ε(k))[(2(Nk=1πk(1p(k))A(k))23(Nk=1πkσ212(k))13(1ψ)23Rs1(ψ)=+Nk=1πk(μ(k)+σ211(k)2)+2(Nk=1πk(1p(k))A(k))12(Nk=1πkσ11(k)σ12(k))12(1ψ)12)Rs1(ψ)=×(2(Nk=1πk(1p(k))A(k))23(Nk=1πkσ222(k))13(1ψ)23+Nk=1πk(μ(k)+ε(k)+η(k)Rs1(ψ)=+σ221(k)2))(Nk=1πk(μ(k)+τ(k)+σ231(k)2))]1.

    Evidently, lim infψ0+Rs1(ψ)=Rs1.

    What is more, we construct a suitable nonnegative C2-function:

    H(S,E,I,V,k)=˜H˜H0, (3.32)

    where ˜H=G(H1+H2+H3)lnSlnIlnV+H4 and ˜H0 is the minimal value of ˜H. Among them,

    H1=F1lnS+F14i=3ai(S+bi)ψψ+T1(k), (3.33)
    H2=F2lnE+F2(d5S+d5(E+d6)ψψ)+T2(k), (3.34)
    H3=F3lnI+F3θ2(ˇσ31ˇ+σ32I)ψψ+F3Iˇσ31ˇσ32ˆμ+ˆτ+ˇe+F1ˇβˆμ+ˆτI+T3(k), (3.35)
    H4=(ˆσ11+ˆσ12S)ψψ+(ˆσ21+ˆσ22E)ψψ+(ˆσ31+ˆσ32I)ψψ+(ˆσ41+ˆσ42V)ψψ, (3.36)

    where a3, a4, b3, b4, d4, d5, d6, θ2, T1(k), T2(k), T3(k) and G will be given later, and

    F1=(Nk=1πk(1p(k))A(k)β(k)ε(k))[(2(Nk=1πk(1p(k))A(k))23(Nk=1πkσ212(k))13(1ψ)23F1=+Nk=1πk(μ(k)+σ211(k)2)+2(Nk=1πk(1p(k))A(k))12(Nk=1πkσ11(k)σ12(k))12(1ψ)12)2F1=×(2(Nk=1πk(1p(k))A(k))23(Nk=1πkσ222(k))13(1ψ)23+Nk=1πk(μ(k)+ε(k)+η(k)F1=+σ221(k)2))(Nk=1πk(μ(k)+τ(k)+σ231(k)2))]1,
    F2=(Nk=1πk(1p(k))A(k)β(k)ε(k))[(2(Nk=1πk(1p(k))A(k))23(Nk=1πkσ212(k))13(1ψ)23F1=+Nk=1πk(μ(k)+σ211(k)2)+2(Nk=1πk(1p(k))A(k))12(Nk=1πkσ11(k)σ12(k))12(1ψ)12)
    F1=×(2(Nk=1πk(1p(k))A(k))23(Nk=1πkσ222(k))13(1ψ)23+Nk=1πk(μ(k)+ε(k)+η(k)F1=+σ221(k)2))2(Nk=1πk(μ(k)+τ(k)+σ231(k)2))]1,
    F3=(Nk=1πk(1p(k))A(k)β(k)ε(k))[(2(Nk=1πk(1p(k))A(k))23(Nk=1πkσ212(k))13(1ψ)23F1=+Nk=1πk(μ(k)+σ211(k)2)+2(Nk=1πk(1p(k))A(k))12(Nk=1πkσ11(k)σ12(k))12(1ψ)12)F1=×(2(Nk=1πk(1p(k))A(k))23(Nk=1πkσ222(k))13(1ψ)23+Nk=1πk(μ(k)+ε(k)+η(k)F1=+σ221(k)2))(Nk=1πk(μ(k)+τ(k)+σ231(k)2))2]1.

    Moreover, we assume G>0 is a large enough constant that satisfies G(Rs1(ψ))+˜C2 and

    ˜C=sup(S,E,I,V)R4+{1ψ4ˆσψ+242Vψ+2+ˇσψ141ˇσ42(ˇpˇA+ˇτI+ˇηE)+12(ˇσ41+ˇσ42V)2+3ˇμC=+G(4F1ˇδV(Nk=1πkσ212(k))133(1ψ)23(Nk=1πk(1p(k))A(k))13+F1ˇδV(Nk=1πkσ11(k)σ12(k))12((1ψ)12(Nk=1πk(1p(k))A(k))12C=+F24(Nk=1πkσ222(k))13ˇδV3(1ψ)23(Nk=1πk(1p(k))A(k))13)1ψ4ˆσψ+132Iψ+2+ˇσψ131ˇσ32ˇεEC=1ψ4ˆσψ+212Sψ+2+ˇσψ111ˇσ12(1ˆp)ˇA+ˇσψ111ˇσ21δV+12(ˇσ11+ˇσ12S)2C=1ψ4ˆσψ+222Eψ+2+ˇσψ121ˇσ22ˇβIS+12(ˇσ31+ˇσ32I)2+ˇτ+ˇδ+ˇβˆe}.

    Then, applying Itô's formula to H1, a calculation, similar to (3.5), is

    LH1F14i=3[ai(S+bi)ψ1((1p(k))A(k)μ(k)Sβ(k)IS1+e(k)I+δ(k)V)LH1a1(1ψ)2(S+bi)2ψ(σ11(k)+σ12(k)S)2S2]+F1μ(k)+F1β(k)I1+e(k)I+lSγklT1(l)LH1F1(δ(k)V+(1p(k))A(k))S+F1(σ211(k)2+σ212(k)2S2+σ11(k)σ12(k)S)LH1F1S2(83a3(1ψ)bψ3)σ212(k)16+F1σ11(k)σ12(2a4(1ψ)bψ4(k))S4LH1F1(δ(k)V+(1p(k))A(k))S+F1μ(k)+F1β(k)I1+e(k)I+F1σ211(k)2LH1+F1[a4((1p(k))A(k)+δ(k)V)b1ψ4+a4(1ψ)bψ+12σ11(k)σ12(k)4]LH1+F1[a3((1p(k))A(k)+δ(k)V)b1ψ3+a3(1ψ)bψ+23σ212(k)16]+lSγklT1(l)LH1F1S2(83a3(1ψ)bψ3)σ212(k)16+F1σ11(k)σ12(k)(2a4(1ψ)bψ4(k))S4+M1(k)LH1F1(δ(k)V+(1p(k))A(k))S+F1β(k)I1+e(k)I+F1a4δ(k)Vb1ψ4+F1a3δ(k)Vb1ψ3+lSγklT1(l), (3.37)

    where

    a3=83(1ψ)bψ3,    a4=2(1ψ)bψ4,
    b3=23Nk=1πk(1p(k))A(k)(1ψ)Nk=1πkσ212(k),    b4=2Nk=1πk(1p(k))A(k)(1ψ)Nk=1πkσ11(k)σ12(k),

    and

    M1(k)=F1a3(1p(k))A(k)b1ψ3+F1a3(1ψ)bψ+23σ212(k)16+F1μ(k)M1(k)=+F1a4(1p(k))A(k)b1ψ4+F1a4(1ψ)bψ+12σ11(k)σ12(k)4+F1σ211(k)2.

    Since Γ is irreducible, for M1=(M1(1),M1(2),,M1(N)), there is a vector T1=(T1(1),T1(2), ,T1(N)) satisfying the following Poisson system ΓT1=Nl=1πlM1(k)M1, that is,

    M1(k)+lSγklT1(l)=Nl=1πlM1(k),kS,

    which is substituted into (3.37); we have

    LH1F1β(k)I1+e(k)IF1(δ(k)V+(1p(k))A(k))S+F1a4δ(k)Vb1ψ4+F1a3δ(k)Vb1ψ3+Nk=1πkM1(k)LH1=F1Nk=1πkσ211(k)2+F1Nk=1πka3(1ψ)bψ+23σ212(k)16+F1Nk=1πka3(1p(k))A(k)b1ψ3LH1+F1Nk=1πka4(1p(k))A(k)b1ψ4+F1β(k)I1+e(k)IF1(δ(k)V+(1p(k))A(k))SLH1+F1Nk=1πkμ(k)+F1Nk=1πka4(1ψ)bψ+14σ11(k)σ12(k)4+F1a3δ(k)Vb1ψ3+F1a4δ(k)Vb1ψ4LH14F1δ(k)V(Nk=1πkσ212(k))133(1ψ)23(Nk=1πk(1p(k))A(k))13+F1Nk=1πkμ(k)LH1+2F1(Nk=1πk(1p(k))A(k)Nk=1πkσ11(k)σ12(k))12(1ψ)12+F1ˇβˆeLH1+2F1(Nk=1πk(1p(k))A(k))23(Nk=1πkσ212(k))13(1ψ)23+F1Nk=1πkσ211(k)2LH1+F1δ(k)V(Nk=1πkσ11(k)σ12(k))12((1ψ)12(Nk=1πk(1p(k))A(k))12F1ˆδV+(1ˇp)ˆAS. (3.38)

    Similarly, applying Itô's formula to H2, one obtains

    LH2F2d4[(1p(k))A(k)μ(k)Sβ(k)IS1+e(k)I+δ(k)V]F2β(k)IS(1+e(k)I)ELH2=+F2(μ(k)+ε(k)+η(k))+F2(σ21(k)σ22(k)E+σ221(k)2+σ222(k)2E2)LH2=+F2d5(E+d6)ψ1[β(k)IS1+e(k)I(μ(k)+ε(k)+η(k))E]LH2=F2d51ψ2(E+d6)2ψ(σ21(k)+σ22(k)E2)E2+lSγklT2(l)LH2F2β(k)IS(1+e(k)I)E+F2(μ(k)+ε(k)+η(k))+F2σ221(k)2+F2d4δ(k)VLH2+F2σ21(k)σ22(k)E+F2d4(1p(k))A(k)+F216(d5(1ψ)dψ+26σ222(k))LH2+F2E216(8σ222(k)3d5(1ψ)dψ6σ222(k))+lSγklT2(l)LH2=F2E216(8σ222(k)3d5(1ψ)dψ6σ222(k))F2β(k)IS(1+e(k)I)ELH2+F2σ21(k)σ22(k)E+F2d4δ(k)V+lSγklT2(l)+M2(k),

    where

    d4=d5dψ16,    d5=83(1ψ)dψ5,    d6=23Nk=1πk(1p(k))A(k)(1ψ)Nk=1πkσ222(k),

    and

    M2(k)=F2(μ(k)+ε(k)+η(k))+F2d4(1p(k))A(k)+F2σ221(k)2+F2d5(1ψ)dψ+26σ222(k)16.

    For M2=(M2(1),M2(2),, M2(N)), we determine a vector T2=(T2(1),T2(2), ,T2(N)) satisfying the Poisson system ΓT2=Nl=1πlM2(k)M2, which implies

    M2(k)+lSγklT2(l)=Nl=1πlM2(k),kS.

    This yields that

    LH2F2β(k)IS(1+e(k)I)E+F2E28σ222(k)3d5(1ψ)dψ6σ222(k)E216LH2+F2σ21(k)σ22(k)E+F2d4δ(k)V+Nk=1πkM2(k)LH2F2Nk=1πkd4(1p(k))A(k)+F2σ21(k)σ22(k)E+F2d4δ(k)VLH2+F2Nk=1πk(μ(k)+ε(k)+η(k))+F2Nl=kπkσ221(k)2F2β(k)IS(1+e(k)I)ELH2+F2Nk=1πkd5(1ψ)dψ+26σ222(k)16+F2E28σ222(k)3d5(1ψ)dψ6σ222(k)E216LH2F2Nk=1πk(μ(k)+ε(k)+η(k))+F2Nk=1πkσ221(k)2LH2+F24(Nk=1πkσ222(k))13δ(k)V3(1ψ)23(Nk=1πk(1p(k))A(k))13F2ˆβIS(1+ˇeI)ELH2+2F2(Nk=1πk(1p(k))A(k))23(Nk=1πkσ222)13(1ψ)23+F2ˇσ21ˇσ22E. (3.39)

    By applying Itô's formula to H3, one obtains

    LH3=F3(σ231(k)2+σ31(k)σ32(k)I+σ232(k)2I2)F3ε(k)EI+F3(μ(k)+τ(k))LH3=+F3θ2(ˇσ31+ˇσ32I)ψ1ˇσ32(ε(k)E(μ(k)+τ(k))I)I(ˇe+F1ˇβ)LH3=+F3ˇσ31ˇσ32ˆμ+ˆτ(ε(k)E(μ(k)+τ(k))I)+ˇe+F1ˇβˆμ+ˆτε(k)ELH3=12F3θ2ˇσ232(1ψ)(σ31(k)+σ32(k)I)ψI2+lSγklT3(l)LH3F3ˇσ31ˇσ32ˆμ+ˆτ(ε(k)E(ˆμ+ˆτ)I)12F3θ2(1ψ)ˇσ232ˆσψ31I2+ˇe+F1ˇβˆμ+ˆτε(k)ELH3=F3ε(k)EI+F3(μ(k)+τ(k))+F3σ231(k)2+F3θ2ˆσψ131ˇσ32ε(k)ELH3=+F3ˇσ2322I2I(ˇe+F1ˇβ)+F2ˇσ31ˇσ32I+lSγklT3(l)LH3=F3Eε(k)ˇσ31ˇσ32ˆμ+ˆτ12F3θ2(1ψ)ˇσ232ˆσψ31I2+ˇe+F1ˇβˆμ+ˆτε(k)EF3ε(k)EILH3=+F3θ2ˆσψ131ˇσ32ε(k)E+F3ˇσ2322I2I(ˇe+F1ˇβ)+lSγklT3(l)+M3(k),

    where

    M3(k)=F3(μ(k)+τ(k))+F3σ31(k)2,   θ2=1(1ψ)ˆσψ31.

    Define T3=(T3(1),T3(2),,T3(N)); then, M3=(M3(1),M3(2),, M3(N)) satisfies the Poisson system ΓT3=Nl=1πlM3(k)M3, which indicates

    M3(k)+lSγklT3(l)=Nl=1πlM3(k),kS.

    We conclude that

    LH3F3ˆεEI+F3ˇσ32ˇεE(1ψ)ˆσ31+F3Eˇσ31ˇσ32ˇεˆμ+ˆτ+ε(k)E(ˇe+F1ˇβˆμ+ˆτ)LH3=I(ˆe+F1ˆβ)+F3Nk=1πk(μ(k)+τ(k))+F3Nk=1πkσ231(k)2. (3.40)

    The remaining proof is similar to that of Theorem 3.1. Thus, we omit it here.

    To sum up, the above three steps assure that Model (1.4) has a unique ESD under Rs1>1.

    In the present section, we are interested in providing two numerical examples to confirm the obtained mathematical results for models (1.3) and (1.4). For the sake of analysis, we fix the initial condition (S(0),E(0),I(0),V(0))=(0.8,0.2,0.3,0.3), and the parameter values involved in both models are given according to different actual needs. The details are below.

    Example 4.1 Let us consider model (1.3) with the parameters μ=1/77, δ=0.05, e=106, p=0.2, β=0.35, A=0.5, τ=0.4, ε=0.7, η=0.2 and the corresponding noise values σ11=0.01, σ12=0.02, σ21=0.01, σ22=0.02, σ31=0.005, σ32=0.005, σ41=0.005 and σ42=0.005. By a calculation, one could calculate that RS0=2.1439>1. It is obvious from Theorem 3.1 that model (1.3) has a unique ESD. We plot the sample trajectories and the probability density functions of S(t), E(t), I(t) and V(t), respectively in Figure 2. The obvious conclusion is that reducing the noise intensities σ211, σ212, σ221, σ222 and σ231 and decreasing the fraction of the newborns vaccinated p or increasing the disease transmission coefficient β will lead to the long-term persistence of disease.

    Figure 2.  Left: the sample paths of S(t), E(t), I(t) and V(t). Right: the probability density functions (PDFs) of S(t), E(t), I(t) and V(t).

    Example 4.2 For model (1.4), we only consider the Markov chain r(t) switch among these two states S={1,2} with the generator Γ=(γij)2×2, where γ11=59, γ12=59, γ21=49 and γ22=49, and the unique stationary of r(t) is given by π=(π1,π2)=(49,59). Next, we consider two sets of different parameter values to characterize different environmental regimes.

    When r(t)=1, we take μ(1)=1/77, δ(1)=0.05, e(1)=106, p(1)=0.2, β(1)=0.35, A(1)=0.5, τ(1)=0.4, ε(1)=0.7, η(1)=0.2, σ11(1)=0.01, σ12(1)=0.02, σ21(1)=0.01, σ22(1)=0.02, σ31(1)=0.01, σ32(1)=0.02, σ41(1)=0.01 and σ42(1)=0.02.

    When r(t)=2, choose μ(2)=0.28, δ(2)=2.9, e(2)=0.025, p(2)=0.12, β(2)=0.40, A(2)=0.4, τ(2)=0.65, ε(2)=0.02, η(2)=0.02, σ11(2)=0.05, σ12(2)=0.04, σ21(2)=0.05, σ22(2)=0.04, σ31(2)=0.03, σ32(2)=0.04, σ41(2)=0.03 and σ42(2)=0.04.

    Combining the above two sets of parameter values, it is easy to check that the condition of Theorem 3.2 is satisfied and Rs1=2.7782>1, which means that model (1.4) owns a unique ESD; see Figure 3. In addition, all of the probability density functions of r(t), S(t), E(t), I(t) and V(t) have two distribution curves, which are caused by two different switching regimes. After a further observation, if we reduce the noise intensities σ211(k), σ212(k), σ221(k), σ222(k) and σ231(k) and the fraction of the newborns vaccinated p(k), or if we increase the disease transmission coefficient β(k), the disease will be prevalent and persistent in the long term.

    Figure 3.  Left: the sample paths of the Markov chain r(t) and S(t), E(t), I(t) and V(t). Right: the PDFs of r(t), S(t), E(t), I(t) and V(t).

    In this work, we constructed two novel SEIVS models with latency and temporary immunity under higher-order perturbation, incorporating both white noise and telephone noise; see models (1.3) and (1.4). And, the existence and uniqueness of the stationary distribution have been obtained by utilizing Has'minskii theory and a Lyapunov function approach. We found that the noise can influence the dynamic behaviors of disease, which reveals that reducing the noise intensity leads to the persistence of disease.

    Meanwhile, sufficient criteria on the existence of the unique ESD of the above two models are established. When Rs0>1, it follows from Theorem 3.1 that model (1.3) owns a unique ESD. Reviewing Theorem 3.2, model (1.4) owns a unique ESD when Rs1>1. It can be concluded from the conditions of these two theorems that the noise intensity, disease transmission coefficient and vaccination rate play a crucial role in the prevalence of disease.

    Looking to the future, there are some intriguing questions that warrant further consideration and investigation. For example, one can develop more elaborate models, such as focusing on model (1.1) and taking into account environmental noises, the dynamic properties of the stochastic SEIVS model with the nonlinear incidence rate (βIρSα1+eIκ) are worth exploring. In addition, there exist time delays in the process of information dissemination, taking into account the fact that the impact of time delays can be introduced into model (1.2) [8,12]. Furthermore, there are also some interesting modeling ideas and approaches from different perspectives, such as the multi-group epidemic dynamic models [10,11] and fractional-order models [13]. These works will be shown in other articles.

    The authors would like to thank the editor and referees for their valuable comments and suggestions, which have greatly improved the presentation of this paper. The work was supported by the NNSF of China (No. 11871201).

    The authors declare that there is no conflict of interest.



    [1] L. Chen, S. Q. Gan, X. J. Wang, First order strong convergence of an explicit scheme for the stochastic SIS epidemic model, J. Comput. Appl. Math., 392 (2021), 113482. https://doi.org/10.1016/j.cam.2021.113482 doi: 10.1016/j.cam.2021.113482
    [2] G. Guan, Z. Y. Guo, Bifurcation and stability of a delayed SIS epidemic model with saturated incidence and treatment rates in heterogeneous networks, Appl. Math. Model., 101 (2022), 55–75. https://doi.org/10.1016/j.apm.2021.08.024 doi: 10.1016/j.apm.2021.08.024
    [3] J. J. Jiao, S. H. Cai, L. M. Li, Impulsive vaccination and dispersal on dynamics of an SIR epidemic model with restricting infected individuals boarding transports, Phys. A, 449 (2016), 145–159. https://doi.org/10.1016/j.physa.2015.10.055 doi: 10.1016/j.physa.2015.10.055
    [4] Y. L. Cai, Y. Kang, W. M. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221–240. https://doi.org/10.1016/j.amc.2017.02.003 doi: 10.1016/j.amc.2017.02.003
    [5] A. Zeb, S. Djilali, T. Saeed, M. S. Alhodaly, N. Gul, Global proprieties of an SIR epidemic model with nonlocal diffusion and immigration, Results Phys., 39 (2022), 105758. https://doi.org/10.1016/j.rinp.2022.105758 doi: 10.1016/j.rinp.2022.105758
    [6] G. Huang, Y. Takeuchi, W. B. Ma, D. J. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192–1207. https://doi.org/10.1007/s11538-009-9487-6 doi: 10.1007/s11538-009-9487-6
    [7] C. J. Sun, Y. H. Hsieh, Global analysis of an SEIR model with varying population size and vaccination, Appl. Math. Model., 34 (2010), 2685–2697. https://doi.org/10.1016/j.apm.2009.12.005 doi: 10.1016/j.apm.2009.12.005
    [8] M. De la Sen, S. Alonso-Quesada, A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953–976. https://doi.org/10.1016/j.amc.2015.08.099 doi: 10.1016/j.amc.2015.08.099
    [9] Q. Liu, D. Q. Jiang, N. Z. Shi, T. Hayat, A. Alsaedi, Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence, Phys. A, 476 (2017), 58–69. https://doi.org/10.1016/j.physa.2017.02.028 doi: 10.1016/j.physa.2017.02.028
    [10] D. Wanduku, Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations, Appl. Math. Comput., 294 (2017), 49–76. https://doi.org/10.1016/j.amc.2016.09.001 doi: 10.1016/j.amc.2016.09.001
    [11] Q. Liu, D. Q. Jiang, T. Hayat, A. Alsaedi, Dynamics of a stochastic multigroup SIQR epidemic model with standard incidence rates, J. Franklin Inst., 356 (2019), 2960–2993. https://doi.org/10.1016/j.jfranklin.2019.01.038 doi: 10.1016/j.jfranklin.2019.01.038
    [12] R. Ikram, A. Khan, M. Zahri, A. Saeed, M. Yavuz, P. Kumam, Extinction and stationary distribution of a stochastic COVID-19 epidemic model with time-delay, Comput. Biol. Med., 141 (2022), 105115. https://doi.org/10.1016/j.compbiomed.2021.105115 doi: 10.1016/j.compbiomed.2021.105115
    [13] F. Özköse, M. Yavuz, M. T. Şenel, R. Habbireeh, Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom, Chaos Solitons Fractals, 157 (2022), 111954. https://doi.org/10.1016/j.chaos.2022.111954 doi: 10.1016/j.chaos.2022.111954
    [14] M. A. Teitelbaulm, M. Edmunds, Immunization and vaccine-preventable illness, Unites States, 1992–1997, Stat. Bull., 80 (1999), 13–20.
    [15] J. Mossong, C. P. Muller, Modelling measles re-emergence as a result of waning of immunity in vaccinated populations, Vaccine, 21 (2003), 4597–4603. https://doi.org/10.1016/S0264-410X(03)00449-3 doi: 10.1016/S0264-410X(03)00449-3
    [16] E. Leuridan, P. Van Damme, Passive transmission and persistence of naturally acquired or vaccine-induced maternal antibodies against measles in newborns, Vaccine, 25 (2007), 6296–6304. https://doi.org/10.1016/j.vaccine.2007.06.020 doi: 10.1016/j.vaccine.2007.06.020
    [17] L. M. Cai, X. Z. Li, Analysis of a SEIV epidemic model with a nonlinear incidence rate, Appl. Math. Model., 33 (2009), 2919–2926. https://doi.org/10.1016/j.apm.2008.01.005 doi: 10.1016/j.apm.2008.01.005
    [18] G. P. Sahu, J. Dhar, Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate, Appl. Math. Model., 36 (2012), 908–923. https://doi.org/10.1016/j.apm.2011.07.044 doi: 10.1016/j.apm.2011.07.044
    [19] X. Y. Wang, Z. J. Liu, L. W. Wang, C. H. Guo, H. L. Xiang, An application of a novel geometric criterion to global-stability problems of a nonlinear SEIVS epidemic model, J. Appl. Math. Comput., 67 (2021), 707–730. https://doi.org/10.1007/s12190-020-01487-5 doi: 10.1007/s12190-020-01487-5
    [20] X. R. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Process. Appl., 97 (2002), 95–110. https://doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0
    [21] C. Lu, H. H. Liu, D. Zhang, Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate, Chaos Solitons Fractals, 152 (2021), 111312. https://doi.org/10.1016/j.chaos.2021.111312 doi: 10.1016/j.chaos.2021.111312
    [22] S. P. Rajasekar, M. Pitchaimani, Q. X. Zhu, Higher order stochastically perturbed SIRS epidemic model with relapse and media impact, Math. Methods Appl. Sci., 45 (2022), 843–863. https://doi.org/10.1002/mma.7817 doi: 10.1002/mma.7817
    [23] Y. Q. Song, X. H. Zhang, Stationary distribution and extinction of a stochastic SVEIS epidemic model incorporating Ornstein-Uhlenbeck process, Appl. Math. Lett., 133 (2022), 108284 https://doi.org/10.1016/j.aml.2022.108284 doi: 10.1016/j.aml.2022.108284
    [24] X. H. Zhang, Q. D. Jiang, A. Alsaedi, T. Hayat, Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching, Appl. Math. Lett., 59 (2016), 87–93. https://doi.org/10.1016/j.aml.2016.03.010 doi: 10.1016/j.aml.2016.03.010
    [25] J. Xu, T. Chen, X. D. Wen, Analysis of a Bailey-Dietz model for vector-borne disease under regime switching, Phys. A, 580 (2021), 126129. https://doi.org/10.1016/j.physa.2021.126129 doi: 10.1016/j.physa.2021.126129
    [26] B. Brahim, E. Mohamed, L. Aziz, R. Takic, K. Wang, A Markovian regime-switching stochastic hybrid time-delayed epidemic model with vaccination, Automatica, 133 (2021), 109881. https://doi.org/10.1016/j.automatica.2021.109881 doi: 10.1016/j.automatica.2021.109881
    [27] X. R. Mao, C. G. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial college press, 2006.
    [28] R. Z. Khasminskii, C. Zhu, G. Yin, Stability of regime-switching diffusions, Stoch Process Their Appl., 117 (2007), 1037–1051. https://doi.org/10.1016/j.spa.2006.12.001 doi: 10.1016/j.spa.2006.12.001
    [29] Z. X. Han, J. D. Zhao, Stochastic SIRS model under regime switching, Nonlinear Anal Real World Appl., 14 (2013), 352–364. https://doi.org/10.1016/j.nonrwa.2012.06.008 doi: 10.1016/j.nonrwa.2012.06.008
    [30] Z. F. Shi, X. H. Zhang, D. Q. Jiang, Modelling a stochastic avian influenza model under regime switching and with human-to-human transmission, Int. J. Biomath., 13 (2020), 2050064. https://doi.org/10.1142/S1793524520500643 doi: 10.1142/S1793524520500643
    [31] B. Q. Zhou, B. T. Han, D. Q. Jiang, T. Hayat, A. Alsaedi, Ergodic stationary distribution and extinction of hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete markov switching, Appl. Math. Comput., 410 (2021), 126388. https://doi.org/10.1016/j.amc.2021.126388 doi: 10.1016/j.amc.2021.126388
    [32] J. Xu, Y. N. Wang, Z. W. Cao, Dynamics of a stochastic SIRS epidemic model with standard incidence under regime switching, Int. J. Biomath., 15 (2022), 2150074. https://doi.org/10.1142/S1793524521500741 doi: 10.1142/S1793524521500741
    [33] B. T. Han, D. Q. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation, Chaos Solitons Fractals, 140 (2020), 110238. https://doi.org/10.1016/j.chaos.2020.110238 doi: 10.1016/j.chaos.2020.110238
    [34] R. Z. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff Noordhoff, Alphen aan den Rijn, The Netherlands, 1980.
    [35] A. Bahar, X. R. Mao, Stochastic delay Lotka-Volterra model, J. Math. Anal. Appl., 292 (2004), 364–380. https://doi.org/10.1016/j.jmaa.2003.12.004 doi: 10.1016/j.jmaa.2003.12.004
    [36] X. Y. Li, D. Q. Jiang, X. R. Mao, Population dynamical behavior of Lotka-Volterra system under regime switching, J. Comput. Appl. Math., 232 (2009), 427–448. https://doi.org/10.1016/j.cam.2009.06.021 doi: 10.1016/j.cam.2009.06.021
  • This article has been cited by:

    1. Yuqin Song, Peijiang Liu, Anwarud Din, Analysis of a stochastic epidemic model for cholera disease based on probability density function with standard incidence rate, 2023, 8, 2473-6988, 18251, 10.3934/math.2023928
    2. Qura Tul Ain, Anwarud Din, Xiaoli Qiang, Zheng Kou, Dynamics for a Nonlinear Stochastic Cholera Epidemic Model under Lévy Noise, 2024, 8, 2504-3110, 293, 10.3390/fractalfract8050293
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2017) PDF downloads(124) Cited by(2)

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog