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Abstract: We present a numerical implementation for a multilayer network to model the transmission
of Covid-19 or other diseases with a similar transmission mechanism. The model incorporates different
contact types between individuals (household, social and sporadic networks) and includes an SEIR
type model for the transmission of the virus. The algorithm described in this paper includes the main
ideas of the model used to give public health authorities an additional tool for the decision-making
process in Costa Rica by simulating extensive possible scenarios and projections. We include two
simulations: a study of the effect of restrictions on the transmission of the virus and a Costa Rica case
study that was shared with the Costa Rican health authorities.
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1. Introduction

Throughout the Covid-19 pandemic, mathematical and statistical models have been implemented
to understand disease transmission, forecast the spread of the disease, and plan for strategic sanitary
measures to minimize the burden on the public health system [1–6]. Deterministic models have been
widely used to model infectious diseases in the past [7–9]. However, due to human mobility, un-
predictable human behavior, and other factors, adaptable models are better suited to evolve with the
ever-changing behavior of the population during the pandemic as sanitary measures are implemented
in a particular region of interest [10, 11].

Agent-based and network models have been extensively used to study the transmission of SARS-
CoV-2 and to determine optimal and feasible measures to diminish the impact of the Covid-19 pan-
demic. For example, in [12,13], the authors estimate where, when, and how many transmission events
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happened in urban areas during the first and second waves of the pandemic for particular regions. Sim-
ilarly, an agent-based model that describes age-specific risk factors for exposure and transmission is
analyzed in [14], where they include different layers in their model. Moreover, [15] studies a stochastic,
spatially structured individual-based simulation with other spaces (such as households, schools, work-
places, and the wider community) and age structure for an influenza pandemic. In general, agent-based
and network models allow for a level of flexibility in which different scenarios can be formulated to
provide valuable input to health authorities for the decision-making process; see, e.g., [12, 13, 16–18].

Recent studies on Covid-19 with similar methodologies include [19, 20], but their experiments are
for networks with at most 110, 000 nodes. In [20], authors used six layers and an SEIR model for Brazil
and concluded that the increase of isolation is the best option to keep the situation under the healthcare
system capacity by removing layers and reducing social contacts. In [19], authors tested several what-
if scenarios on school openings during the vaccination campaigns in France, with a multilayer network
similar to ours (schools instead of social contacts). Moreover, in [10] authors constructed a two-
layer multiplex network for the coupled spread of disease and conflicting opinions to determine how
negative/positive opinions affect the transmission. In [11], authors analyzed the risk of the Covid-19
importation to Mexico through the Air Transportation Network with a multilayer network approach.

One of the main advantages of a network model is its flexibility when considering individual and
social behavior, which allows us to mimic sanitary measures and evaluate possible impacts on the
population. As the pandemic progresses, it is possible to mimic early or ongoing behavioral changes
such as reductions in community interactions, mask use, mobility restrictions, network contacts, or
lockdowns. Timely access to these types of tools contributes to a better reaction in case of emergencies.
Moreover, we believe it is essential to share the experience in constructing such models for practical
purposes and future studies.

In this paper, we consider a multilayer temporal network (see [21,22]) capable of efficiently manag-
ing large populations. A probability of infection is independently computed daily for each individual
according to its interactions, permitting a parallel implementation for real-life applications. We count
daily interactions per individual and determine if the virus is transmitted depending on the attributes of
each interaction.

The model we present in this paper has been taken into consideration by health authorities in Costa
Rica, with slight modifications related to the use of initial conditions for infected individuals and the
parameters related to public health policies pertinent to the country. The complete model includes
the entire population (approximately five million individuals) and the 81∗ counties of the country, and
considers different scenarios with gradual re-openings, mobility restrictions, different percentages for
mask use, and short and long-term projections of the disease. Results were delivered to the public
health authorities as part of the decision-making process [23–26]. It also has been used to project the
impact of Covid-19 variants and vaccination strategies; see [27].

In this work, we provide insight into the development of multilayer network models with an easy-to-
follow implementation that allows generalizing the transmission of infectious diseases. We also include
a Matlab app with the algorithm implementation that can be found in [28], where several attributes and
parameters can be modified, and the Matlab code.

∗There are 82 counties in the country. However, the 82nd was established in 2018, and no historical census data exists to model
mobility.
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2. Materials and methods

2.1. Network model

Consider a population that lives in a fixed number of counties. Mathematically, we consider a
temporal three-layer network (a set of nodes that are connected by edges) where each node represents
one individual; see [10, 22]. We assume that all individuals are present in all layers and we couple
layers by connecting nodes that correspond to the same individual; see the mathematical definition of
a multiplex network in [29, Section 5.3]. Intra-layer edges correspond to edges within a layer, and it
represents a possible interaction between two individuals. Each layer is an undirected, unweighted,
simple graph, an on each layer, each node can have a different number of neighbors, which can change
over time.

Interactions are classified into three layers, which represent different types of contacts with partic-
ular characteristics that account for the virus transmission. These layers are: (1) a household network
(people that live in the same house), (2) a social network (known contacts such as friends and col-
leagues), and (3) a sporadic network (strangers that you may encounter in short periods when you visit
random locations). These layers are randomly generated for each simulation; layers 1 and 2 are fixed,
and layer 3 can change for each time step since usually a node has no control over sporadic encounters.

Mathematically, each layer (indexed by α ∈ {1, 2, 3}) is a graph Gα = (V, Eα), composed by the set
of nodes V that represents the population (which is the same for each layer), and the set of intra-layer
edges Eα that connects nodes within layer α. In this case, the full information about the multiplex
network is encoded in three distinct adjacency matrices a[α]; see [29, Section 5.3.2].

Each node on the graph includes several attributes. We classify them into two classes: (1) fixed
attributes, such as the county, household members, age group, degree, and graph connectivity for layer
2 (social network), and (2) variable attributes, such as connectivity for layer 3 (sporadic network),
epidemiological state, number of days at current epidemiological state, number of interactions with
social contacts per day, mask use, and self-care behavior. The former are defined at the beginning of
each simulation, and the latter can take different values every time step.

For the first layer, it is assumed that we know the total number of households per county and
the average number of individuals per household per county. We then group all the individuals into
households. We assume a complete graph for each family and no edges between different families.
It is possible to randomly assign an age group to each family member if data is available to include
differences in interactions accordingly.

In this implementation, we create all the households and assign their inhabitants by using a Poisson
distribution with a mean equal to the average number of individuals per household per county. Each
individual is labeled with an ID from 1 to N, where N is the size of the population. We create the
cells IDtoCounty, IDtoFamily and IDtoAge that return the county, family and age group of a given
ID, and the cells familyToIDs and countyToIDs that return the IDs for a given family or county,
respectively. These cells allow us to access the information required to build the graph directly.

The degree of each node in layer 2 (social network) is fixed for each simulation. Nevertheless, a
subset of edges is selected on each time step because only a small number of daily contacts is expected
to occur. As mentioned before, layer 3 (sporadic network) changes daily. In order to keep track of the
transmission of the disease, we only need to include the edges between new exposed individuals E and
their contacts.
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For the second and third layers, choosing the contacts of a node requires some assumptions. It is
natural to expect different interactions depending on age, location, density, socioeconomic factors, and
more. In our implementation, for every node, we need to: (1) define the degree of the node (number of
contacts) per layer, given by a uniform distribution on an interval with endpoints equal to the minimum
and maximum number of allowed contacts per county per layer, and (2) choose its contacts randomly
from different counties based on a given connectivity distribution between counties.

We choose layer 2 contacts for new nodes as follows. We first create a list of eligible nodes based
on a connectivity distribution between counties. For instance, density, demographic information, or
mobility data could be used for this purpose. For simplicity, we consider a binary matrix where its
entry (m, n) is equal to 1 if an individual from county m can have contacts from county n, and 0
otherwise; see a toy example in Table 1. This means that the eligible list for a node includes all IDs
from counties that have connectivity with the node’s county.

We then randomly choose the predefined number of contacts for each node from the eligible list,
according to its degree. Further restrictions can be added when defining the eligible list, such as age
group, density, and distance between counties. Edges on layer 3 are updated daily similarly, excluding
preassigned contacts in layers 1 and 2. We remark that different approaches can be considered for the
connectivity between counties, such as probability distributions as in [30], the use of mobility networks
from mobile phone data as in [31], or by defining activity potentials as introduced in [32].

2.2. Modeling the disease

The propagation in our model is based on an SEIR type model with seven compartment states de-
fined by the following epidemiological variables: susceptible (S ), exposed (E), diagnosed or observed
(O), undiagnosed or not observed (U), hospitalized (H), recovered (R), and dead (D) states; see Figure
1. We consider a discrete-time stochastic model, for which each individual belongs to one compart-
ment, and can move to a feasible next state on a daily basis, according to probabilities that depend on
interactions with infected contacts (for moving from S to E) or the number of days at a current state
(for any other transition).

A susceptible node i in layer α may become exposed if it contacts an observed or undiagnosed
node on its network, depending on a probability of infection piα. Once exposed, it becomes observed
or undiagnosed, which might require hospitalization (including intensive care units). Eventually, a
node can recover or die. We assume that a fixed fraction of diagnosed cases does not isolate and
that hospitalized individuals cannot infect susceptible nodes. Modifications with additional states and
transitions are straightforward to include.

S E O H R

U

D

Figure 1. Model compartment states and transitions.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 534–551.



538

For simplicity, we assume an initial graph given by all the exposed individuals at time zero and their
contact networks. If data is available, we can include chains of transmission for a fixed time (depending
on data) as an initial condition by creating edges among identified clusters (nodes belonging to a chain
of transmission). Data includes anonymous patient ID, ID from an individual that infected him/her (if
it was not an imported case), relationship (that we interpret as one of the three layers), county, age
group, and date of diagnosis. This information is translated into the multilayer network, applying it to
the model’s randomly created families and social networks. Before community transmission in Costa
Rica, the public health authorities were able to keep track of chains of transmission for approximately
four months. This data allowed us to create accurate contact networks for the early stages of the
pandemic.

We model the transmission of the virus in the multilayer network by computing probabilities of
infection piα for interactions between a susceptible node i and its infectious contacts. We consider their
contacts via the different layers for a given initial set of exposed nodes; adjacent nodes of infectious
nodes can become exposed. We then increase the network by including new exposed nodes and their
contacts. In this way, we are considering a growing network that increases daily.

If the probability that node j infects a susceptible node i at layer α at a given day is βi j, then the
probability of infection piα for node i at layer α is given by

piα = 1 −
∏
j,i

(1 − βi j), (2.1)

where j includes all the indices of nodes that can infect node i that particular day at layer α. Mathe-
matically, following the notation introduced in [29, Section 13.2], we can write

S i +
∑
j,i

E j
piα
−−→ Ei +

∑
j,i

E j, (on layer α)

since we count daily interactions between a susceptible node i and its exposed contacts. Let Xiα(t) ∈
{0, 1} be a variable that denotes whether a susceptible node (i, α) is infected (1) or not (0). We can write
then

Xiα(t + 1) =

1 − Xiα(t) with probability piα,

Xiα(t) with probability 1 − piα.
(2.2)

The value βi j may depend on the layer, epidemiological state, social distancing, mask use, and self-
care behavior, among other factors. Transmission of the virus can also include imported cases where
infection occurs in an external location. Non-periodic events can also be considered (as massive events
or the creation of clusters due to super spreading events) to study their impact and possible scenarios,
where different probabilities βi j can be defined for each particular case.

Changes in social behavior are a tremendous challenge when modeling the transmission of infec-
tious diseases. We have included the following ideas, allowing us to mimic the effect of different
measures that were adopted in several countries:

1. Bubble size: in periods of strict measures, such as lockdowns or mobility restrictions, we assume
a reduction in the number of daily contacts for each individual in layers 2 and 3 (separately),
which can depend on its county, emulating differences at least between rural and urban areas due
to different population densities.
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2. Mask use, which was mandatory in Costa Rica on July 2020.
3. Social distance between individuals, which depends on the interaction layer.

In this paper, we consider two binary random variables useMask and selfCare that indicate
whether or not an encounter between two nodes includes mask use and self-care, respectively. We
then have different values for βi j depending on the interaction between the two nodes and their at-
tributes. We only need to compute piα for every susceptible node i that has infectious contacts. Once
piα is determined, a uniformly distributed pseudo-random number ri ∈ (0, 1) is generated. If ri < piα,
node i is marked as an exposed individual at the current time step.

Any other event between epidemiological compartments depends on a transition probability. Every
node has a different probability of moving to a feasible next state (according to Figure 1) depending on
the period of time at its current epidemiological state. If such an event should happen, we then store
the new state and day; if not, the state remains unchanged. Similar expressions as (2.2) can be written,
but for the sake of brevity we omit such equations.

To explain how data is stored and read, we show a toy example of transition probabilities for the
diagnosed class O in Table 2. For this example, a diagnosed individual O has a 40% probability of being
hospitalized on day 1. Otherwise, it will remain in the same compartment on day 2. On day three, there
are three possibilities: remain at O (50%), move to H (10%) or recover R (40%). Note that each row
adds up to 1 (one state should always be chosen according to these probabilities), and eventually, all
nodes that have been exposed should end up as R or D. This approach allows us to include variable stay
periods in each class if data is available; average stay periods can be considered otherwise. Pseudocode
for the modeling of Covid-19, as described previously, is presented in Pseudocode. 1.

2.3. Fictitious case: effect of behavior changes

We first present a simple experiment to explain how data is used and read in the model and to
measure the effect of the variables useMask and selfCare. We consider a population of one mil-
lion individuals distributed in 15 counties; its demographic distribution and the connectivity matrix are
shown in the appendix. We consider initially E0 exposed nodes randomly chosen. Parameters used
in these simulations appear in Table 3. We assume that 70% of the population wears a face mask,
35% respects self-care, and 60% of exposed nodes become diagnosed. Values for the probability of
infection are shown in Table 3 for layer 2; probabilities are halved for layer 3. Finally, the transition
probabilities between states are shown in the appendix. For this particular set of parameters and pop-
ulation, the average running time for a simulation with a serial code is about 40 minutes. We then
impose restrictions on social behavior by increasing the percentage of individuals wearing a mask and
decreasing the number of daily interactions over two months, starting on day 20, emulating the effect
of mild regulations.

2.4. Costa Rica case study

In this section, we present an application of the model for Costa Rica. As stated earlier, we in-
clude chains of transmission for a fixed time as an initial condition by creating edges among identified
clusters according to data from the Ministry of Health. To give an insight into reported cases in Costa
Rica, we illustrate how diagnosed (confirmed) cases evolved from March 8, 2020, to June 24, 2020;
see Figure 2. For simplicity, we only show edges between reported cases and not their entire networks

Mathematical Biosciences and Engineering Volume 20, Issue 1, 534–551.



540

Pseudocode 1 Multilayer network model for Covid-19
1: procedure networkModel
2: Read household information.
3: Define initial conditions.
4: for day = 1, 2, 3 . . . do
5: for all new exposed nodes E do
6: if family of node E has not been created then
7: Read connections from household information (line 2).
8: Store contacts for E in layer 1 (family).
9: end if

10: if degree of node E is greater than its current social contacts then
11: Create list of eligible contacts.
12: Choose remaining nodes randomly for E in layer 2 (social contacts).
13: Store contacts for E in layer 2 (social contacts).
14: end if
15: end for
16: for all infectious nodes do
17: Create list of eligible contacts depending on bubble size.
18: Choose remaining nodes randomly for E in layer 3 (sporadic contacts).
19: end for
20: for all susceptible nodes S do
21: Compute probability of infection.
22: Determine if node S has been infected and mark it as new exposed.
23: end for
24: Determine transitions between epidemiological states.
25: Store results for current day.
26: end for
27: end procedure
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Figure 2. Active cases (red dots) and recovered cases (black dots) for each county in Costa
Rica for different dates, with connections between reported cases (edges), according to chains
of transmission: (upper left) March 8, 2020, (upper right) March 14, 2020, (lower left) May
3, 2020, (lower right) June 24, 2020.

and include a random position for each node within its county.
Regarding the first layer, families are created first from data from the “National Household Survey”

[33]. Layers two and three are constructed as described above. By this time, the degree of nodes in
layer two was taken as a uniform distribution in the interval [5, 20], and daily, a subset of contacts is
considered, depending on the county of residence (greater values for the metropolitan area and lower
values for rural zones). The degree of nodes in layer three was taken as a uniform value in the interval
[0, 20]; see, e.g., [20, 34]. Connectivity between counties for Costa Rica is obtained from [33], where
a matrix with the household and workplace is available.

Most of the parameters for transition between states are essentially provided by the Costa Rica So-
cial Security Fund, related to the average number of days in each state, percentages of individuals that
require hospitalization or ICU, and mortality rates. On the other hand, we assume in this particular
example that 10% of diagnosed individuals do not isolate (still have daily interactions with their con-
tacts) and that there is a relation of 75%/25% for observed and undiagnosed cases in the population.
The probability of infection for each encounter between nodes given in (2.1) is modified by considering
a calibration parameter γ ∈ (0, 1] such that

piα = 1 −
∏
j,i

(1 − βi j)γ.
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For approximating γ, we considered a period where we calibrated the model by using a standard
bisection method for finding an optimum value for γ, such that the square error between observed
and predicted cases is minimum. The calibration period includes the real number of observed cases
according to data provided by health authorities. The value of γ is then fixed for all simulations to
obtain short-term projections of Covid-19 cases. An Approximate Bayesian computation was used to
estimate the initial value of the transmission rate β for the beginning of the pandemic in Costa Rica
considering an SEIR type model; see more details in [35]. We then compute βi j = ci jβ, where ci j is a
reduction parameter that depends on the use of mask and self care for each interaction; values for βi j

are as shown in Table 3.

3. Results and discussion

We have presented an implementation for a multilayer network to support public health authorities
during the Covid-19 pandemic. Capturing the transmission dynamics of the SARS-CoV-2 virus is es-
sential to provide information about disease projections and specific data-driven scenarios. We remark
that in some cases, it may be important to consider the whole network, for example, if the probability
of contact varies among susceptible individuals or in modeling vector-borne diseases where vectors
play an essential role in the transmission.

The model exhibits a flexible structure that allows us to include particular attributes for each node
and contact network, describing the complexities of social behavior and the specific disease. In this
article, the implementation of the general structure of the model is described, which can be used in
other social and epidemic contexts.

We first present results for 1,000 simulations in Figure 3 for a fictitious example, where we com-
pared the effect of mild restrictions as described above. We observed a reduction in the peak of hos-
pitalized individuals, essential to reduce the stress on health systems, and a reduction in the peak of
observed cases. We also showed that uncertainty among simulations is insignificant, even though the
model is not deterministic. This experiment gives insight into how different measures can be translated
into effective ways to flatten the curve. Moreover, we observe that even though the final value of cu-
mulative cases is slightly reduced by day 140, the relevance of these results is related to the fact that
the peak on the hospitalized individuals curve is reduced, allowing to reduce the stress on the public
health system. It is relevant that this kind of result relies on the availability of data to compute times
in each compartment. The model is sensitive to the proportion of diagnosed/undiagnosed individuals,
but the effect on hospitalizations is expected to be negligible since most undiagnosed individuals have
no symptoms.

Regarding the case study of Costa Rica, in Figure 4, we present some numerical results (500 simula-
tions) where we took five days for calibration (we created the network until June 18, 2020), optimized
the value for γ according to observed cases between June 19 and June 24, and then projected results for
two weeks, until July 7, 2020. We compared the projected cumulative number of cases and hospital-
ized individuals with real data after June 24, 2020. We observed how the model captures the expected
growth in the cumulative cases in a short period and the tendency in the number of hospitalized indi-
viduals. We observed a small relative variation in all the simulations. We refer to [23–27] for further
scenarios and results of this implementation. We remark that data before June 24, 2020, is exact for
cumulative cases, and they are used to calibrate the probability of infection for the following days.
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Figure 3. Percentage of cases with no measures (dashed line) and mild restrictions (solid
line) for two months starting on day 20. We consider a reduction in the number of daily con-
tacts and an increment in the use of masks with E0 = 10. The shaded region corresponds to
values between the 5th and 95th percentiles of 1000 simulations: (upper left) simulated cumu-
lative number of cases, (upper right) simulated observed individuals, (lower left) simulated
hospitalized individuals, (lower right) simulated undiagnosed individuals.

Short-term projections are accurate because a five-day calibration window is used. Retrospectively, we
observe that the simulated and real data are a good fit for observed and undiagnosed individuals. In the
case of hospitalizations, we used average stay periods for hospitalized individuals according to data
from the Ministry of Health. Moreover, including age groups has helped to improve results for hos-
pitalizations, and in general terms, the behavior is captured, and our projections provide a worst-case
scenario.

Compared to recent studies on Covid-19 with similar methodologies such as [19, 20], our temporal
network accommodates larger populations. Furthermore, our results mimic some restricted collective
behavior changes in the population and can include further details regarding sanitary measures.

Implementing and executing these models can be challenging. The availability of information is
closely related to the specificity of the question that needs to be answered. Information on the initial
conditions for the model and parameter value estimates can be a limiting factor when data is unavail-
able, or its quality is not optimal. Efficient and fast algorithms are necessary due to the on-demand
health scenarios that must be simulated frequently, and computational resources limit execution times.

In a rapidly evolving epidemic such as Covid-19, the model must be calibrated frequently, as social
behavior is constantly changing and, in many cases, unpredictable. The model discussed in this paper
allows us to adapt and include frequent changes in variables that mimic social behavior. Additionally,
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Figure 4. The number of cases for an experiment with initial conditions until June 19, 2020,
and calibration until June 24, 2020. The vertical dashed line corresponds to June 24, 2020.
Results are projected from June 24, 2020, until July 7, 2020. The shaded region corresponds
to values between the 5th and 95th percentiles of 500 simulations. Dotted lines represent the
actual number of reported cases in order to compare the performance of the model: (upper
left) simulated cumulative number of cases, (upper right) simulated observed individuals,
(lower left) simulated hospitalized individuals, (lower right) simulated undiagnosed individ-
uals.

the model can be generalized to have other factors, such as the effect of herd immunity and the role of
vaccination, as countries take the necessary steps to get back to the new normal.

Public health authorities were forced to make short-term decisions during a health emergency such
as the one caused by the SARS-CoV-2 virus. Mathematical models help authorities systematize the
virus transmission mechanisms and project the expected short- and medium-term behavior under some
assumptions. In particular, a multilayer network model is a valuable tool as an input in the decision-
making process for health authorities. It provides the flexibility to include social factors and an epi-
demiological structure, enabling a greater level of detail in the study of the disease. However, despite
the model’s flexibility, limitations mostly pertain to data availability and quality and the ability of
health authorities to execute policies based on scientific evidence.
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Table 1. Connectivity matrix used in the first experiment. A non-zero entry in the position
( j, k) indicates that individuals from county j can have contacts from county k.

County 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0
2 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1
3 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0
4 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0
5 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0
6 0 1 0 0 1 1 0 1 0 1 1 1 0 0 0
7 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1
8 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0
9 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0

10 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0
11 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1
12 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1
13 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0
14 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1
15 0 1 0 1 0 0 0 0 1 0 1 0 1 1 1

Table 2. Toy example for the probability of transitions between states from the observed
class O; omitted entries are zero. From compartment O, it is possible to move to states H or
R as shown in Figure 1.

time in O S E O U H R D
1 0.6 0.4
2 1.0
3 0.5 0.1 0.4
4 0.1 0.3 0.6
5 1.0
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Table 3. (left) Network parameters in toy example and (right) probability of infection de-
pending on the type of encounter between two nodes for layer 2. Values on layer 3 are
halved.

Parameter Interval
Contacts in social network [5, 15]
Contacts in sporadic network [0, 15]
Contacts per day, county 1 [5, 15]
Contacts per day, county 2 [3, 13]
Contacts per day, county 3 [1, 10]
Contacts per day, county 4 [1, 10]

Face mask Self care β

No No 0.21
No Yes 0.15
Yes No 0.08
Yes Yes 0.05

Table 4. Demographic distribution considered in the toy experiment. We present the number
of households (HH), the average number of individuals per household (ANIHH) and age
groups (AG) percentage distribution.

County HH ANIHH AG1 AG2 AG3
1 5719 3.50 31.0% 59.8% 9.2%
2 6279 3.38 26.1% 64.9% 9.0%
3 9448 3.50 29.8% 63.1% 7.1%
4 89774 3.50 27.9% 63.1% 9.0%
5 27014 3.50 31.3% 61.7% 7.0%
6 4409 5.77 29.3% 62.3% 8.4%
7 18151 3.50 28.5% 63.6% 7.9%
8 8383 4.08 25.9% 62.3% 11.8%
9 6894 3.50 33.6% 58.5% 7.9%

10 13429 3.50 28.3% 62.8% 8.8%
11 7560 3.50 25.1% 65.0% 9.9%
12 15267 3.50 37.6% 56.2% 6.2%
13 9339 3.50 33.4% 58.5% 8.1%
14 13125 3.50 32.6% 59.8% 7.6%
15 46892 3.50 26.5% 64.0% 9.5%

Table 5. Probabilities from E to O and U depending on the number of days at state E for a
fictitious toy example; empty entries are zero.

Days 1 2 3 4 5 6 7
E 1.0 1.0 1.0 1.0 1.0 0.8
O 0.1 0.6
U 0.1 0.4
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Table 6. Probabilities from U to R depending on the number of days at state U for a fictitious
toy example; empty entries are zero.

Days 1 . . . 12 13 14 15 16 17 18
U 1.0 . . . 1.0 0.9 0.8 0.7 0.5 0.1
R 0.1 0.2 0.3 0.5 0.9 1.0

Table 7. Probabilities from O to H and R depending on the number of days at state O for a
fictitious toy example; empty entries are zero.

Age group 1 Age group 2 Age group 3
Days O H R O H R O H R

1 1.000 1.000 1.000
2 1.000 1.000 1.000
3 1.000 1.000 1.000
4 0.978 0.022 0.953 0.047 0.629 0.371
5 1.000 1.000 1.000
...

...
...

...

17 1.000 1.000 1.000
18 1.000 1.000 1.000
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Table 8. Probabilities from H to R and D depending on the number of days at state H for a
fictitious toy example; empty entries are zero.

Age group 1 Age group 2 Age group 3
Days H R D H R D H R D

1 1.00 1.00 1.00
2 1.00 1.00 1.00
3 1.00 1.00 1.00
4 1.00 1.00 1.00
5 1.00 1.00 1.00
6 1.00 1.00 0.75 0.25
7 1.00 1.00 0.75 0.25
8 1.00 1.00 0.75 0.25
9 1.00 1.00 1.00

10 1.00 1.00 1.00
11 1.00 0.96 0.04 1.00
12 1.00 0.96 0.04 1.00
13 1.00 0.96 0.04 1.00
14 1.00 0.96 0.04 0.75 0.25
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