Research article Special Issues

An implementation of a multilayer network model for the Covid-19 pandemic: A Costa Rica study

  • Received: 27 June 2022 Revised: 25 August 2022 Accepted: 30 August 2022 Published: 12 October 2022
  • We present a numerical implementation for a multilayer network to model the transmission of Covid-19 or other diseases with a similar transmission mechanism. The model incorporates different contact types between individuals (household, social and sporadic networks) and includes an SEIR type model for the transmission of the virus. The algorithm described in this paper includes the main ideas of the model used to give public health authorities an additional tool for the decision-making process in Costa Rica by simulating extensive possible scenarios and projections. We include two simulations: a study of the effect of restrictions on the transmission of the virus and a Costa Rica case study that was shared with the Costa Rican health authorities.

    Citation: Juan G. Calvo, Fabio Sanchez, Luis A. Barboza, Yury E. García, Paola Vásquez. An implementation of a multilayer network model for the Covid-19 pandemic: A Costa Rica study[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 534-551. doi: 10.3934/mbe.2023024

    Related Papers:

  • We present a numerical implementation for a multilayer network to model the transmission of Covid-19 or other diseases with a similar transmission mechanism. The model incorporates different contact types between individuals (household, social and sporadic networks) and includes an SEIR type model for the transmission of the virus. The algorithm described in this paper includes the main ideas of the model used to give public health authorities an additional tool for the decision-making process in Costa Rica by simulating extensive possible scenarios and projections. We include two simulations: a study of the effect of restrictions on the transmission of the virus and a Costa Rica case study that was shared with the Costa Rican health authorities.



    加载中


    [1] A. Adiga, D. Dubhashi, B. Lewis, M. Marathe, S. Venkatramanan, A. Vullikanti, Mathematical models for Covid-19 pandemic: A comparative analysis, J. Indian Inst. Sci., 100 (2020), 793–807. https://doi.org/10.1007/s41745-020-00200-6 doi: 10.1007/s41745-020-00200-6
    [2] Center for Disease Control, Covid-19 forecasts: deaths | CDC, 2021. Available from: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html (accessed on 02/17/2021).
    [3] Centre for the Mathematical Modelling of Infectious Diseases, 2021. Available from: https://www.lshtm.ac.uk/research/centres/centre-mathematical-modelling-infectious-diseases (accessed on 02/17/2021).
    [4] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al, Early dynamics of transmission and control of Covid-19: A mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553–558. https://doi.org/10.1016/S1473-3099(20)30144-4 doi: 10.1016/S1473-3099(20)30144-4
    [5] L. Star, S. M. Moghadas, The role of mathematical modelling in public health planning and decision making, Purple Paper, National Collaborative Center for Infectious Diseases, 2010.
    [6] O. Torrealba-Rodriguez, R. A. Conde-Gutiérrez, A. L. Hernández-Javier, Modeling and prediction of Covid-19 in Mexico applying mathematical and computational models, Chaos Solit. Fractals, 138 (2020). https://doi.org/10.1016/j.chaos.2020.109946 doi: 10.1016/j.chaos.2020.109946
    [7] M. Choisy, J.-F. Guégan, P. Rohani, Mathematical modeling of infectious diseases dynamics, in Encyclopedia of Infectious Diseases: Modern Methodologies, 379 (2007). https://doi.org/10.1002/9780470114209.ch22
    [8] K. Dietz, D. Schenzle, Mathematical models for infectious disease statistics, in A Celebration of Statistics (eds. A. C. Atkinson and S. E. Fienberg), Springer, New York (1985), 167–204. https://doi.org/10.1007/978-1-4613-8560-8_8
    [9] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
    [10] K. Peng, Z. Lu, V. Lin, M. R. Lindstrom, C. Parkinson, C. Wang, et al, A multilayer network model of the coevolution of the spread of a disease and competing opinions, Math. Models Methods Appl. Sci., 31 (2021), 2455–2494. https://doi.org/10.1142/S0218202521500536 doi: 10.1142/S0218202521500536
    [11] A. Y. Yamamoto-Elizalde, E. Hernández-Lemus, G. de Anda-Jáuregui, Diffusion processes in multilayer transportation networks: the flight of the coronavirus, Rev. Mex. Fís., 66 (2020), 516–524. https://doi.org/10.31349/revmexfis.66.516 doi: 10.31349/revmexfis.66.516
    [12] A. Aleta, D. Martín-Corral, M. A. Bakker, A. Pastore y Piontti, M. Ajelli, M. Litvinova, et al, Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas, Proc. Natl. Acad. Sci. USA, 119 (2022). https://doi.org/10.1073/pnas.2112182119 doi: 10.1073/pnas.2112182119
    [13] A. Aleta, D. Martín-Corral, A. Pastore y Piontti, M. Ajelli, M. Litvinova, M. Chinazzi, et al, Modelling the impact of testing, contact tracing and household quarantine on second waves of Covid-19, Nat. Hum. Behav., 4(2020), 964–971. https://doi.org/10.1038/s41562-020-0931-9 doi: 10.1038/s41562-020-0931-9
    [14] J. A. Moreno-López, B. Arregui-García, P. Bentkowski, L. Bioglio, F. Pinotti, P. -Y. Boëlle, et al, Anatomy of digital contact tracing: role of age, transmission setting, adoption, and case detection, Sci. Adv., 7 (2021). https://doi.org/10.1126/sciadv.abd8750 doi: 10.1126/sciadv.abd8750
    [15] N. M. Ferguson, D. A. T. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley, D. S. Burke, Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448–452. https://doi.org/10.1038/nature04795 doi: 10.1038/nature04795
    [16] J. A. Firth, J. Hellewell, P. Klepac, S. Kissler, M. Jit, K. E. Atkins, et al, Using a real-world network to model localized Covid-19 control strategies, Nat. Med., 26 (2020), 1616–1622. https://doi.org/10.1038/s41591-020-1036-8 doi: 10.1038/s41591-020-1036-8
    [17] A. Karaivanov, A social network model of Covid-19, PLoS One, 15 (2020). https://doi.org/10.1371/journal.pone.0240878 doi: 10.1371/journal.pone.0240878
    [18] P. Maheshwari, R. Albert, Network model and analysis of the spread of Covid-19 with social distancing, Appl. Netw. Sci., 5 (2020). https://doi.org/10.1007/s41109-020-00344-5 doi: 10.1007/s41109-020-00344-5
    [19] C. Bongiorno, L. Zino, A multi-layer network model to assess school opening policies during a vaccination campaign: A case study on Covid-19 in France, Appl. Netw. Sci., 7 (2022). https://doi.org/10.1007/s41109-022-00449-z doi: 10.1007/s41109-022-00449-z
    [20] L. F. S. Scabini, L. C. Ribas, M. B. Neiva, A. G. B. Junior, A. J. F. Farfán, O. M. Bruno, Social interaction layers in complex networks for the dynamical epidemic modeling of Covid-19 in Brazil, Phys. A Stat. Mech. Appl., 564 (2021). https://doi.org/10.1016/j.physa.2020.125498 doi: 10.1016/j.physa.2020.125498
    [21] M. De Domenico, C. Granell, M. A. Porter, A. Arenas, The physics of spreading processes in multilayer networks, Nat. Phys., 12 (2016), 901–906. https://doi.org/10.1038/nphys3865 doi: 10.1038/nphys3865
    [22] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, M. A. Porter, Multilayer networks, J. Complex Netw., 2 (2014), 203–271. https://doi.org/10.1093/comnet/cnu016 doi: 10.1093/comnet/cnu016
    [23] Pan American Health Organization (PAHO/WHO), Costa Rica: Pandemia Covid-19. Informe estratégico mensual $N^o$3. 2020. Available from: https://www.paho.org/es/documentos/costa-rica-pandemia-covid-19-informe-estrategico-mensual-no-3 (accessed on 03/09/2021).
    [24] Pan American Health Organization (PAHO/WHO), Costa Rica: Pandemia Covid-19. Informe estratégico mensual $N^o$4. 2020. Available from: https://www.paho.org/es/documentos/costa-rica-pandemia-covid-19-informe-estrategico-mensual-no-4 (accessed on 03/09/2021).
    [25] Pan American Health Organization (PAHO/WHO), Costa Rica: Pandemia Covid-19. Informe estratégico mensual $N^o$5. 2020. Available from: https://www.paho.org/es/documentos/costa-rica-pandemia-covid-19-informe-estrategico-mensual-no-5 (accessed on 03/09/2021).
    [26] Pan American Health Organization (PAHO/WHO), Costa Rica: Pandemia Covid-19. Informe estratégico mensual $N^o$6. 2020. Available from: https://www.paho.org/es/documentos/costa-rica-pandemia-covid-19-informe-estrategico-mensual-no-6 (accessed on 03/09/2021).
    [27] Y. E. García, G. Mery, P. Vásquez, J. G. Calvo, L. A. Barboza, T. Rivas, et al, Projecting the impact of Covid-19 variants and vaccination strategies in disease transmission using a multilayer network model in Costa Rica, Sci. Rep., 12 (2022). https://doi.org/10.1038/s41598-022-06236-1 doi: 10.1038/s41598-022-06236-1
    [28] EpiMEC, Covid-19 app, 2021. Available from: www.github.com/epimec.
    [29] G. Bianconi, Multilayer networks: structure and function, Oxford University Press, 2018. https://doi.org/10.1093/oso/9780198753919.001.0001 doi: 10.1093/oso/9780198753919.001.0001
    [30] L. Alessandretti, U. Aslak, S. Lehmann, The scales of human mobility, Nature, 587 (2020), 402–407. https://doi.org/10.1038/s41586-020-2909-1 doi: 10.1038/s41586-020-2909-1
    [31] S. Chang, E. Pierson, P. W. Koh, J. Gerardin, B. Redbird, D. Grusky, et al, Mobility network models of Covid-19 explain inequities and inform reopening, Nature, 589 (2021), 82–87. https://doi.org/10.1038/s41586-020-2923-3 doi: 10.1038/s41586-020-2923-3
    [32] N. Perra, B. Gonçalves, R. Pastor-Satorras, A. Vespignani, Activity driven modeling of time varying networks, Sci. Rep., 2 (2012). https://doi.org/10.1038/srep00469 doi: 10.1038/srep00469
    [33] Instituto Nacional de Estadística y Censos, Población | INEC, 2011. Available from: https://www.inec.cr/poblacion (accessed on 02/17/2021).
    [34] J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, et al, Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Med., 5 (2008). https://doi.org/10.1371/journal.pmed.0050074 doi: 10.1371/journal.pmed.0050074
    [35] F. Sanchez, L. A. Barboza, P. Vásquez, Parameter estimates of the 2016–2017 Zika outbreak in Costa Rica: an approximate Bayesian computation (ABC) approach, Math. Biosci. Eng., 16 (2019) 2738–2755. https://doi.org/10.3934/mbe.2019136 doi: 10.3934/mbe.2019136
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2053) PDF downloads(119) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog