Research article Special Issues

Reachability of dimension-bounded linear systems

  • Received: 25 June 2022 Revised: 11 September 2022 Accepted: 23 September 2022 Published: 11 October 2022
  • In this paper, the reachability of dimension-bounded linear systems is investigated. Since state dimensions of dimension-bounded linear systems vary with time, the expression of state dimension at each time is provided. A method for judging the reachability of a given vector space $ \mathcal{V}_{r} $ is proposed. In addition, this paper proves that the $ t $-step reachable subset is a linear space, and gives a computing method. The $ t $-step reachability of a given state is verified via a rank condition. Furthermore, annihilator polynomials are discussed and employed to illustrate the relationship between the invariant space and the reachable subset after the invariant time point $ t^{\ast} $. The inclusion relation between reachable subsets at times $ t^{\ast}+i $ and $ t^{\ast}+j $ is shown via an example.

    Citation: Yiliang Li, Haitao Li, Jun-e Feng, Jinjin Li. Reachability of dimension-bounded linear systems[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 489-504. doi: 10.3934/mbe.2023022

    Related Papers:

  • In this paper, the reachability of dimension-bounded linear systems is investigated. Since state dimensions of dimension-bounded linear systems vary with time, the expression of state dimension at each time is provided. A method for judging the reachability of a given vector space $ \mathcal{V}_{r} $ is proposed. In addition, this paper proves that the $ t $-step reachable subset is a linear space, and gives a computing method. The $ t $-step reachability of a given state is verified via a rank condition. Furthermore, annihilator polynomials are discussed and employed to illustrate the relationship between the invariant space and the reachable subset after the invariant time point $ t^{\ast} $. The inclusion relation between reachable subsets at times $ t^{\ast}+i $ and $ t^{\ast}+j $ is shown via an example.



    加载中


    [1] D. Cheng, On equivalence of matrices, Asian J. Math., 23 (2019), 257–348. https://doi.org/10.4310/AJM.2019.v23.n2.a3 doi: 10.4310/AJM.2019.v23.n2.a3
    [2] R. Huang, Z. Ye, An improved dimension-changleable matrix model of simulating the inset population dynamics, Entomol. Knowl., 32 (1995), 162–164.
    [3] J. Machowski, J. Bialek, J. Bumby, Power System Dynamics and Stability, John Wiley and Sons, 1997.
    [4] D. Cheng, Z. Xu, T. Shen, Equivalence-based model of dimensional-varying linear systems, IEEE Trans. Autom. Control, 65 (2020), 5444–5449. https://doi.org/10.1109/TAC.2020.2973581 doi: 10.1109/TAC.2020.2973581
    [5] J. Pan, H. Yang, B. Jiang, Fault tolerance analysis of spacecraft formation via impulsive dimension-varying switched system, in 2014 International Conference on Mechatronics and Control, (2014), 153–158. https://doi.org/10.1109/ICMC.2014.7231538
    [6] H. Yang, B. Jiang, V. Cocquempot, M. Chen, Spacecraft formation stabilization and fault tolerance: A state-varying switched system approach, Syst. Control Lett., 62 (2013), 715–722. https://doi.org/10.1016/j.sysconle.2013.05.007 doi: 10.1016/j.sysconle.2013.05.007
    [7] R. Goebal, R. Sanfelice, A. Teel, Hybrid dynamical systems, IEEE Control Syst. Mag., 29 (2009), 28–93. https://doi.org/10.1109/MCS.2008.931718 doi: 10.1109/MCS.2008.931718
    [8] L. Habets, P. Collins, J. Schuppen, Reachability and control synthesis for piecewise-affine hybrid systems on simplices, IEEE Trans. Autom. Control, 51 (2006), 938–948. https://doi.org/10.1109/TAC.2006.876952 doi: 10.1109/TAC.2006.876952
    [9] D. Liberzon, Finite data-rate feedback stabilization of switched and hybrid linear systems, Automatica, 50 (2014), 409–420. https://doi.org/10.1016/j.automatica.2013.11.037 doi: 10.1016/j.automatica.2013.11.037
    [10] D. Cheng, Z. Liu, H. Qi, Cross-dimensional linear systems, preprint, arXiv: 1710.03530.
    [11] D. Cheng, From Dimension-Free Matrix Theory to Cross-Dimensional Dynamic Systems, Elsevier, 2019.
    [12] D. Cheng, H. Qi, Z. Liu, Linear system on dimension-varying state space, in The 14th IEEE International Conference on Control and Automation, (2018), 112–117. https://doi.org/10.1109/ICCA.2018.8444229
    [13] B. Dao, J. Lam, Z. Shu, Y. Chen, On reachable sets for positive linear systems under constrained exogenous inputs, Automatica, 74 (2016), 230–237. https://doi.org/10.1016/j.automatica.2016.07.048 doi: 10.1016/j.automatica.2016.07.048
    [14] H. Pico, D. Aliprantis, Reachability analysis of linear dynamic systems with constant, arbitrary, and Lipschitz continuous inputs, Automatica, 95 (2018), 293–305. https://doi.org/10.1016/j.automatica.2018.05.026 doi: 10.1016/j.automatica.2018.05.026
    [15] H. Liu, B. Niu J. Qin, Reachability analysis for linear discrete-time systems under cyber attacks, IEEE Trans. Autom. Control, 66 (2021), 4444–4451. https://doi.org/10.1109/TAC.2021.3050549 doi: 10.1109/TAC.2021.3050549
    [16] S. Baldi, W. Xiang, Reachable set estimation for switched linear systems with dwell-time switching, Nonlinear Anal. Hybrid Syst., 29 (2018), 20–33. https://doi.org/10.1016/j.nahs.2017.12.004 doi: 10.1016/j.nahs.2017.12.004
    [17] Y. Chen, J. Lam, B. Zhang, Estimation and synthesis of reachable set for switched linear systems, Automatica, 63 (2016), 122–132. https://doi.org/10.1016/j.automatica.2015.10.033 doi: 10.1016/j.automatica.2015.10.033
    [18] Z. Fei, C. Guan, P. Shi, Reachable set estimation for discrete-time switched system with application to time-delay system, Int. J. Robust Nonlinear Control, 28 (2018) 2468–2483. https://doi.org/10.1002/rnc.4028 doi: 10.1002/rnc.4028
    [19] Y. Li, H. Li, S. Wang, Constrained sampled-data reachability and stabilization of logical control networks, IEEE Trans. Circuits Syst. II, 66 (2019), 2002–2006. https://doi.org/10.1109/TCSII.2019.2892357 doi: 10.1109/TCSII.2019.2892357
    [20] Y. Liu, J. Cao, L. Wang, Z. Wu, On pinning reachability of probabilistic Boolean control networks, Sci. China Inf. Sci., 63 (2020), 169–201. https://doi.org/10.1007/s11432-018-9575-4 doi: 10.1007/s11432-018-9575-4
    [21] Y. Zou, J. Zhu, Reachability of higher-order logical control networks via matrix method, Appl. Math. Comput., 287 (2016), 50–59. https://doi.org/10.1016/j.amc.2016.04.013 doi: 10.1016/j.amc.2016.04.013
    [22] N. Karampetakis, A. Gregoriadou, Reachability and controllability of discrete-time descriptor systems, Int. J. Control, 87 (2014), 235–248. https://doi.org/10.1080/00207179.2013.827798 doi: 10.1080/00207179.2013.827798
    [23] Z. Feng, J. Lam, On reachable set estimation of singular systems, Automatica, 52 (2015), 146–153. https://doi.org/10.1016/j.automatica.2014.11.007 doi: 10.1016/j.automatica.2014.11.007
    [24] T. Mullari, Ü. Kotta, Z. Bartosiewica, M. Sarafrazi, C. Moog, E. Pawluszewicz, Weak reachability and controllability of discrete-time nonlinear systems: Generic approach and singular points, Int. J. Control, 93 (2020), 483–489. https://doi.org/10.1080/00207179.2018.1479076 doi: 10.1080/00207179.2018.1479076
    [25] X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [26] X. Li, X. Yang, J. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981. https://doi.org/10.1016/j.automatica.2020.108981 doi: 10.1016/j.automatica.2020.108981
    [27] M. Althoff, G. Frehse, A. Cirard, Set propagation techniques for reachability analysis, Annu. Rev. Control Robot. Auton. Syst., 4 (2021). https://dx.doi.org/10.1146/annurev-control-071420-081941 doi: 10.1146/annurev-control-071420-081941
    [28] G. Frehse, An introduction to SpaceEx v0.8, 2010. Available from: http://spaceex.imag.fr/sites/default/files/introduction_to_spaceex_0.pdf.
    [29] X. Chen, E. Ábrahám, S. Samkaranarayanan, Flow*: An analyzer for non-linear hybrid systems, in 2013 International Conference on Computer Aided Verification, (2013), 258–263. https://doi.org/10.1007/978-3-642-39799-8_18
    [30] M. Althoff, An introduction to CORA 2015, in The Workshop on Applied Verification for Continuous and Hybrid Systmes, (2015), 120–151.
    [31] A. Kurzhanskly, P. Varalya, Ellipsoidal techniques for reachability analysis of discrete-time linear systems, IEEE Trans. Autom. Control, 52 (2007), 26–28. https://doi.org/10.1109/TAC.2006.887900 doi: 10.1109/TAC.2006.887900
    [32] M. Maïga, N. Ramdani, L. Travé-Massuyès, C. Combastel, A comprehensive method for reachability analysis of uncertain nonlinear hybrid systems, IEEE Trans. Autom. Control, 61 (2015), 2341–2356. https://doi.org/10.1109/TAC.2015.2491740 doi: 10.1109/TAC.2015.2491740
    [33] A. Chutinan, B. Krough, Conputational techniques for hybrid system verification, IEEE Trans. Autom. Control, 48 (2003), 64–75. https://doi.org/10.1109/TAC.2002.806655 doi: 10.1109/TAC.2002.806655
    [34] M. Althoff, C. Le Guerinic, B. Krogh, Reachable set computation for uncertain time-varying linear systems, in The 14th International Conference on Hybrid Systems: Computation and Control, (2011), 93–102. https://doi.org/10.1145/1967701.1967717
    [35] M. Althoff, Formal and compositional analysis of power systems using reachable sets, IEEE Trans. Power Syst., 29 (2014), 2270–2280. https://doi.org/10.1109/TPWRS.2014.2306731 doi: 10.1109/TPWRS.2014.2306731
    [36] C. Le Guernic, A. Girard, Reachbility analysis of linear systems using support functions, Nonlinear Anal. Hybrid Syst., 4 (2010), 250–260. https://doi.org/10.1016/j.nahs.2009.03.002 doi: 10.1016/j.nahs.2009.03.002
    [37] Y. Guo, Observability of Boolean control networks using parallel extension and set reachability, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 6402–6408. https://doi.org/10.1109/TNNLS.2018.2826075 doi: 10.1109/TNNLS.2018.2826075
    [38] O. Bokanowski, A. Picarelli H. Zidani, State-constrained stochastic optimal control problems via reachability approach, SIAM J. Control Optim., 54 (2016), 2568–2593. https://doi.org/10.1137/15M1023737 doi: 10.1137/15M1023737
    [39] J. Su, W. Chen, Model-based fault diagnosis system verification using reachability analysis, IEEE Trans. Syst. Man Cybern. Syst., 49 (2019), 742–751. https://doi.org/10.1109/TSMC.2017.2710132 doi: 10.1109/TSMC.2017.2710132
    [40] W. Xiang, H. Tran, T. Johnson, Output reachable set estimation for switched linear systems and its application in safety verification, IEEE Trans. Autom. Control, 62 (2017), 5380–5387. https://doi.org/10.1109/TAC.2017.2692100 doi: 10.1109/TAC.2017.2692100
    [41] J. Feng, B. Wang, Y. Yu, On dimensions of linear discrete dimension-unbounded systems, Int. J. Control Autom. Syst., 19 (2021), 471–477. https://doi.org/10.1007/s12555-019-0147-9 doi: 10.1007/s12555-019-0147-9
    [42] P. Zhao, H. Guo, Y. Yu, J. Feng, On dimensions of dimension-bounded linear systems, Sci. China Inf. Sci., 64 (2021), 159202:1–159202:3. https://doi.org/10.1007/s11432-018-9819-8 doi: 10.1007/s11432-018-9819-8
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1271) PDF downloads(73) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog